IMPORTANCE OF REALISTIC MOBILITY MODELS FOR VANET NETWORK SIMULATION

Similar documents
Realistic Mobility Models for Vehicular Ad hoc Network (VANET) Simulations

An Analysis of Simulators for Vehicular Ad hoc Networks

Study on Indoor and Outdoor environment for Mobile Ad Hoc Network: Random Way point Mobility Model and Manhattan Mobility Model

Performance of Ad-Hoc Network Routing Protocols in Different Network Sizes

THE REALISTIC MOBILITY EVALUATION OF VEHICULAR AD-HOC NETWORK FOR INDIAN AUTOMOTIVE NETWORKS

Poonam kori et al. / International Journal on Computer Science and Engineering (IJCSE)

Performance Analysis of Three Routing Protocols for Varying MANET Size

PERFORMANCE EVALUATION OF MOBILITY AND ROUTING PROTOCOLS FOR VEHICULAR AD HOC NETWORKS USING NS-2 AND VANETMOBISIM

Evaluation of Mobility Models For Vehicular Ad-Hoc Network Simulations Atulya Mahajan, Niranjan Potnis, Kartik Gopalan, and An-I A.

Gateway Discovery Approaches Implementation and Performance Analysis in the Integrated Mobile Ad Hoc Network (MANET)-Internet Scenario

An Extensive Simulation Analysis of AODV Protocol with IEEE MAC for Chain Topology in MANET

SIMULATION BASED AND ANALYSIS OF ROUTING PROTOCOLS FOR VANET USING VANETMOBISIM AND NS-2

PERFORMANCE EVALUATION OF AODV AND DSR ROUTING PROTOCOLS IN MANET NETWORKS

Analysis QoS Parameters for Mobile Ad-Hoc Network Routing Protocols: Under Group Mobility Model

Performance Evaluation of Routing Protocols for MAC Layer Models

Performance Comparison of Mobility Generator C4R and MOVE using Optimized Link State Routing (OLSR)

Measure of Impact of Node Misbehavior in Ad Hoc Routing: A Comparative Approach

PERFORMANCE ANALYSIS OF AODV ROUTING PROTOCOL IN MANETS

PERFORMANCE EVALUATION OF DSR USING A NOVEL APPROACH

Analysis of Network Traffic in Ad-Hoc Networks based on DSDV Protocol

Analyzing Routing Protocols Performance in VANET Using p and g

DYNAMIC ROUTES THROUGH VIRTUAL PATHS ROUTING FOR AD HOC NETWORKS

Executive Overview. D1.3.2-VanetMobiSim/Ns-2: A VANET simulator for CARLINK

BUSNet: Model and Usage of Regular Traffic Patterns in Mobile Ad Hoc Networks for Inter-Vehicular Communications

A Graph-based Approach to Compute Multiple Paths in Mobile Ad Hoc Networks

Improving Energy and Efficiency in cluster based VANETs through AODV Protocol

Reliable Routing Scheme for VANETs in City Environment

A Simulation study : Performance comparison of AODV and DSR

AODV-PA: AODV with Path Accumulation

Performance Comparison of Routing Protocols for wrecked ship scenario under Random Waypoint Mobility Model for MANET

Secure Enhanced Authenticated Routing Protocol for Mobile Ad Hoc Networks

Control Traffic Analysis of On-Demand Routing Protocol. in Mobile Ad-hoc Networks

Methods to Resolve Traffic Jams using VANET

Performance Evaluation of AODV, DSDV, and ZRP Using Vehicular Traffic Load Balancing Scheme on VANETs

Evaluating Vehicle Network Strategies for Downtown Portland: Opportunistic Infrastructure and the Importance of Realistic Mobility Models

Evaluating Vehicle Network Strategies for Downtown Portland: Opportunistic Infrastructure and the Importance of Realistic Mobility Models

Aanchal Walia #1, Pushparaj Pal *2

Performance Analysis of Routing Protocols for Mobile Ad-hoc Networks

Performance Comparison of Ad Hoc Routing Protocols over IEEE DCF and TDMA MAC Layer Protocols

Histogram-Based Density Discovery in Establishing Road Connectivity

IMPACT OF MOBILITY SPEED ON PROACTIVE AND REACTIVE ROUTING PROTOCOLS IN MOBILE ADHOC NETWORKS

Performance Evaluation of MANET through NS2 Simulation

QoS Routing By Ad-Hoc on Demand Vector Routing Protocol for MANET

Intelligent Driver Mobility Model and Traffic Pattern Generation based Optimization of Reactive Protocols for Vehicular Ad-hoc Networks

Energy Aware and Anonymous Location Based Efficient Routing Protocol

A Reliable Route Selection Algorithm Using Global Positioning Systems in Mobile Ad-hoc Networks

CHAPTER 5. Simulation Tools. be reconfigured and experimented with, usually this is impossible and too expensive or

Mobile-Gateway Routing for Vehicular Networks 1

Exploring the Behavior of Mobile Ad Hoc Network Routing Protocols with Reference to Speed and Terrain Range

Impact of Node Velocity and Density on Probabilistic Flooding and its Effectiveness in MANET

Simulations of VANET Scenarios with OPNET and SUMO

Mobility Models for Vehicular Ad Hoc Networks: A Survey and Taxonomy

Impact of Hello Interval on Performance of AODV Protocol

Behaviour of Routing Protocols of Mobile Adhoc Netwok with Increasing Number of Groups using Group Mobility Model

Effects of Sensor Nodes Mobility on Routing Energy Consumption Level and Performance of Wireless Sensor Networks

Performance of Routing Protocols in Very Large-Scale Mobile Wireless Ad Hoc Networks

[Kamboj* et al., 5(9): September, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116

Effect of Variable Bit Rate Traffic Models on the Energy Consumption in MANET Routing Protocols

Simulation and Analysis of Transmission Range Effect on DSR Routing Protocol in a Vanet Network with Different Speed and Node Density

Performance Evaluation of VoIP over VANET

Performance Analysis of DSR, AODV Routing Protocols based on Wormhole Attack in Mobile Adhoc

PERFORMANCE EVALUATION OF DSDV, AODV ROUTING PROTOCOLS IN VANET

COMPARATIVE ANALYSIS AND STUDY OF DIFFERENT QOS PARAMETERS OF WIRELESS AD-HOC NETWORK

A Study of Bellman-Ford, DSR and WRP Routing Protocols with Respect to Performance Parameters for Different Number of Nodes

Performance Analysis of Broadcast Based Mobile Adhoc Routing Protocols AODV and DSDV

Research Article Performance Comparison of IEEE p and IEEE b for Vehicle-to-Vehicle Communications in Highway, Rural, and Urban Areas

Performance Metrics of MANET in Multi-Hop Wireless Ad-Hoc Network Routing Protocols

Chapter XIV Simulation of VANET Applications

Performance Comparison of AODV, DSR, DSDV and OLSR MANET Routing Protocols

Performance Analysis and Comparison of MANET Routing Protocols

Design and Simulation of Vehicular Adhoc Network using SUMO and NS2

Experiment and Evaluation of a Mobile Ad Hoc Network with AODV Routing Protocol

Anil Saini Ph.D. Research Scholar Department of Comp. Sci. & Applns, India. Keywords AODV, CBR, DSDV, DSR, MANETs, PDF, Pause Time, Speed, Throughput.

COMPARATIVE STUDY AND ANALYSIS OF AODTPRR WITH DSR, DSDV AND AODV FOR MOBILE AD HOC NETWORK

Analysis of GPS and Zone Based Vehicular Routing on Urban City Roads

CERIAS Tech Report A Simulation Study on Multi-Rate Mobile Ad Hoc Networks by G Ding, X Wu, B Bhar Center for Education and Research

Impact of Pause Time on the Performance of DSR, LAR1 and FSR Routing Protocols in Wireless Ad hoc Network

INTERNATIONAL JOURNAL OF SCIENTIFIC & ENGINEERING RESEARCH VOLUME 5, ISSUE 3, MARCH-2014 ISSN

Performance Analysis of DSR, AODV Routing Protocols based on Wormhole Attack in Mobile Ad-hoc Network

VERGILIUS: A Scenario Generator for VANET

Simulation Based Performance Analysis of Routing Protocols Using Random Waypoint Mobility Model in Mobile Ad Hoc Network

International Journal of Advance Engineering and Research Development. Improved OLSR Protocol for VANET

Performance Comparison of AODV, DSDV and DSR Protocols in Mobile Networks using NS-2

DYNAMIC SEARCH TECHNIQUE USED FOR IMPROVING PASSIVE SOURCE ROUTING PROTOCOL IN MANET

Selfish Scheduler for Packet Scheduling Based on Packet Weighted Energy Drain Rate in Manets

Comparing Delay Tolerant Network Routing Protocols for Optimizing L-Copies in Spray and Wait Routing for Minimum Delay

A Realistic Mobility Simulator for Vehicular Ad Hoc Networks 2

Broadcast algorithms for Active Safety Applications over Vehicular Ad-hoc Networks

Evaluating the Performance of Modified DSR in Presence of Noisy Links using QUALNET Network Simulator in MANET

QUANTITATIVE ANALYSIS OF VANET ROUTING PROTOCOLS IN URBAN AND HIGHWAY SCENARIOS

Simulation and Analysis of AODV and DSDV Routing Protocols in Vehicular Adhoc Networks using Random Waypoint Mobility Model

IJESRT. [Dahiya, 2(5): May, 2013] ISSN: Keywords: AODV, DSDV, Wireless network, NS-2.

Minimizing the Routing Delay in Ad Hoc Networks through Route-Cache TTL Optimization

Effect of Radio-Wave Propagation Model On Network Performance With AODV Routing Protocol For IL-VANET

Car-2-X Simulations: Dezentrale Systeme und Netzdienste Institut für Telematik. Dr. Jérôme Härri

Multipath Routing in Ad Hoc Wireless Networks with Omni Directional and Directional Antenna: A Comparative Study

Efficient Node Reconfiguration in Mobile Ad Hoc Networks (MANETs) for Wireless Internet Access Point Connection

A NEW ENERGY LEVEL EFFICIENCY ISSUES IN MANET

ASH: Application-aware SWANS with Highway mobility

Qos Parameters Estimation in MANET Using Position Based Opportunistic Routing Protocol

Transcription:

IMPORTANCE OF REALISTIC MOBILITY MODELS FOR VANET NETWORK SIMULATION Bahidja Boukenadil¹ ¹Department of Telecommunication, Tlemcen University, Tlemcen,Algeria ABSTRACT In the performance evaluation of a protocol for a vehicular ad hoc network, the protocol should be tested under a realistic conditions including, representative data traffic models, and realistic movements of the mobile nodes which are the vehicles (i.e., a mobility model). This work is a comparative study between two mobility models that are used in the simulations of vehicular networks, i.e., MOVE (MObility model generator for VEhicular networks) and CityMob, a mobility pattern generator for VANET. We describe several mobility models for VANET simulations. In this paper we aim to show that the mobility models can significantly affect the simulation results in VANET networks. The results presented in this article prove the importance of choosing a suitable real world scenario for performances studies of routing protocols in this kind of network. KEYWORDS VANET; Mobility Model; Simulations; Real World; MOVE; SUMO; CityMob; NS-2 etc. 1. INTRODUCTION The mobility is the principal constraint met in the vehicular networks, therefore the performance investigation of VANET network routing require the exact prediction of mobility of nodes forming the network, and this is realized by the good choice of the mobility model. Generally, the traces and the synthetic models [1] are two kinds of mobility patterns used for the simulation of networks.for simulating the complex and large scale networks that require more real world scenarios for a real modeling, the traces are used. But in several situations, these traces are created with difficulty, particularly for the networks of high mobility like the vehicular networks. In this case, the mobility of nodes (i.e., the vehicles nodes) are modeled with the synthetic patterns, these models try to really present the behavior of these environments of vehicles. A variety of synthetic mobility models for vehicular networks are discussed in Literature, some of them are presented in Section II. Section III illustrate that a mobility model has a large effect on the performance evaluation in simulation of VANET network. Finally, Section IV presents some concluding remarks. DOI : 10.5121/ijcnc.2014.6513 175

2. MOBILITY MODEL FOR VEHICULAR NETWORKS Many models of mobility can be used to generate the movement of the vehicles instead of the traces which are difficult to create in the VANET environments. However, the behavior of these networks is very complex; the drivers must react to the high change of the road conditions like the congestion, traffic jam, works in the roads. The state of the roads in turn depends on the behaviors of the drivers. Thus, the choice of the mobility model affects the relevance and viability of the obtained results. In general, vehicular traffic simulators or mobility models can be classified in two great kinds, the microscopic and macroscopic simulators. The microscopic simulator is interested in the movement of each vehicle taking part in the road traffic. In contrast the macroscopic simulators are interested in all the vehicles forming the networks; it compute road capacity and the distribution of the traffic in the road net, by determining a certain parameters like traffic density (number of vehicles per km per lane) or traffic flow (number of vehicles per hour crossing some points of interest, usually an areas with a great density of nodes). The literature present a large variety of mobility models for VANET networks. The work of Saha and Johnson [2] model vehicular traffic in real road topologies of the maps of USA available from TIGER (Topologically Integrated Geographic Encoding) [3] database. The mobility of nodes is random.vehicles compute the shortest path to get their destination over the graph by weighting the cost of displacement on each road on its speed limit and the traffic jam. Huang et al. [4] studied taxi behavior. In this work, a Manhattan style grid with a uniform block size is modeled. The streets of simulation area are two-way, with one lane in each direction. These lanes constrain vehicle movements. A set of parameters characterize the vehicle behavior which are preferred velocity,maximum acceleration and deceleration, a velocity variation associated with the preferred speed at steady state and a list of preferred destinations, i.e., the taxi stands.. The taxis assigne randomly one of three preferred speeds. In the work of Choffnes et al. [5], an integrated mobility and traffic model is conceived, named STRAW.For modeling real traffic conditions,this model incorporates a simple car-following model with traffic control. The road map of this pattern is constructed by street plans with one lane in each direction.the vehicles move in these lanes according to a random street placement model.each vehicle enters the map is placed behind the existing one. In [6] Haerri et al. proposed a vehicular mobility simulator for VANET networks, called VanetMobiSim [7].The speed of vehicles for this model is determined by the use of the Intelligent Driver Model (IDM). Three different models were presented in the work of Mahajan et al. [8]: Stop Sign Model (SSM), Traffic Light Model (TLM) and Probabilistic Traffic Sign Model (PTSM).In this models All roads are two-way, with one lane in each direction for the SSM and PTSM, whereas TLM model streets with multiple lanes. An algorithm is employed to reproduce stop signs for each model. Martinez et al [9] present CityMob [10].This mobility model generate different mobility patterns in VANETs, Simple Model (SM), Manhattan Model (MM) and Downtown Model (DM).Each model has its own characteristics,for the SM,the plan of the road is very simple, neither semaphores nor direction changes.in constract, MM and DM simulates semaphores at crossing 176

and random positions in zones with different vehicle density. CityMob allows to simulate damaged cars and tries to prevent congestions. Figure 1 present the interface of this model. Karnadi et al. [12, 13, 14] develop a tool MOVE (MObility model generator for VEhicular networks) [11].This model provide facility for the users to generate real world scénarios in VANET environments. This model contains two editors, one for road map and the second for vehicle movement.the user can manually and automatically create the road topology or import it from existing real world maps such as Google maps. For vehicle movement, the pattern can be manually created, generated automatically or specified based on a bus time table to simulate the movements of public transportations. Figure2 shows the interface of this model. Figure 1. Interface of CityMob 177

Figure 2: Mobility Model Generator 3. INFLUENCE OF MOBILITY MODEL IN VANET SIMULATIONS. The simulation results are greatly affected by the mobility model selected.the results presented in this section illustrate the importance of choosing a suitable mobility model for performances evaluation of routing protocols in VANET network. We use ns-2 [34] to compare the performance of the CityMob Model and the MOVE tool via a simulation.the routing of packets is accomplished with the Ad hoc On Demand Distance Vector) (AODV) [20]. We have chosen the parameters for both mobility models in a manner to simulate the same path as possible. AODV (Ad hoc On Demand Distance Vector) [1] is a reactive protocol that does route discovery when needed by a node. The route discovery process is initiated only when a source node has data traffic to send to a destination node, that makes AODV a truly On- Demand routing protocol. In our simulations, we chose AODV since it behaves well in several of the performance evaluations of the routing protocols (e.g. [21, 22, 23]). 178

The ns-2 code used in our simulations of AODV was obtained from [24]. Each simulation run lasted for 300 seconds with a uniform block size of 500 x 500 meters; the maximum speed of vehicles is of 40 m/s. The number of vehicles nodes from 15 to 100. We chose the traffic sources at a constant rate CBR (Constant Bit Rate). Traffic between nodes is generated using a traffic generator which is characterized by the following parameters: Data packets Size is 512 bytes, Interval between packets is 0.25s, maximum of packets transmitted 1000. All nodes use IEEE 802.11 MAC operating at 2Mbps. The propagation model employed in the simulation is TwoRayGround reflextion. In our comparison of the two mobility models, we consider the following performance metrics obtained from the AODV protocol: throughput, end-to-end delay and protocol overhead. Throughput (bits/s) 0,023 0,022 0,021 0,020 0,019 0,018 0,017 0,016 0,015 0,014 0,013 0,012 0,011 0,010 0,009 0 20 40 60 80 100 Number of vehicles Move CityMob Figure 3 : Throughput vs. number of vehicles. Average End-to-End Delay (sec) 0,50 0,45 0,40 0,35 0,30 0,25 0,20 0 20 40 60 80 100 Number of vehicles MOVE CityMob Figure 4 : End-to-end delay vs. number of vehicles. 179

110 MOVE CityMob 100 90 Overhead 80 70 60 50 40 0 20 40 60 80 100 Number of vehicles Figure 5 : overhead vs. number of vehicles. Figures 3, 4 and 5 illustrate the performance (i.e., Throughput ratio, end-to-end delay and overhead) of AODV with the two mobility models chosen.the Throughput (in figure 3) of AODV when using MOVE mobility model is higher and more stable than when using CityMob model.the trace 4 shows that AODV causes a low stable delay with MOVE because the roads are more defined compared to CityMob. Figures 5 illustrate the overhead AODV required with each of the chosen mobility models. The vehicles moving with CityMob have a higher overhead, as a result this model requires a higher amount of overhead compared to MOVE.These results confirm the suitability of MOVE tool for simulating VANET. 4.CONCLUSIONS In this paper, we compared the performance of two mobility models for VANET Simulation i.e. MOVE (MObility model generator for VEhicular networks) and CityMob (City Mobility).Simulation analysis using realistic mobility model for VANET environment show that the performance of the protocol is greatly affected by the mobility model. The performance of an ad hoc network protocol can vary significantly with different mobility models then, the choice of mobility model in simulating VANET is very important.the mobility models for VANET should be most closely match the expected real-world scenario. In fact, the realistic scenarios can aid the development of the routing protocols significantly. As future work we plan to compare other mobility models discussed above. Results obtained from these studies would certainly facilitate in meeting the challenges associated with future development and evaluation of suitable routing protocols in vehicular networks. 180

REFERENCES [1] M. Sanchez and P. Manzoni. A java-based ad hoc networks simulator. In Proc. of the SCS Western Multiconference Web-based Simulation Track, Jan. 1999 [2] A.K. Saha and D.B. Johnson, Modeling mobility for vehicular ad hoc networks, in ACM Workshop on Vehicular Ad Hoc Networks (VANET 2004), Philadelphia PA, October 2004. [3] U.S. Census Bureau - Topologically Integrated Geographic Encoding and Referencing (TIGER) system, http://www.census.gov/geo/www/tiger. [4] E. Huang,W. Hu, J. Crowcroft, and I.Wassell, Towards commercial mobile ad hoc network applications: A radio dispatch system, in Sixth ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc 2005), Urbana-Champaign, Illinois, May 2005 [5] D.R. Choffnes and F.E. Bustamante, An integrated mobility and traffic model for vehicular wireless networks, in ACM Workshop on Vehicular Ad Hoc Networks (VANET 2005), Cologne, Germany, September 2005. [6] J. Haerri, M. Fiore, F. Filali, and C. Bonnet, Vanetmobisim: generating realistic mobility patterns for vanets, in ACM Workshop on Vehicular Ad Hoc Networks (VANET 2006), Los Angeles, California, September 2006. [7] VanetMobiSim.http://en.pudn.com/downloads160/sourcecode/app/detail720214_en.html [8] A. Mahajan, N. Potnis, K. Gopalan, and A.Wang, Evaluation of mobility models for vehicular ad-hoc network simulations, in IEEE International Workshop on Next Generation Wireless Networks (WoNGeN 2006), Bangalore, India, December 2006. [9] Francisco J. Martinez, Juan-Carlos Cano, Carlos T. Calafate, Pietro Manzoni, CityMob: a mobility model pattern generator for VANETs, in the ICC 2008 workshop proceedings. [10] CityMob s source code is available at http://www.grc.upv.es/ [11] F. Karnadi, Z. Mo, K.-C. Lan,.Rapid Generation of Realistic Mobility Models for VANET., Poster Session, 11th Annual International Conference on Mobile Computing and Networking (MobiCom 2005), Cologne, Germany, August 2005. [12] F. K. Karnadi, Z. H. Mo, and K. c. Lan, Rapid generation of realistic mobility models for vanet, in IEEE WCNC,2007, pp. 2506 2511. [13] Karnadi, F.K.; Zhi Hai Mo; Kun-chan Lan; Sch. of Comput. Sci. & Eng., New South Wales Univ., Sydney, NSW, Rapid Generation of Realistic Mobility Models for VANET. IEEE Xplore [14] MOVE http://www.cs.unsw.edu.au/klan/move/. [15] SUMO Simulation of Urban MObility. http://sumo.sourceforge.net/. [16] A. Uchiyama,.Mobile Ad-hoc Network Simulator based on Realistic Behavior Model, 6th ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc 2005), Urbana Champaign, IL, USA, May 2005. [17] Deutsches Zentrum f ur Luft-und Raumfahrt e.v. (DLR). Sumo simulation of urban mobility. http://sumo.sourceforge.net/. [18] The Network Simulator ns 2. http://www.isi.edu/nsnam/ns/index.html. [19] QualNet Network Simulator. http://www.scalable-networks.com/. 181

[20] Perkins, C. and Royer, E. (1999). Ad hoc On Demand Distance Vector (AODV) Routing. In Proceedings 2nd Workshop on Mobile Computing Systems and Applications. New Orlean s, LA, USA: IEEE, February 1999, pp. 90 100. [21] J. Broch, D. Maltz, D. Johnson, Y. Hu, and J. Jetcheva. Multi-hop wireless ad hoc network routing protocols. In Proceedings of the ACM/IEEE International Conference on Mobile Computing and Networking (MOBICOM), pages 85 97, 1998. [22] B.Boukenadil, M.Feham, Comparison between DSR, AODV and DSDV in VANET using CityMob, in Proc. the 1th International Conference on New Technologies and Communication (ICNTC 2012), Chlef, Algeria, 05-06 December 2012. [23]P. Johansson, T. Larsson, N. Hedman, B. Mielczarek, and M. Degermark. Routing protocols for mobile ad-hoc networks - a comparative performance analysis. In Proceedings of the ACM/IEEE International Conference on Mobile Computing and Networking (MOBICOM), pages 195 206, 1999. [24]The Rice University Monarch Project. Monarch extensions to the ns simulator. URL: http://www.monarch.cs.rice.edu/. Page accessed on May 30th, 2002 182