Fundamentals of AV over IP

Similar documents
Choosing a KVM Extender Key Considerations

AV OVER IP DEMYSTIFIED

BROADCAST CONTROLLER IP. Live IP flow routing for IP-based live broadcast facilities.

IP Video Network Gateway Solutions

INTRODUCTORY Q&A AMX SVSI NETWORKED AV

MODERN /CONTROLROOMS THE FINDING A SOLUTION THAT WORKS FOR THE WAY YOU WORK

MODERN /CONTROLROOMS THE FIND A SOLUTION THAT WORKS FOR THE WAY YOU WORK

WHITE PAPER. and Live. IP Networks. Event

Crewstation-over-IP. Real-time mission-critical remote multi-desktops. Esterline Control & Communication Systems. Content

ALL-IN-ONE PRESENTATION SYSTEMS

A HOLISTIC APPROACH TO IDENTITY AND AUTHENTICATION. Establish Create Use Manage

Case Study Shenzhen Intelligent Transport System

ENVISION INFINITE CONNECTIVITY.

Global Leased Line Service

White Paper THE VALUE OF SOFTWARE-BASED VIDEO CODECS. September S. Ann Earon, Ph.D. President, Telemanagement Resources International Inc.

I 2 C and SPI Protocol Triggering and Decode for Infiniium 8000 and Series Oscilloscopes

How to achieve low latency audio/video streaming over IP network?

4K DisplayPort Single Display KVM over IP Extender

Conferencing and Recording

Content Delivery Solutions Pinnacle MediaStream

True AV/IT convergence for flawless AV-over-IP. Channel - April 2018

Smart Data Center Solutions

DIGITAL MEDIA CAMCORDER DIGITAL MEDIA RECORDER GRASS VALLEY REV PRO DRIVES & REMOVABLE MEDIA

I 2 S Triggering and Hardware-based Decode (Option SND) for Agilent InfiniiVision Oscilloscopes

WHITE PAPER. Atlona OmniStream: Truly Converged, Networked AV

M I T E L 5200 IP Desktop

E-Seminar. Voice over IP. Internet Technical Solution Seminar

Deploying The All-IP Studio Today

Global Deployment of SD-WAN. Mike Howell October 2017

MTS4EA Elementary Stream Analyzer

Introduction to HDBaseT. Erik Indresovde Director of AV Products

Keysight Technologies Multi-Vendor Cellular Networks and Value Driven Optimization. Application Note

The Next Generation of Credential Technology

Exploring AV over IP & Software Defined Video over Ethernet (SDVoE) Gareth M. Heywood SMPTE Sacramento January 16, 2018

Adaptive Bitrate Streaming

SDVoE turning the theoretical benefits of AV over IP into reality

FAQ. AV Evolution. IPBaseT Frequently Asked Questions. Document Number:

Mobile Terminals: Western Europe, (Executive Summary) Executive Summary

Live Broadcast: Video Services from AT&T

WHITE PAPER. Atlona OmniStream: Truly Converged, Networked AV. US International

KEY MARKET DATA AND FORECASTS: TECHNOLOGIES: APPLICATIONS: GEOGRAPHIES:

Clear-Com Concert Advanced Security and Voice Quality

N4010A Wireless Connectivity Test Set and N4011A MIMO/ Multi-port Adapter

Balancing energy and environmental demands

CISCO IP PHONE 7970G NEW! CISCO IP PHONE 7905G AND 7912G XML

star safire hd family THE FIRST TRUE FAMILY OF HIGH DEFINITION IMAGING SYSTEMS

Envivio Mindshare Presentation System. for Corporate, Education, Government, and Medical

Why KVM over IP? Leading the World in KVM Innovations

Axis IP-Surveillance. Endless possibilities for video surveillance.

R&S CLIPSTER Mastering excellence.

Minimal Proprietary Compression Video Over IP Encoder with KVM

Network fundamentals IB Computer Science. Content developed by Dartford Grammar School Computer Science Department

Troubleshooting Ethernet Problems with Your Oscilloscope APPLICATION NOTE

Serial Digital Audio Routing Switchers?

AV-IP System & Components

Business Benefits of Policy Based Data De-Duplication Data Footprint Reduction with Quality of Service (QoS) for Data Protection

Balancing energy and environmental demands

Keysight Technologies N8825A/B Infiniium 10BASE-T / 100BASE-TX Ethernet Decoder. Data Sheet

Keysight Technologies I 2 C and SPI Protocol Triggering and Decode

FAQ. AV Evolution. IPBaseT Frequently Asked Questions. Document Number:

Global entertainment and media outlook Explore the content and tools

Citrix SD-WAN for Optimal Office 365 Connectivity and Performance

100GBASE-SR4/TDEC Compliance and Characterization Solution

Minimal Proprietary Compression Video Over IP Decoder with KVM

Success Story. Dunham-Bush

E-Seminar. Wireless LAN. Internet Technical Solution Seminar

A 3/25/99 4:23 PM Page 23 APC Global Services 1999 Al Specificat

PARTNER SERIES. Why AV over IP Trumps Traditional AV Matrix Switches

Cerify Automated QC of File-based Video

Technology Overview. Gallery SIENNA London, England T

Building Technologies. SISTORE AX Digital Recording and Transmission Solution: Get the images you need.

Unifying Live Sports Production Using IP Technology

Digital Pre-emphasis Processor BERTScope DPP Series Datasheet

Digital Pre-emphasis Processor BERTScope DPP Series Datasheet

JPEG p Low Latency Video over IP Encoder with KVM, PoE, SFP, HDMI NMX-ENC-N2135 (FGN2135-SA), Stand Alone NMX-ENC-N2135-C (FGN2135-CD), Card

DS Series & AutoView 1000R/2000R. Setting New Standards in IP Access and Control

Hybrid WAN Operations: Extend Network Monitoring Across SD-WAN and Legacy WAN Infrastructure

PROJECT PLANNING GUIDE

Agilent Modern Connectivity Using USB and LAN I/O Converters

Innovative Fastening Technologies

Cisco AVVID The Architecture for E-Business

Cisco Catalyst 2950 LRE Series Solution Question and Answers

VMware Technology Overview. Leverage Nextiva Video Management Solution with VMware Virtualization Technology

Belden Overview. Corporate Presentation. Dec Belden Inc. Inc.

WITH RELIABLE, AFFORDABLE ENTERPRISE PRI

THE POWER OF A STRONG PARTNERSHIP.

RSA Solution Brief. Providing Secure Access to Corporate Resources from BlackBerry. Devices. Leveraging Two-factor Authentication. RSA Solution Brief

Connecting Legacy Equipment to the Industrial Internet of Things White Paper

Managing the Digital Connection

D-STAR Review & Final Exam

Not all SD-WANs are Created Equal: Performance Matters

Pay-TV services worldwide: trends and forecasts PAY-TV SERVICES WORLDWIDE: TRENDS AND FORECASTS

Customers want to transform their datacenter 80% 28% global IT budgets spent on maintenance. time spent on administrative tasks

Saving Critical Space. Cable Management Solutions

NEW JERSEY S HIGHER EDUCATION NETWORK (NJEDGE.NET), AN IP-VPN CASE STUDY

Deluxe MediaCloud Broadcast Delivery Network. Technical overview.

Keysight Technologies RS232/UART Protocol Triggering and Decode for Infiniium Series Oscilloscopes. Data Sheet

Keysight Technologies Monitoring the Control Panel Temperature

Frequently Asked Questions

Xerox. Manufacturing. Case Study. About Xerox. Manufacturing

Transcription:

Fundamentals of AV over IP matrox.com/graphics

CONTENTS WHAT IS AV OVER IP? 3 SIMILARITIES BETWEEN TRADITIONAL AV AND AV OVER IP SETUPS 3 CURRENT AV TECHNOLOGIES 4 DIFFERENCES BETWEEN TRADITIONAL AV AND AV OVER IP 4 Switching 4 Distance 4 Standards 5 Interoperability 5 HOW SECURE IS AV OVER IP? 6 Digital content protection 6 Encryption technologies 6 TOP SECURITY CONCERNS FOR THE AV INDUSTRY 7 Command and control 7 Video and audio content security 7 Network security 7 MAXIMUM VALUE FOR VIDEO AND AUDIO ASSETS 7 2 Fundamentals of AV over IP Matrox Technical Guide

WHAT IS AV OVER IP? AV over IP stands for Audio-Visual over Internet Protocol. Essentially, it is the transmission of audio-visual data over a network such as a LAN, WAN, or the internet. As opposed to traditional AV environments, AV over IP (also known as AV/IP) refers to the use of standard network equipment to transmit and switch video and audio. The concept of Video over IP has existed a long time. It encompasses everything from internet-based live or on-demand video streaming, to professional video distribution infrastructures in production and broadcast studios. What is being discussed in the professional AV (facilities AV) space over the last few years is the gradual replacement of traditional AV infrastructures with IP-based infrastructures hence the term AV over IP. For some people, the idea of using IP in the facilities AV space is quite new, while for others, it is familiar territory. For more information on Multi-Channel Encoding for Live and On- Demand Streaming, please see Fundamentals of Multi-Channel Encoding for Streaming. SIMILARITIES BETWEEN TRADITIONAL AV AND AV OVER IP SETUPS At the base, the elements in AV environments stay the same. Traditional AV infrastructures are mainly concerned with the extension and switching of audio and video assets. The goal of an AV facility is to provide users the ability to see and/or hear their video and sound sources on their viewing stations and on their sound systems or speakers. To do this, sources need to be captured, moved, switched, and displayed. The user interface to change sources can be push buttons on hardware equipment, all the way to digital interfaces on computer-based technologies. Typical HDBaseT Setup Typical AV/IP Setup A/V source A/V source A/V source A/V source A/V transmitter A/V transmitter Encoder Encoder A/V switcher IP switcher A/V receiver A/V receiver Decoder Decoder A/V destination A/V destination A/V destination A/V destination In both AV setups, the elements are very similar. In AV over IP, the A/V Transmitters become Encoders, A/V Receivers become Decoders, and the A/V Switcher (also known as video matrix switcher) becomes a standard IP Switch just like what your computers connect to at the office. 3 Fundamentals of AV over IP Matrox Technical Guide

CURRENT AV TECHNOLOGIES Many AV products and services are designed to preserve maximum image and/or sound quality while the sources are being moved and switched. Other performance elements include fast switching and low latency throughout the pipeline. Additionally, some AV equipment is capable of performing processing operations such as multiplying the sources and making them simultaneously available in more than one place for consumption. More advanced processing involves performing modifications to the sources in real time. This can include changing the video signal from one type to another (like DisplayPort to ), cropping, upor down-scaling (for example changing from HD to 4K or 4K to HD), compositing (text overlays or combining multiple videos), and more. Everything described above for traditional AV is preserved when implementing AV over IP. The only difference is that the video and audio moving through the series of boxes and cables changes from circuit-based to packet-based like computer data networks and telephone over IP. Basically, Internet Protocol (IP) is a set of rules governing the format of data sent over the internet or other video and audio networks. AV-over-IP technology organizes the audiovisual data so that it conforms to those rules. Data transmitted over IP is subdivided into packets. Each packet contains part of the original file as well as additional control information such as source, destination, and sequence. DIFFERENCES BETWEEN TRADITIONAL AV AND AV OVER IP AV over IP differs from traditional AV by evolving the following key aspects: scalable switching (many more ports and easier to add just what you need), breaking the barriers of distance, improved ratio of inputs to outputs, video standards that extend beyond the local facility, convergence with data and communications, and new options in video processing. Switching Perhaps the cornerstone of why organizations are gradually replacing traditional AV infrastructures with IP-based AV infrastructures has the switch as the focal point. Hardwired, circuit-based switching is basically a point-to-point technology. Video matrix switchers are a destination (relative to an AV transmitter box) and a source (relative to an AV receiver box) simultaneously. All the combinations of transmitters to receivers are resolved inside the matrix switch and it is possible to use any source at any destination according to the number of ports available on the video matrix switch. For example, an 8x8 matrix switch allows eight sources to be used at any of eight destinations. More advanced products can perform processing operations. Instead of just making any input available on any output, for example, it might be possible to show any input on any as well as many outputs. Hence, a PowerPoint presentation from a PC can be a source that gets routed from an AV transmitter box to a video matrix switcher and then the switcher can be wired to multiple AV receiver boxes that can simultaneously be showing the PowerPoint presentation in real time. What s different about IP (and packet-based switching) is the number of sources attached to the IP switch is no longer as limited. When physical ports run out, multiple IP switches can be connected to expand. What this means is that you can scale the number of ports to your needs much more conveniently. It is possible to keep adding sources and destinations without a substantial overhaul of the video matrix switcher centerpiece being a major limiting factor. The ratio of inputs to outputs can also be far more tailored in AV over IP compared to the traditional hardwired video matrix switcher. It is possible to have MANY inputs but only a few outputs, or only a few inputs but MANY outputs. Or you can have MANY of both and in widely different quantities. Distance Another limit of traditional AV is the distance between boxes. All hardwired digital transmissions have a practical limit to distance. Short distances of only a few feet can be wired cheaply. Once you re at several meters, the cost of extension cables goes up. And when wires are being run throughout facilities over hundreds of meters, the cost of installation and extension becomes higher still. IP-based AV can be transmitted over copper (Category) cable and over fiber optic quite conveniently. The Category (CAT- 5, CAT-6, etc.) cable has a maximum of 100 meters. But it is possible to switch and repeat in series. The video you watch in your home on Netflix or YouTube has travelled quite far using this exact packet-based switching technology. Thus, AV over IP significantly increases flexibility by overcoming limits to number of sources and destinations as well as by conquering distance limits. There is no penalty to capabilities for migrating from traditional AV to AV over IP as all elements of performance are retained with IP-based solutions. 4 Fundamentals of AV over IP Matrox Technical Guide

The illustration below highlights this with the help of three main architectures. The first is based on traditional AV switching followed by the next two on AV over IP. Traditional A/V switcher Fixed number of inputs/outputs Standard IP networks LAN Proprietary encoding scheme (Incompatible with rest of industry) Standard IP networks LAN Standards-based encoding scheme Standards Some AV-over-IP products use standards-based packetization for transmission on IP networks and compatibility with IP switches, and some use proprietary packetization schemes which also work on IP networks and standard IP switches but which do not work with other products in the market. In general, standards-based schemes provide the potential for interoperability between products from different vendors. Far more importantly however, standards arise from the work of many stakeholders balancing the needs from many different technological perspectives. Standards-based products tend to have a road map and evolution that provides much greater infrastructure migration benefits than anything based on a single supplier. Interoperability Whether the packetization scheme is standards-based or proprietary does not alone determine interoperability and also does not establish whether a product is more, or less, secure. It only refers to the potential for the streams to work with a broad base of technology, or their inability to do so. Some vendors provide AV-over-IP encoders and decoders that are tightly coupled. In other words, the encoders and decoders need to be from the same vendor. The number one reason for this tight coupling is usually because vendors try to provide their customers with guaranteed specifications and performance. This also allows for a very controlled out-of-thebox ease of set up and ease-of-use experience. Other vendors provide completely wide-open compatibility. In other words, they either make encoders that work with decoders from other vendors, or they make decoders that work with encoders from other vendors, or they make both. These products put a strong emphasis on interoperability and the ability to leverage features and capabilities from an enormous range of hardware and software providers. Some other vendors provide products that support both tight coupling and interoperability. They deliver all the features and benefits of tight coupling when you get encoders and decoders from the same vendor. However, they also offer modes of operation that allow you to greatly leverage features and capabilities from a wide range of third-party hardware and software providers. 5 Fundamentals of AV over IP Matrox Technical Guide

Examples of traditional AV vs. AV over IP Traditional AV examples 1. Digital video Tx and Rx boxes and/or cables Digital video matrix switcher DisplayPort SDI HDBaseT 2. Analog video Tx and Rx boxes and/or cables Analog video matrix switcher Composite video S-Video Component video AV over IP examples 1. Standards-based AV-over-IP products SMPTE 2110 specification for uncompressed video over IP JPEG-2000 lightly compressed video over IP H.264 high-efficiency compression over IP 2. Proprietary AV-over-IP products The packets between encoders and decoders respect Internet Protocol and the streams can be switched on standard IP switches, but the encoding scheme (packetization of video) is proprietary and incompatible with any devices using standards-based codecs. Example: SDVoE Focusing on the leading AV over IP products in the market which are all founded on standards-based packetization (including wellestablished codecs in many cases) the next topic is encryption and security. HOW SECURE IS AV OVER IP? A common misconception about migrating from hardwired AV to AV over IP is that the latter introduces more security risks than traditional AV. With more flexibility and new deployment options, education is the best ally to AV administrators. Encryption technologies exist for several aspects of AV-over-IP products, and they address multiple components of AV system design. Some products provide encryption on the command-and-control signaling to encoder and decoder devices. This offers security against hacking the actions of the boxes including turning streaming on or off, or switching what source is being displayed. Another security aspect is the ability to encrypt the video streams themselves. This ensures that if the video stream is intercepted, it cannot be simply decoded and viewed. Digital content protection When dealing with interoperability, some products provide support for third-party devices using digital key exchanges or encryption. For example, the overwhelming majority of AV customers are concerned with the most straightforward case which is HDCP. The purpose of High-bandwidth Digital Content Protection (HDCP) is to protect digital copyrighted content as it travels between devices. For instance, a cable or satellite receiver box, or a media player with outputs, might play content in HD or 4K that is protected content. Such content is locked and can only be viewed by HDCP-compatible products once they are properly authenticated. There are restrictions on how protected content can be extended, multiplied, altered, or viewed. Encryption technologies While some encryption technologies are purpose-built to offer security options to AV professionals, sometimes they are also used to simply reduce openness. Vendors aiming to provide an assured experience to customers might choose to lock down the compatibility of their encoders and decoders to just their own brand as a measure to limit the scope of their quality assurance testing, technical support, and customer care options. This also allows to provide good user experiences to customers for set up and product use. Encoder Decoder The blue lines represent the audio and video content flow. The yellow lines represent the command-and-control signaling. In this illustration, the main elements of AV-over-IP encoders and decoders are visible. An audio/video port (like in the example) A network jack to stream the packetized video in or out A command-and-control port (Although an RS-232 connection is shown here, this is often combined with the network port used for sending and receiving packetized video. It is also possible to use a separate RJ-45 port to connect to a separate network for command and control.) 6 Fundamentals of AV over IP Matrox Technical Guide

TOP SECURITY CONCERNS FOR THE AV INDUSTRY Command and control There are push-button-only products in traditional AV where behaviors such as switching a source can only occur manually on the hardware itself. This is of course secure from remote hacking, but undeniably restricts the convenience and functionality as well. Most useful AV products, whether they are traditional AV or based on AV over IP, have command-and-control ports that allow for remote control of the behaviors of the boxes, including turning on and off or switching the sources. For example, when a touch panel or AV processor is involved, some form of remote command and control is in use. The command-and-control layer can be protected with permissions, passwords, and encryption. There is an equivalent responsibility for the command-and-control layer on vendors selling traditional AV as well as those selling AV over IP. Video and audio content security Can private assets like streaming camera feeds be intercepted by wrong doers? Of course. But this is true of ANY video or audio feed. Whether the video or audio is in circuit-based form on analog or digital wiring, or whether the video or audio is in packet-based form on IP networks, in both cases, it is possible to hack and access the video and audio feeds. There is no substitute for knowledge and responsible deployment efforts when it comes to securing video and audio. In fact, some feel that the ability to encrypt packetized video and audio is superior to traditional baseband video if there is a concern that someone might try to hack and snoop the feeds. Keep in mind that IP security has been around for a long time. Both data and telephone over IP have already gone through multiple generations of constant iterative improvements on this. In addition to information about IP network security and content encryption, there are also many well-established consultants and experts in the security field to assist you no matter how sophisticated or basic your requirements are. Network security How to deploy AV over IP is a question of fit. AV over IP can be deployed on entirely segregated networks that never coexist with packets of data from an organization s data network or communications network. Alternatively, existing infrastructures of network cabling and switching are capable of, and already frequently used, for AV-over-IP applications. AV-over-IP implementations, whether on separate or existing infrastructure, can be done without compromising the IT network security. In many organizations, the ability to use data, communications, and AV together (also known as convergence ) is a driving force and key benefit for how AV is being re-fitted or newly deployed. MAXIMUM VALUE FOR VIDEO AND AUDIO ASSETS There is no question that the IP network expertise from the computer networking world has value in the AV space. Old walls that once existed between AV and IT are melting away. Nevertheless, a strong understanding of AV-over-IP technologies and network requirements is still field-of-expertise focused on one thing only: providing maximum value to customers for their audio and video assets. Moving away from centralized A/V switching to distributed encoding and decoding, AV over IP puts the emphasis back on the value of the audio-video assets themselves. This is possible because IP allows better distribution of the AV processing capabilities and the ability to easily scale with user needs. By allowing users more flexible deployments, providing options for using AV assets over greater distances, and letting users to pursue powerful new capabilities that better reflect evolving technology and changing worker habits, the migration towards AV over IP is well under way. 7 Fundamentals of AV over IP Matrox Technical Guide

Contact Matrox graphics@matrox.com North America Corporate Headquarters: 1 800-361-1408 or +1 514-822-6000 Serving: Canada, United States, Latin America, Asia, Asia-Pacific, and Oceania London Office: +44 (1895) 827300 or +44 (0) 1895 827260 Serving: United Kingdom, Ireland, Benelux, France, Spain, Portugal, Middle East, Africa Munich Office: +49 89 62170-444 Serving: Germany, Austria, Switzerland, Denmark, Finland, Norway, Sweden, Central and Eastern Europe, the Baltic States, Greece, Turkey, Italy About Matrox Graphics Inc. Matrox Graphics is a global manufacturer of reliable, high-quality ASICs, boards, appliances, and software. Backed by in-house design expertise and dedicated customer support, Matrox products deliver stellar capture, extension, distribution, and display. Engineering high-quality products since 1976, Matrox technology is trusted by professionals and partners worldwide. Matrox is a privately held company headquartered in Montreal, Canada. For more information, visit www.matrox.com/graphics. 2018 Matrox Graphics, Inc. All rights reserved. Matrox reserves the right to change specifications without notice. Matrox and Matrox product names are registered trademarks in Canada or other countries and/or trademarks of Matrox Electronic Systems, Ltd and/or Matrox Graphics Inc. All other company and product names are registered trademarks and/or trademarks of their respective owners. 11/2018