Math 776 Graph Theory Lecture Note 1 Basic concepts

Similar documents
Math 778S Spectral Graph Theory Handout #2: Basic graph theory

Graph Theory S 1 I 2 I 1 S 2 I 1 I 2

A graph is finite if its vertex set and edge set are finite. We call a graph with just one vertex trivial and all other graphs nontrivial.

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge.

Graph Theory: Introduction

Characterizing Graphs (3) Characterizing Graphs (1) Characterizing Graphs (2) Characterizing Graphs (4)

Lecture 5: Graphs. Rajat Mittal. IIT Kanpur

Assignment 4 Solutions of graph problems

Introduction III. Graphs. Motivations I. Introduction IV

Matching Algorithms. Proof. If a bipartite graph has a perfect matching, then it is easy to see that the right hand side is a necessary condition.

Fundamental Properties of Graphs

Graphs and Isomorphisms

K 4 C 5. Figure 4.5: Some well known family of graphs

Combinatorics Summary Sheet for Exam 1 Material 2019

CS473-Algorithms I. Lecture 13-A. Graphs. Cevdet Aykanat - Bilkent University Computer Engineering Department

List of Theorems. Mat 416, Introduction to Graph Theory. Theorem 1 The numbers R(p, q) exist and for p, q 2,

Math 170- Graph Theory Notes

How can we lay cable at minimum cost to make every telephone reachable from every other? What is the fastest route between two given cities?

Math.3336: Discrete Mathematics. Chapter 10 Graph Theory

Varying Applications (examples)

Introduction to Graph Theory

MC 302 GRAPH THEORY 10/1/13 Solutions to HW #2 50 points + 6 XC points

Problem Set 2 Solutions

Small Survey on Perfect Graphs

Discrete Mathematics

BIL694-Lecture 1: Introduction to Graphs

Bipartite Roots of Graphs

Mathematics and Statistics, Part A: Graph Theory Problem Sheet 1, lectures 1-4

Chapter 3: Paths and Cycles

Discrete mathematics II. - Graphs

Math 443/543 Graph Theory Notes

8.2 Paths and Cycles

Graphs and trees come up everywhere. We can view the internet as a graph (in many ways) Web search views web pages as a graph

Lecture 3: Recap. Administrivia. Graph theory: Historical Motivation. COMP9020 Lecture 4 Session 2, 2017 Graphs and Trees

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics. An Introduction to Graph Theory

Definition For vertices u, v V (G), the distance from u to v, denoted d(u, v), in G is the length of a shortest u, v-path. 1

DO NOT RE-DISTRIBUTE THIS SOLUTION FILE

Math 443/543 Graph Theory Notes

v V Question: How many edges are there in a graph with 10 vertices each of degree 6?

CMSC Honors Discrete Mathematics

Lecture 6: Graph Properties

CPS 102: Discrete Mathematics. Quiz 3 Date: Wednesday November 30, Instructor: Bruce Maggs NAME: Prob # Score. Total 60

HOMEWORK 4 SOLUTIONS. Solution: The Petersen graph contains a cycle of odd length as a subgraph. Hence,

Let G = (V, E) be a graph. If u, v V, then u is adjacent to v if {u, v} E. We also use the notation u v to denote that u is adjacent to v.

HW Graph Theory SOLUTIONS (hbovik) - Q

Discrete Mathematics for CS Spring 2008 David Wagner Note 13. An Introduction to Graphs

Graphs. Pseudograph: multiple edges and loops allowed

Basics of Graph Theory

Definition 1.1. A matching M in a graph G is called maximal if there is no matching M in G so that M M.

MATH 350 GRAPH THEORY & COMBINATORICS. Contents

4. (a) Draw the Petersen graph. (b) Use Kuratowski s teorem to prove that the Petersen graph is non-planar.

Basic Combinatorics. Math 40210, Section 01 Fall Homework 4 Solutions

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note 8

Graph Theory CS/Math231 Discrete Mathematics Spring2015

AMS /672: Graph Theory Homework Problems - Week V. Problems to be handed in on Wednesday, March 2: 6, 8, 9, 11, 12.

2. Lecture notes on non-bipartite matching

Discrete mathematics , Fall Instructor: prof. János Pach

Elements of Graph Theory

CLAW-FREE 3-CONNECTED P 11 -FREE GRAPHS ARE HAMILTONIAN

1 Digraphs. Definition 1

Proposition 1. The edges of an even graph can be split (partitioned) into cycles, no two of which have an edge in common.

Matching Theory. Figure 1: Is this graph bipartite?

MATH 682 Notes Combinatorics and Graph Theory II. One interesting class of graphs rather akin to trees and acyclic graphs is the bipartite graph:

List Coloring Graphs

DS UNIT 4. Matoshri College of Engineering and Research Center Nasik Department of Computer Engineering Discrete Structutre UNIT - IV

Chapter 9. Graph Theory

Exercise set 2 Solutions

Lecture Notes on Graph Theory

Graph Theory. Connectivity, Coloring, Matching. Arjun Suresh 1. 1 GATE Overflow

3 Euler Tours, Hamilton Cycles, and Their Applications

Problem Set 3. MATH 776, Fall 2009, Mohr. November 30, 2009

arxiv: v4 [math.co] 4 Apr 2011

by conservation of flow, hence the cancelation. Similarly, we have

Graph Theory. Part of Texas Counties.

CMSC 380. Graph Terminology and Representation

Lecture 4: Walks, Trails, Paths and Connectivity

WUCT121. Discrete Mathematics. Graphs

1. a graph G = (V (G), E(G)) consists of a set V (G) of vertices, and a set E(G) of edges (edges are pairs of elements of V (G))

1 Matchings in Graphs

Ma/CS 6b Class 5: Graph Connectivity

Vertex coloring, chromatic number

Graph Theory. 1 Introduction to Graphs. Martin Stynes Department of Mathematics, UCC January 26, 2011

DO NOT RE-DISTRIBUTE THIS SOLUTION FILE

Part II. Graph Theory. Year

HW Graph Theory SOLUTIONS (hbovik)

Assignments are handed in on Tuesdays in even weeks. Deadlines are:

Induction Review. Graphs. EECS 310: Discrete Math Lecture 5 Graph Theory, Matching. Common Graphs. a set of edges or collection of two-elt subsets

Math 443/543 Graph Theory Notes 2: Transportation problems

Vertex coloring, chromatic number

Crossing bridges. Crossing bridges Great Ideas in Theoretical Computer Science. Lecture 12: Graphs I: The Basics. Königsberg (Prussia)

Abstract. A graph G is perfect if for every induced subgraph H of G, the chromatic number of H is equal to the size of the largest clique of H.

A Vizing-like theorem for union vertex-distinguishing edge coloring

PACKING DIGRAPHS WITH DIRECTED CLOSED TRAILS

A generalization of Mader s theorem

An Introduction to Graph Theory

The Structure of Bull-Free Perfect Graphs

TWO CONTRIBUTIONS OF EULER

REGULAR GRAPHS OF GIVEN GIRTH. Contents

Theory of Computing. Lecture 10 MAS 714 Hartmut Klauck

MATH 139 W12 Review 1 Checklist 1. Exam Checklist. 1. Introduction to Predicates and Quantified Statements (chapters ).

Transcription:

Math 776 Graph Theory Lecture Note 1 Basic concepts Lectured by Lincoln Lu Transcribed by Lincoln Lu Graph theory was founded by the great Swiss mathematician Leonhard Euler (1707-178) after he solved the Königsberg Bridge problem: Is it possible to cross seven bridges exactly once? e 1 x e 6 w e 4 e e 5 y Figure 1: The map of Königsberg e z Figure : The graph associated with the Königsberg Bridges e 7 Using graph terminology, Euler gave a complete solution for any similar problem with any number of bridges connecting any number of landmasses! We will show and prove his result later. Definition 1 A graph G is a triple consisting of a vertex set V (G), an edge set E(G), and a relation that associates with each edge two vertices called its endpoints. Example 1 For the problem of the Königsberg Bridges, one can define the graph as follows. Vertices are landmasses while edges are bridges. We have V (G) = {w, x, y, x} E(G) = {e 1, e, e, e 4, e 5, e 6, e 7 } e 1 {w, x} e {w, x} e {w, z} e 4 {w, z} e 5 {w, y} e 6 {x, y} e 7 {y, z} Definition A loop is an edge whose endpoints are the same. Multiple edges are edges that have the same pair of endpoints. A simple graph is a graph without loops or multiple edges. 1

For a simple graph, an edge e is uniquely represented by its endpoints u and v. In this case, we write e = uv (or e = vu), and we say u and v are adjacent. u is a neighbor of v, and vice versa. An edge e is incident to u (and v). A simple graph G on n vertices can have at most ( n ) edges. The simple graph with n vertices and ( n ) edges is called the complete graph, denoted by K n. The simple graph G on n vertices with 0 edge is called the empty graph. The graph with 0 vertices and 0 edges is called the null graph. K K 4 K 5 K 6 Figure : Complete graphs K, K 4, K 5, and K 6. A cycle on n vertices, written C n, is a graph with vertex set V (G) = [n] = {1,,,..., n} and edge set E(G) = {1,, 4,..., (n 1)n, n1}. C C 4 C 5 C 6 Figure 4: Cycles C, C 4, C 5, and C 6. A path on n vertices, written P n, is a graph with vertex set V (G) = [n] = {1,,,..., n} and edge set E(G) = {1,, 4,..., (n 1)n}. Definition The complement Ḡ of a simple graph G is the simple graph with vertex set V (Ḡ) = V (G) and edge set E(Ḡ) defined by uv E(Ḡ) if and only if uv E(G). A clique in a graph is a set of pairwise adjacent vertices. An independent set in a graph is a set of pairwise non-adjacent vertices. Definition 4 A graph G is bipartite if V (G) is the union of two disjoint independent sets called partite sets of G. Definition 5 A graph is k-partite if V (G) can be expressed as the union of k independent sets. Definition 6 The chromatic number of a graph G, written χ(g), is the minimum number k such that G is k-partite.

A subgraph of a graph G is a graph H such that V (H) V (G) and E(H) E(G). We says G contains H. A induced subgraph of a graph G is a subgraph H satisfying E(H) = {uv u, v V (H), uv E(G)}. Example Let G 1 be the simple graph defined by (see Figure 5) V (G 1 ) = {1,,, 4, 5} E(G 1 ) = {1,, 1, 4, 4, 45}. 1 4 5 Figure 5: A simple graph G 1. {1,, } is a clique. {1, 4} is an independent set. G 1 is not a bipartite graph. The chromatic number is χ(g 1 ) =. 1 4 1 4 Figure 6: A subgraph of G 1. Figure 7: A induced subgraph of G 1.

An isomorphism from a simple graph G to a simple graph H is a bijection f : V (G) V (H) satisfying uv E(G) iff f(u)f(v) E(H). We say G is isomorphic to H, denoted G = H. The isomorphism relation is an equivalence relation. I.e., it is 1. reflexive: A = A.. symmetric: if A = B, then B = A.. transitive: if A = B and B = C, then A = C. An isomorphism class of graphs is an equivalence class of graphs under the isomorphism relation. It is also known as an unlabeled graph. Definition 7 The adjacency matrix of a graph G, written A(G), is the n-by-n matrix in which entry a ij is the number of edges with endpoints {v i, v j } in G. Here V (G) = v 1, v,..., v n is the vertex set of G. For a simple graph G, we have A(G) = { 1 if vi v j is an edge 0 otherwise A(G) is a symmetric 0-1 matrix with 0s on the diagonal. For a vertex v of the graph G, the degree d v is the number of edges which are incident to v. If v = v i, then d vi is the i-th row/column sum of A(G). Example For graph G 1 (Figure 5), the adjacency matrix is given by 0 1 1 0 0 1 0 1 1 0 A = 1 1 0 1 0 0 1 1 0 1 0 0 0 1 0 Let [n] = {1,,..., n}. The Petersen Graph G is defined as follows: V (G) = {all -subsets of [5]}. E(G) = {ST S, T V (G); S T = }. The Petersen Graph has the following properties. 1. The automorphism group Aut(G) is S 5.. It is a -regular graph.. The girth is 5. So, G contains no cycles C or C 4. 4

4. G has 10 vertices and 15 edges. Example 4 Prove that the Petersen Graph G contains no cycle of length 10. Proof: We will prove the statement by contradiction. Suppose G contains C 10. We can label the vertices by 1,,..., 10 according to the order they appear in C 10. Every vertex has one more edge leaving since its degree is. These edges are called inner edges. Since G contains no C or C 4, inner edges must be a diagonal or off-diagonal. (Edge ij is diagonal if i j 5 = 0 mod 10; ij is off-diagonal if i j 5 mod ± 1 mod 10. Case 1: There exists an off-diagonal edge. Without loss of generality, we can assume it is 17. Since the edge leaving vertex can only go to a vertex v, which is one of vertices 6, 7, 8. For each case, we get a cycle C or C 4 by restricting to 1,, 7, v. (If v = 7, we get a triangle.) Case : All inner edges are diagonal. In this case 176 is a C 4. Contradiction! The Petersen Graph contains no C 10. A graph G on n vertices is called Hamiltonian if G contains a spanning cycle C n. The Petersen Graph is not a Hamiltonian graph. In general, to test whether a graph is Hamiltonian is an NP-Complete problem. We will talk about the complexity in lecture. 1 Paths, cycles, and trails Definition 8 A walk (on a graph G) is a list v 0, e 1, v 1, e 1,..., e k, v k, satisfying e i = v i 1 v i is an edge for all i = 1,,..., k. k is called the length of the walk. A u, v-walk is a walk with v 0 = u and v k = v. A trail is a walk with no repeated edge. A path is a walk with no repeated vertices. A closed walk is a walk with the same endpoints, i.e., v 0 = v k. A cycle is a closed walk with no repeated vertices except for the endpoints. Lemma 1 Every u, v-walk contains a u, v-path. Proof: We prove it by induction on the length k of the walk. When k = 1, a u, v-walk is a u, v-path. We assume that every u, v-walk with length at most k contains a u, v-path. Now let us consider a u, v-walk u = v 0, e 1, v 1, e 1,..., e k+1, v k+1 = v of length k + 1. If the walk has no repeated vertices, it is a u, v-path by definition. Otherwise, say v i = v j for 0 i < j k + 1. By deleting all vertices and edges between v i and v j, we get a new walk: v 0,..., v i = v j,..., v k+1. This walk has length at most k. By the inductive hypothesis, it contains a u, v-path.. Definition 9 A graph G is connected if it has a u, v-path for any u, v V (G). For any u, v, we define a connected relation u v over V (G) if there is a u, v- path in G. The connected relation is an equivalence relation. The equivalence classes for this relation are called connected components of G. 5

A component is trivial if it contains only one vertex. A trivial component is also called an isolated vertex. Lemma Every closed odd walk contains an odd cycle. Proof: We prove it by induction on the length k of the closed walk. When k = 1, the walk of length 1 is a loop. Thus, it is an odd cycle. We assume that every odd walk with length at most k = r 1 contains a u, v- path. Now let us consider a closed walk u = v 0, e 1, v 1, e 1,..., e r+1, v r+1 = v of length r + 1. If the walk has no repeated vertices, it is an odd cycle by definition. Otherwise, say v i = v j for 0 i < j r + 1. The walk can be split into two closed walks: v 0,..., v i = v j,..., v k+1 v i,..., e i+1,..., v j. One of them must have odd length of at most r 1. By the inductive hypothesis, it contains an odd cycle. The proof is finished.. Theorem 1 (König 196) A graph is bipartite if and only if it has no odd cycle. Proof: It is sufficient to prove this for any connected graph. Necessity: Let G be bipartite graph. Every walk of G alternates between the two sets of a bipartition. The lengths of any closed walks are even. Therefore, it has no odd cycle. Sufficiency: Let G be a graph with no odd cycle. We will construct a bipartition as follows. Choose any vertex u. We define a partition V (G) = X Y as follows. X = {v V (G) there is a u, v-path of odd length}. Y = {v V (G) there is a u, v-path of even length}. Since G is connected, we have X Y = V (G). We will show X Y =. Otherwise, let u X Y. There are two u, v-paths. One path has even length while the other one has odd length. Put them together. We have an odd closed walk. By lemma, G has an odd cycle. Contradiction. Therefore, V (G) = X Y is a partition. Next, we will show there are no edges with both ends in X or Y. Otherwise, suppose that vw is such an edge. The u, v-path, the edge vw, and the w, u-path together form an odd closed walk. By previous lemma, G contains an odd cycle. Contradiction. Hence, G is a bipartite graph. 6