Importing and processing VNTR sequencer curve files

Similar documents
Importing and processing AFLP sequencer curve files

Importing data in a database with levels

Importing and processing a DGGE gel image

Setup and analysis using a publicly available MLST scheme

Import and preprocessing of raw spectrum data

Partition mapping. BioNumerics Tutorial: 1 Introduction. 2 Sample data. 3 Preparing the database

Importing MLST data from an Excel file

Adding entry information

Performing a resequencing assembly

Importing non-numerical character data

Band matching and polymorphism analysis

Dendrogram export options

Importing sequence assemblies from BAM and SAM files

Performing whole genome SNP analysis with mapping performed locally

Clustering fingerprint data

Geographical mapping of data

Applied Biosystems TrueScience Aneuploidy STR Kits

Importing FASTQ files

NEW FEATURES. Manage. Analyze. Discover.

wgmlst typing in the Brucella demonstration database

GeneMarker HID Quick Start

Annotating sequences in batch

Dendrogram layout options

Gene. The Biologist Friendly Software. Quickstart Guide

Analysis of MLVA data in BioNumerics

CODE: PND16 VERSION: REPLACED BY: AUTHORIZED BY: Page 1 of 20. Effective Date:

User Bulletin. ABI PRISM 310 Genetic Analyzer. DRAFT February 6, :09 pm, A.fm. G5v2 Module for Use with Dye Set 33 (DS-33)

TotalLab TL100 Quick Start

De novo genome assembly

Agilent MassHunter LC/SQ ChemStation Integration Software

ABI PRISM GeneMapper Software Version 3.0 SNP Genotyping

Installing the GeneMapper Software and Creating a Matrix on the ABI PRISM 310 Genetic Analyzer

Analyzation of PFGE Gel Images, Linking Gel Lanes, and Entering Data. Angie Dixon Jen Castleman

cief Data Analysis Chapter Overview Chapter 12:

Creating a custom mappings similarity matrix

Chromeleon software orientation

Customizable information fields (or entries) linked to each database level may be replicated and summarized to upstream and downstream levels.

TraceFinder Analysis Quick Reference Guide

Setting up a BioNumerics database with levels

wgmlst typing in BioNumerics: routine workflow

Devyser QF-PCR. Guide to Sample Runs, Data Analysis & Results Interpretation

Walk Lab Montana State University Fluorescent PCR Ribotyping for Clostridium difficile December 1, Amplification.

Galaxie Report Editor

IMAGE STUDIO LITE. Tutorial Guide Featuring Image Studio Analysis Software Version 3.1

Workflow Guide Slide(s) Topic 2-6 Importing Data and Labeling Samples 7-11 Processing Data Without an Allelic Ladder Processing Data With an

TraceFinder Analysis Quick Reference Guide

Outlook Guide. Microsoft Outlook User Guide. Desktop App. Enterprise Application Systems INFORMATION TECHNOLOGY

Agilent ChemStation Plus

Procedure for GeneMapper ID. 1.0 Purpose To specify the steps for performing analysis on DNA samples using GeneMapper ID (GMID) software.

Entry information fields and their properties

SequencePro Data Analysis Application. User Guide

ABI PRISM 3100-Avant and 3100 Data Collection v2.0 Software Frequently Asked Questions (FAQ)

3 AXIS STANDARD CAD. BobCAD-CAM Version 28 Training Workbook 3 Axis Standard CAD

Microsoft Office Excel Create a worksheet group. A worksheet group. Tutorial 6 Working With Multiple Worksheets and Workbooks

Agilent ChemStation Plus

Operation Manual. version 1.0. SoftGenetics LLC

PROPRIETARY MATERIALS

Thermo Xcalibur Getting Started (Quantitative Analysis)

ABI PRISM GeneMapper Software Version 3.0. User s Manual

Ticket Mail Merge Instructions for MS Word 2007 and 2010

LAN Modeling. Overview

Multivariate Calibration Quick Guide

GeneMapper ID-X Software Version 1.2

Chromatography Software Training Materials. Contents

Using Templates. 5.4 Using Templates

Geneious Microsatellite Plugin. Biomatters Ltd

Annotating a single sequence

Procedure to Create Custom Report to Report on F5 Virtual Services

MAIL MERGE DIRECTORY USE THE MAIL MERGE WIZARD

Exercise 1. Section 2. Working in Capture

Océ Engineering Exec. Advanced Import and Index

User Bulletin. ABI PRISM GeneScan Analysis Software for the Windows NT Operating System. Introduction DRAFT

Shape Cluster Photo Written by Steve Patterson

XVL Web Master Tutorial For Version 9.0 and later LATTICE TECHNOLOGY, INC.

Analysis Protocol for ABI GA 310 AFLP-runs

Analyzing a Project without a Reference

CEQ 8000 Series Fragment Analysis Training Guide

FileLoader for SharePoint

AEMLog Users Guide. Version 1.01

About Data Collection Preferences. Before You Begin. Macintosh computer - Step One: Setting Folder Locations

Build an App From a SAP Web IDE Template. Page 1/26

4H4Me Announcement Letter

HLC Annotations Management

Bioinformatics Software. FPQuest. Software Instruction Manual Version 5

Performing Comparisons in BioNumerics. Erik W. Coleman May 2009

Supply Chain Guru Network Optimization Tutorial. Version 8.2

Sending, Composing and Addressing a New Message:

ChromQuest 5.0 Quick Reference Guide

Introduction to cluster analysis purpose and parameters and Global Database Management

Nikon Capture NX "How To..." Series

GE Healthcare. ImageQuant TL 7.0. Image Analysis Software. Getting Started

Data Acquisition with CP-2002/2003 Micro-GC Control

A Guide to Processing Photos into 3D Models Using Agisoft PhotoScan

Agilent RapidFire 300 High-throughput Mass Spectrometry System

Synoptics Limited reserves the right to make changes without notice both to this publication and to the product that it describes.

Data Import and Quality Control in Geochemistry for ArcGIS

GeneMapper ID-X Software

Open Client Base Client Base Online Select Advance Search. If there is an option, select Leisure:

Placing Text in Columns

LAB EXERCISE 2 EM Basics (Momentum)

Transcription:

BioNumerics Tutorial: Importing and processing VNTR sequencer curve files 1 Aim Comprehensive tools for processing electrophoresis fingerprints, both from slab gels and capillary sequencers are incorporated into BioNumerics. When fingerprints are run on a capillary sequencers the resulting data can have two different formats: curve files (also referred to as electropherograms, chromatogram files or trace files), or peak tables. In this tutorial we will focus on the import of curve files. Since curve files contain the raw data, the fingerprint processing steps (e.g. normalization, band assignment,... ) are also covered in this tutorial. 2 Sample data Raw curve files from Applied Biosystems and Beckman (now AB SCIEX) sequencers can be imported directly in BioNumerics. A batch of Applied Biosystems curve files can be downloaded from the Applied Maths website (http://www.applied-maths.com/download/sample-data, click on VNTR sequencer trace files ). These example files will be used to illustrate the import steps in this tutorial. Eight VNTR targets per sample were amplified: two pools were generated (MP1 and MP2), each containing four PCR products, using four color dyes (6-FAM, VIC, NED, and PET). 3 Importing curve files 1. Create a new database (see tutorial Creating a new database ) or open an existing database. 2. Select File > Import... (, Ctrl+I) to call the Import dialog box, choose Import curves under Fingerprint type data and press <Import>. 3. Browse to the downloaded and unzipped example data folder VNTR sequencer trace files and select all Applied Biosystems curves files (extension.fsa). Press <Open>. The files are displayed in the Input wizard page and the default suggested Fingerprint file name is the folder name. 4. Change the name to Batch1 and press <Next> (see Figure 1). The way the information should be imported in the database can be specified with an import template. In the example data set, the dye name can be parsed from the file information and the sample and pool information can be parsed from the file names. A new import template needs to be defined: 5. Press the <Create new> button to call the Import rules dialog box (see Figure 2). The Import rules dialog box lists the information present in the selected files as Source, their linked Source type and the Destination component they are associated with (currently all set to <None>). 6. Select Curve dye from the list, select <Edit destination> and select Fingerprint dye as corresponding field. Press <OK>.

2 Figure 1: Selected curve files and fingerprint file name. Figure 2: Import rules. Next, we will specify a new rule that links the part of the file name appearing before the underscore to the Key field. 7. Select Name from the list, select <Edit destination> and select Key as corresponding field. Press <OK>. 8. Check the option Show advanced options, make sure the last row is selected in the grid panel and press the <Edit parsing> button.

3. Importing curve files 3 9. In the Data parsing dialog box, fill in following data parsing string: [DATA] *. The asterisk will serve as wildcard. 10. Press the <Preview> button and press <OK> when the parsing is correct (see Figure 3). Figure 3: Parsing string. Next, we will specify a new rule that links the part of the file name appearing after the underscore and before the hyphen ( - ) to the Pool field. 11. Select <Add rule>, select Name under File as data source, press <Next>, and select Fingerprint pool as data destination. Press <Next> once more. 12. In the Data parsing dialog box, fill in following data parsing string: * [DATA]-*. The asterisk will serve as wildcard. 13. Press the <Preview> button and press <Next> and <Finish> when the parsing is correct (see Figure 4). Figure 4: Parsing string. The Import rules dialog box should now look like Figure 2. 14. Press the <Preview> button to check the outcome of all defined import rules (see Figure 5).

4 Figure 5: Preview of the import rules. 15. Close the preview and press <Next> to go to the next step. In the example data set, the LIZ channel contains the size standard (GeneScan 500 LIZ). 16. Make sure LIZ is selected as Reference dye and press <Next> and <Finish>. 17. Specify a template name, e.g. Import VNTR curve files and press <OK>. 18. Make sure <Create new> is selected as fingerprint type experiment, select the new template and press <Next>. 19. Specify a name for the new base fingerprint type experiment (e.g. MLVA) and press <OK>. Confirm the creation of the new experiment in the database. Figure 6: New base fingerprint type experiment. A fingerprint type needs to be present in the database for each pool and dye combination. The names of these fingerprint types are composed of the base fingerprint type name, followed by the pool name, and the name of the dye. If one or more of these fingerprint types are not present in the database, a new dialog box pops up, listing the missing fingerprint types (see Figure 7). 20. Confirm the creation of the missing fingerprint type experiments. 21. Press <Next> to confirm the creation of new entries in the database. 22. Make sure Open curve preprocessing window is checked in the last step and press <Finish>.

3. Importing curve files 5 Figure 7: Missing fingerprint experiments. For each dye checked in the Dyes panel of the Import data dialog box, a new fingerprint file is created, composed of the file name specified and the name of the dye (e.g. Batch1 LIZ). These files are displayed in the Fingerprint files panel. The reference file is shown in the Link column. Double-clicking on a fingerprint file opens the Fingerprint window. If lane information was imported with the individual lanes, this information is displayed in the Fingerprint information panel. The imported fingerprint lanes are linked to new entries in the database. The lanes are linked to the corresponding fingerprint dye type. The names of these fingerprint types are composed of the base fingerprint type name, followed by the pool name, and the name of the dye. The fingerprint type experiments are displayed in the Experiment types panel. Entries for which fingerprint data was imported are selected in the database. After data import, the Main window looks as in Figure 8. Figure 8: The main window after import of the data.

6 4 Processing curve files When the option Open curve preprocessing window was checked in the last step of the import routine, the Fingerprint curve processing window opens when pressing the <Finish> button. All channels from the run are automatically loaded and displayed in the Fingerprint curve processing window. The Fingerprint curve processing window can also be called from the Main window by highlighting one of the channels in the Fingerprint files panel and selecting Open fingerprint data... ( ). Alternatively, you can first open the Fingerprint window with Edit > Open highlighted object... (, Enter) and then select File > Edit fingerprint data... ( ). 1. Click on the icon left of the data channels in the Channels panel. The data channels are now hidden from the view and its icons are displayed as. 2. Use the zoom sliders on the left and on top to optimize the display of the fingerprint curves. Since the raw chromatogram files have not undergone any preprocessing, normalization will have to be performed. This requires a reference system to be defined, based upon the marker peaks available in the reference dye. 3. Make sure the reference dye is the only dye visible in the upper panel. 4. Select Bands > Search reference bands... (, Ctrl+F) to call the Search reference bands dialog box. 5. Leave the default settings unaltered and press <OK>. The bands that fall within the specified criteria are marked with a solid line at the band s position (see Figure 9). 6. To have a reference system automatically created based on a lane containing commercial size marker, first highlight a suitable lane and then select References > Define size standard... This will display the Size standard dialog box, from which a size marker can be selected (see Figure 10). In the example curve files, the GeneScan 500 LIZ size standard is used as reference, containing 16 bands with known molecular weight. 7. Select GeneScan 500 LIZ from the list, select Pattern match and press <OK> twice. 8. Save the data to the database with File > Save (, Ctrl+S). The software will automatically create the reference system and calibration curve for each of the fingerprint types. Since this allows the calculation of metrics information, a metrics scale now becomes available in the upper part of the Fingerprints panel. Normalization is achieved by assigning bands in the reference channel to external reference positions. 9. To normalize a complete run at once, select Normalization > Auto assign reference positions (all lanes)... (, Ctrl+A), leave all settings unaltered and press <OK>. 10. When the assignment of the marker bands to reference positions is made, the data can be shown in normalized mode with Normalization > Show normalized view (, Shift+N). 11. Click on the icon left of the data channels in the Channels panel. 12. Click on the icon left of the LIZ reference channel. The data channels are now shown and the reference channel is hidden from the view. 13. Select Bands > Search data bands... (, Ctrl+Shift+F) to call the Search data bands dialog box.

4. Processing curve files 7 Figure 9: The Fingerprint curve processing window only displaying the reference dye. Figure 10: Select marker from the list. 14. Check Remove doublets, Remove shadow bands, Filter by fragment length and specify a minimum length of 50. Press <OK>. 15. Save the changes and close the Fingerprint curve processing window. When saving the data to the database with File > Save (, Ctrl+S) in the Fingerprint curve processing window, the software will automatically create the reference system and calibration curve for each of the

8 Figure 11: Normalized view - reference dye. fingerprint types. We can check this from the Main window: 16. Double-click on the base fingerprint type in the Experiments panel to open the Fingerprint type window. 17. In the Fingerprint type window, call Settings > Edit reference system, or double-click in the R01 panel to call the Fingerprint Reference system window. A calibration curve for the reference system R01 of the base fingerprint type is displayed. 18. Close the Fingerprint Reference system window and the Fingerprint type window. 5 Conclusion In this tutorial you have seen how to import and process sequencer curve files in BioNumerics. You can now start applying comparison functions such as band matching, clustering, etc. on the data. More information about these functions can found in the analysis tutorials on our website.

5. Conclusion 9 Figure 12: Normalized view - data dyes. Figure 13: The Fingerprint Reference system window, with a calibration curve displayed.