Optimal dislocation with persistent errors in subquadratic time. ETH Zurich

Similar documents
Tolerant Algorithms. 1 University of Bonn 2 TU Dortmund 3 IBM Research-Almaden

Priority Queues. T. M. Murali. January 29, 2009

Priority Queues. T. M. Murali. January 23, T. M. Murali January 23, 2008 Priority Queues

Think Global Act Local

Deterministic Rectangle Enclosure and Offline Dominance Reporting on the RAM

Priority Queues. T. M. Murali. January 26, T. M. Murali January 26, 2016 Priority Queues

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Sorting lower bound and Linear-time sorting Date: 9/19/17

3 Trees: traversal and analysis of standard search trees. Summer Term 2010

Algorithmic Problems in Epidemiology

How to Win Coding Competitions: Secrets of Champions. Week 3: Sorting and Search Algorithms Lecture 7: Lower bound. Stable sorting.

Outline. Main Questions. What is the k-means method? What can we do when worst case analysis is too pessimistic?

A tight bound on approximating arbitrary metrics by tree metric Reference :[FRT2004]

Computer Science 302 Spring 2007 Practice Final Examination: Part I

Reordering Buffer Management with Advice

Lecture 7 8 March, 2012

Planar Point Location in Sublogarithmic Time

Bipartite Vertex Cover

Hitting and harvesting pumpkins. Gwenaël Joret Christophe Paul Ignasi Sau Saket Saurabh Stéphan Thomassé

Range Searching II: Windowing Queries

Question 7.11 Show how heapsort processes the input:

On the Cell Probe Complexity of Dynamic Membership or

Local Constraints in Combinatorial Optimization

Direct Routing: Algorithms and Complexity

Computer Generation of IP Cores

Partial vs. Complete Domination:

COT 5407: Introduction. to Algorithms. Giri NARASIMHAN. 1/29/19 CAP 5510 / CGS 5166

Fully Dynamic Randomized Algorithms for Graph Spanners

Algorithms and data structures

Chapter 1 Divide and Conquer Algorithm Theory WS 2013/14 Fabian Kuhn

KD-Tree Algorithm for Propensity Score Matching PhD Qualifying Exam Defense

Fabian Kuhn. Nicla Bernasconi, Dan Hefetz, Angelika Steger

Encoding Data Structures

Computer Science Spring 2005 Final Examination, May 12, 2005

CS264: Beyond Worst-Case Analysis Lecture #19: Self-Improving Algorithms

Dispersion on Trees. Paweł Gawrychowski 1, Nadav Krasnopolsky 2, Shay Mozes 3, and Oren Weimann 4. 1 Introduction. Abstract

Lecture April, 2010

Approximate Nearest Neighbor Problem: Improving Query Time CS468, 10/9/2006

Permuted Longest-Common-Prefix Array

All-to-All Communication

Space-efficient representations of non-linear objects

COMP Analysis of Algorithms & Data Structures

New Bounds for the CLIQUE-GAP Problem Using Graph Decomposition Theory

Towards Scalable and Robust Overlay Networks

On the Bottleneck Shortest Path Problem

Simple and Practical Algorithm for the Sparse Fourier Transform

Linear-Space Data Structures for Range Minority Query in Arrays

Improved and Extended Locating Functionality on Compressed Suffix Arrays

Optimal Tracking of Distributed Heavy Hitters and Quantiles

Algorithmic Analysis. Go go Big O(h)!

3 Trees: traversal and analysis of standard search trees

Dictionary. Dictionary. stores key-value pairs. Find(k) Insert(k, v) Delete(k) List O(n) O(1) O(n) Sorted Array O(log n) O(n) O(n)

Lecture 23: Priority Queues, Part 2 10:00 AM, Mar 19, 2018

COMP Analysis of Algorithms & Data Structures

Jana Kosecka. Linear Time Sorting, Median, Order Statistics. Many slides here are based on E. Demaine, D. Luebke slides

Lecture 6: Linear Programming for Sparsest Cut

Superconcentrators of depth 2 and 3; odd levels help (rarely)

A Forward-Backward Single-Source Shortest Paths Algorithm

CPSC 536N: Randomized Algorithms Term 2. Lecture 5

CS 261: Data Structures. Skip Lists

The 4/3 Additive Spanner Exponent is Tight

RANGE-EFFICIENT COUNTING OF DISTINCT ELEMENTS IN A MASSIVE DATA STREAM

Integer Algorithms and Data Structures

How fast can we sort? Sorting. Decision-tree example. Decision-tree example. CS 3343 Fall by Charles E. Leiserson; small changes by Carola

CS 372: Computational Geometry Lecture 10 Linear Programming in Fixed Dimension

Algorithms for Evolving Data Sets

CSE Winter 2015 Quiz 2 Solutions

BRICS Research Activities Algorithms

Approximate Shared-Memory Counting Despite a Strong Adversary

Lecture 8 13 March, 2012

COMP Online Algorithms. Online Bin Packing. Shahin Kamali. Lecture 20 - Nov. 16th, 2017 University of Manitoba

CPSC 311 Lecture Notes. Sorting and Order Statistics (Chapters 6-9)

Introduction to I/O Efficient Algorithms (External Memory Model)

COMP Data Structures

DIVIDE AND CONQUER ALGORITHMS ANALYSIS WITH RECURRENCE EQUATIONS

Solving Geometric Problems in Space-Conscious Models

Exam Principles of Distributed Computing

Longest Common Extensions in Trees

Thomas Moscibroda Roger Wattenhofer MASS Efficient Computation of Maximal Independent Sets in Unstructured Multi-Hop Radio Networks

The Parameterized Complexity of Finding Point Sets with Hereditary Properties

Data Streaming Algorithms for Geometric Problems

Recursive ORAMs with Practical Constructions

Reading for this lecture (Goodrich and Tamassia):

1 o Semestre 2007/2008

Homework #3. CMSC351 - Spring 2013 PRINT Name :

Optimal Resilient Sorting and Searching in the Presence of Memory Faults

Lower and Upper bounds for Online Directed Graph Exploration

1 Lower bound on runtime of comparison sorts

Problem A. The Lawyer

Randomized incremental construction. Trapezoidal decomposition: Special sampling idea: Sample all except one item

Online Bipartite Perfect Matching With Augmentations

Approximating Connected Facility Location Problems via Random Facility Sampling and Core Detouring

Data Structures in Java. Session 23 Instructor: Bert Huang

Soft Heaps And Minimum Spanning Trees

Parallel Algorithms for Geometric Graph Problems Grigory Yaroslavtsev

Data Structures for Range Minimum Queries in Multidimensional Arrays

Divide and Conquer Algorithms

Integrating rankings: Problem statement

Shuheng Zhou. Annotated Bibliography

An O(n 2.75 ) algorithm for online topological ordering 1

arxiv: v1 [cs.ds] 5 Jun 2015

Transcription:

Optimal dislocation with persistent errors in subquadratic time Barbara Geissmann, Chih-Hung Liu, Stefano Leucci, Paolo Penna ETH Zurich

The Problem Sorting with erroneous comparisons

The Problem Sorting with erroneous comparisons 7 8 3 4 5 1 2 6

The Problem Sorting with erroneous comparisons 1 2 3 4 5 6 7 8

The Problem 7 8 3 4 5 1 2 6

The Problem 4>2 7 8 3 4 5 1 2 6

The Problem 4<5 7 8 3 4 5 1 2 6

The Problem 5<2 7 8 3 4 5 1 2 6

The Problem 5<2 7 8 3 4 5 error probability p constant 1 2 6

The Problem 5<2 7 8 3 4 5 error probability p constant independent for each pair 1 2 6

The Problem 5<2 7 8 3 4 5 error probability p constant independent for each pair persistent errors 1 2 6

The Problem 5<2 7 8 3 4 5 error probability p constant independent for each pair persistent errors 1 2 6 5%

The Problem Repeating does not help 5<2 7 8 3 4 5 error probability p constant independent for each pair persistent errors 1 2 6

The Problem Repeating does not help 5<2 7 8 3 4 5 1 2 6

Can you sort? Algorithm errors 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Can you sort? Algorithm errors 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Can you sort? Algorithm errors 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 11 12 10 13 14 15 16 Appro Sorted

Can you sort? Algorithm errors 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 11 12 10 13 14 15 16 Appro Sorted

Can you sort? Algorithm errors 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 11 12 10 13 14 15 16 Dislocation

What can be done?

Prior Results

Prior Results MAX O(log n) Dislocation TOTAL O(n) Braverman & Mossel (SODA 08)

Prior Results Dislocation Time: MAX TOTAL O(n 3+C ) O(log n) O(n) Braverman & Mossel (SODA 08)

Prior Results Dislocation Time: MAX TOTAL O(n 3+C ) O(log n) O(n) 110525 (1/2 p) 4 Braverman & Mossel (SODA 08)

Prior Results Dislocation Time: MAX TOTAL O(n 3+C ) O(log n) O(n) O(n 2 ) O(log n) Braverman & Mossel (SODA 08) Klein, Penninger, Sohler, Woodruff (ESA 11)

Prior Results Dislocation Time: MAX TOTAL O(n 3+C ) O(log n) O(n) O(n 2 ) O(n 2 ) O(log n) O(log n) O(n) Braverman & Mossel (SODA 08) Klein, Penninger, Sohler, Woodruff (ESA 11) Geissmann, Leucci, Liu, Penna (ISAAC 17)

Prior Results Time: MAX Dislocation TOTAL O(n 3+C ) O(log n) O(n) O(n 2 ) O(log n) O(n 2 ) O(log n) O(n) Ω(log n) Ω(n) Braverman & Mossel (SODA 08) Klein, Penninger, Sohler, Woodruff (ESA 11) Geissmann, Leucci, Liu, Penna (ISAAC 17)

Prior Results Time: MAX Dislocation TOTAL O(n 3+C ) O(log n) O(n) O(n 2 ) O(log n) O(n 2 ) O(log n) O(n) Ω(log n) Ω(n) Braverman Subquadratic & Mossel (SODA 08) time? Klein, Penninger, Sohler, Woodruff (ESA 11) Geissmann, Leucci, Liu, Penna (ISAAC 17)

Our Contribution YES

Our Contribution YES Dislocation Time: MAX TOTAL O(n 3/2 ) O(log n) O(n)

Our Contribution YES Dislocation Time: MAX TOTAL O(n 3/2 ) O(log n) O(n) randomized algorithm derandomized algorithm

O(n 2 )-Time Algorithm Geissmann, Leucci, Liu, Penna (ISAAC 17)

O(n 2 )-Time Algorithm errors well-spread success Geissmann, Leucci, Liu, Penna (ISAAC 17)

O(n 2 )-Time Algorithm errors well-spread success initial dislocation D time O(Dn) Geissmann, Leucci, Liu, Penna (ISAAC 17)

O(n 2 )-Time Algorithm D d errors well-spread success initial dislocation D time O(Dn) Geissmann, Leucci, Liu, Penna (ISAAC 17)

O(n 2 )-Time Algorithm D d with high prob d = O(log n) errors well-spread success initial dislocation D time O(Dn) Geissmann, Leucci, Liu, Penna (ISAAC 17)

O(n 2 )-Time Algorithm D n d errors well-spread success initial dislocation D time O(Dn) Geissmann, Leucci, Liu, Penna (ISAAC 17)

O(n 2 )-Time Algorithm New Algo D d errors well-spread success initial dislocation D time O(Dn) Geissmann, Leucci, Liu, Penna (ISAAC 17)

O(n 2 )-Time Algorithm New Algo D d errors well-spread success initial dislocation D time O(Dn) tricky part Geissmann, Leucci, Liu, Penna (ISAAC 17)

Simple Faster Algo New Algo D d

Simple Faster Algo D d

n Simple Faster Algo D d

n Simple Faster Algo D d

n Simple Faster Algo D d

n Simple Faster Algo O(n) O(n) O(n) D d

n Simple Faster Algo O(n) O(n) O(n) O(n 3/2 ) D d

Simple Faster Algo n O(n 3/2 ) NOT ENOUGH! D d

Simple Faster Algo n O(n 3/2 ) 1 NOT ENOUGH! D d

Simple Faster Algo n O(n 3/2 ) 1 NOT ENOUGH! D d 1

Simple Faster Algo n O(n 3/2 ) 1 NOT ENOUGH! 1 D 1 d

Simple Faster Algo O(n 3/2 ) D d

Simple Faster Algo O(n 3/2 ) D d

Simple Faster Algo O(n 3/2 ) D d

Simple Faster Algo O(n 3/2 ) STILL NOT ENOUGH D d

Simple Faster Algo 1 2 n O(n 3/2 ) D d

Simple Faster Algo 1 2 n O(n 3/2 ) 1 2 D d

Simple Faster Algo 1 2 n O(n 3/2 ) 1 2 D d

Simple Faster Algo 1 2 n O(n 3/2 ) 1 2 n D d

Simple Faster Algo 1 2 n O(n 3/2 ) 1 2 n 1 D d

Simple Faster Algo 1 2 n O(n 3/2 ) 1 2 n 1 2 D d

Simple Faster Algo 1 2 n O(n 3/2 ) 1 2 n 1 2 D n d

Simple Faster Algo random permutation O(n 3/2 ) D d

Simple Faster Algo random permutation O(n 3/2 ) D = n 3/4 d

Simple Faster Algo random permutation O(n 3/2 ) D = n 3/4 O(n 7/4 ) d

That was the simple version...

O(n 2 ) O(n 2 δ )

O(n 2 ) O(n 2 δ ) O(n 2 δ )

O(n 2 ) O(n 2 δ ) O(n 2 δ )

O(n 2 ) O(n 2 δ ) O(n 2 δ ) O(n 3/2 )

Part II: Derandomization

Comparisons Randomness < > p 1 p > < p 1 p? XOR?? < > 1 c log n 2 ± 1 1 n 4 2 ± 1 n 4 Comparisons One random bit

Naive Approach k??? k(n k) log n

Naive Approach k??? SORT k(n k) log n

Naive Approach k??? SORT k(n k) log n REINSERT

Open Questions Time: MAX Dislocation TOTAL O(n 3+C ) O(log n) O(n 2 ) O(log n) O(n) O(n 2 ) O(n 3/2 ) O(log n) O(log n) O(n) O(n) Braverman & Mossel (SODA 08) Klein, Penninger, Sohler, Woodruff (ESA 11) Geissmann, Leucci, Liu, Penna (ISAAC 17)

Open Questions Time: MAX Dislocation TOTAL O(n 3+C ) O(log n) O(n 2 ) O(log n) O(n) O(n 2 ) O(n 3/2 ) O(log n) O(log n) O(n) O(n) Faster? O(n log n) comparisons Braverman & Mossel (SODA 08) Klein, Penninger, Sohler, Woodruff (ESA 11) Geissmann, Leucci, Liu, Penna (ISAAC 17)

Open Questions Time: MAX Dislocation TOTAL O(n 3+C ) O(log n) O(n) p < 1/16 O(n 2 ) O(log n) O(n 2 ) O(n 3/2 ) O(log n) O(log n) O(n) O(n) Braverman & Mossel (SODA 08) Klein, Penninger, Sohler, Woodruff (ESA 11) Geissmann, Leucci, Liu, Penna (ISAAC 17)

Open Questions Time: MAX Dislocation TOTAL O(n 3+C ) O(log n) O(n) p < 1/16 O(n 2 ) O(log n) O(n 2 ) O(n 3/2 ) O(log n) O(log n) O(n) O(n) Any p < 1/2? Braverman & Mossel (SODA 08) Klein, Penninger, Sohler, Woodruff (ESA 11) Geissmann, Leucci, Liu, Penna (ISAAC 17)

Open Questions Time: MAX Dislocation TOTAL O(n 3+C ) O(log n) O(n) p < 1/16 O(n 2 ) O(log n) O(n 2 ) O(n 3/2 ) O(log n) O(log n) O(n) O(n) Any p < 1/2? p < 1/2 Braverman & Mossel (SODA 08) Klein, Penninger, Sohler, Woodruff (ESA 11) Geissmann, Leucci, Liu, Penna (ISAAC 17)

Open Questions Time: MAX Dislocation TOTAL O(n 3+C ) O(log n) O(n 2 ) O(log n) O(n) O(n 2 ) O(n 3/2 ) O(log n) O(log n) O(n) O(n) Other error models? Braverman & Mossel (SODA 08) Klein, Penninger, Sohler, Woodruff (ESA 11) Geissmann, Leucci, Liu, Penna (ISAAC 17)

Tahnk You