Chapter 4 Network Layer

Similar documents
Chapter 4. Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, sl April 2009.

CMSC 332 Computer Networks Network Layer

Key Network-Layer Functions

CSE 3214: Computer Network Protocols and Applications Network Layer

Computer Networks. Instructor: Niklas Carlsson

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 11

Lecture 7. Network Layer. Network Layer 1-1

HW3 and Quiz. P14, P24, P26, P27, P28, P31, P37, P43, P46, P55, due at 3:00pm with both soft and hard copies, 11/11/2013 (Monday) TCP), 20 mins

Last time. Wireless link-layer. Introduction. Characteristics of wireless links wireless LANs networking. Cellular Internet access

Network layer overview

Lecture 4 - Network Layer. Transport Layer. Outline. Introduction. Notes. Notes. Notes. Notes. Networks and Security. Jacob Aae Mikkelsen

Topic 4a Router Operation and Scheduling. Ch4: Network Layer: The Data Plane. Computer Networking: A Top Down Approach

CSC 4900 Computer Networks: Network Layer

TDTS06: computer Networks

Data Communication & Networks G Session 7 - Main Theme Networks: Part I Circuit Switching, Packet Switching, The Network Layer

Chapter 4: network layer

Chapter 4 Network Layer: The Data Plane

Chapter 4 Network Layer

Network Layer: outline

Chapter 4 Network Layer: The Data Plane. Part A. Computer Networking: A Top Down Approach

CSC 401 Data and Computer Communications Networks

Communication Networks ( ) / Fall 2013 The Blavatnik School of Computer Science, Tel-Aviv University. Allon Wagner

Last time. BGP policy. Broadcast / multicast routing. Link virtualization. Spanning trees. Reverse path forwarding, pruning Tunneling

internet technologies and standards

CSCE 463/612 Networks and Distributed Processing Spring 2018

Chapter 4 Network Layer

The Network Layer and Routers

Chapter 4: Network Layer

Data Communications & Networks. Session 7 Main Theme Networks: Part I Circuit Switching, Packet Switching, The Network Layer

Chapter 4: network layer. Network service model. Two key network-layer functions. Network layer. Input port functions. Router architecture overview

Chapter 4 Network Layer

Lecture 16: Network Layer Overview, Internet Protocol

1-1. Switching Networks (Fall 2010) EE 586 Communication and. October 25, Lecture 24

Lecture 3. The Network Layer (cont d) Network Layer 1-1

Network Superhighway CSCD 330. Network Programming Winter Lecture 13 Network Layer. Reading: Chapter 4

Chapter 4 Network Layer

NETWORK LAYER DATA PLANE

COMP211 Chapter 4 Network Layer: The Data Plane

Course on Computer Communication and Networks. Lecture 6 Network Layer part 1: Data Plane Chapter 4 (7/e) (6/e Ch4-first part)

Lecture 8. Network Layer (cont d) Network Layer 1-1

Chapter 4 Network Layer: The Data Plane

Chapter 4 Network Layer

CSCI Computer Networks Fall 2016

CS 3516: Advanced Computer Networks

internet technologies and standards

Router Architecture Overview

Network Layer Introduction

CSCE 463/612 Networks and Distributed Processing Spring 2018

Introduction to Computer Networking. Guy Leduc. Chapter 4 Network Layer: The Data Plane. Chapter 4: Network Layer Data Plane

Chapter 4 Network Layer: The Data Plane

Routers: Forwarding EECS 122: Lecture 13

Chapter 4: Network Layer

Routers: Forwarding EECS 122: Lecture 13

UNIT III THE NETWORK LAYER

CSCD 330 Network Programming

Chapter 4: Network Layer

Network Layer: Data Plane 4-2

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 12

Router Architecture Overview

Master Course Computer Networks IN2097

LS Example 5 3 C 5 A 1 D

The Network Layer Forwarding Tables and Switching Fabric

Chapter 4 Network Layer: The Data Plane

CS 3516: Computer Networks

Network Layer PREPARED BY AHMED ABDEL-RAOUF

Network Layer: Chapter 4. The Data Plane. Computer Networking: A Top Down Approach

Chapter 4 Network Layer: The Data Plane

Chapter 4 Network Layer: The Data Plane

CSC358 Week 6. Adapted from slides by J.F. Kurose and K. W. Ross. All material copyright J.F Kurose and K.W. Ross, All Rights Reserved

Chapter 4 Network Layer: The Data Plane

Network Layer Enhancements

Chapter 4 Network Layer: The Data Plane

Chapter 4: Network Layer. Chapter 4 Network Layer. Chapter 4: Network Layer. Network layer. Chapter goals:

EPL606. Internetworking. Part 2a. 1Network Layer

4.2 Virtual Circuit and Datagram Networks

Computer Networks LECTURE 10 ICMP, SNMP, Inside a Router, Link Layer Protocols. Assignments INTERNET CONTROL MESSAGE PROTOCOL

Routers. Session 12 INST 346 Technologies, Infrastructure and Architecture

Module 3 Network Layer CS755! 3-1!

Network Layer: Router Architecture, IP Addressing

Network Layer: Control/data plane, addressing, routers

Master Course Computer Networks IN2097

Part 5: Link Layer Technologies. CSE 3461: Introduction to Computer Networking Reading: Chapter 5, Kurose and Ross

Chapter 4: Network Layer

Routing, Routers, Switching Fabrics

The Network Layer. Antonio Carzaniga. April 22, Faculty of Informatics University of Lugano Antonio Carzaniga

Internetworking With TCP/IP

CS 43: Computer Networks. 20: The Network Layer November 5, 2018

EECS 3214: Computer Networks Protocols and Applications

Network layer. Key Network-Layer Functions. Network service model. Interplay between routing and forwarding. CSE 4213: Computer Networks II

IPv4 addressing, NAT. Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley.

TOC: Switching & Forwarding

Chapter 4 Network Layer

Chapter 3 Transport, Network and Link Layers

The Network Layer. Antonio Carzaniga. November 24, Faculty of Informatics Università della Svizzera italiana

EECS 122: Introduction to Computer Networks Switch and Router Architectures. Today s Lecture

Chapter 4 Network Layer

CS555, Spring /5/2005. April 12, 2005 No classes attend Senior Design Projects conference. Chapter 4 roadmap. Internet AS Hierarchy

TOC: Switching & Forwarding

Generic Architecture. EECS 122: Introduction to Computer Networks Switch and Router Architectures. Shared Memory (1 st Generation) Today s Lecture

CPSC 826 Internetworking. The Network Layer: Routing & Addressing Outline. The Network Layer

Transcription:

Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2004. Network Layer 4-1

Chapter 4: Network Layer Chapter goals: understand principles behind layer services: routing (path selection) dealing with scale how a router works advanced topics: IPv6, mobility instantiation and implementation in the Internet Network Layer 4-2

Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram s 4.3 What s inside a router 4.4 IP: Internet Protocol Datagram format IPv4 addressing ICMP IPv6 4.5 Routing algorithms Link state Distance Vector Hierarchical routing 4.6 Routing in the Internet RIP OSPF BGP 4.7 Broadcast and multicast routing Network Layer 4-3

Network layer transport segment from sending to receiving host on sending side encapsulates segments into datagrams on rcving side, delivers segments to transport layer layer protocols in every host, router Router examines header fields in all IP datagrams passing through it application transport data link physical data link physical data link physical data link physical data link physical data link physical data link physical data link physical data link physical application transport data link physical Network Layer 4-4

Key Network-Layer Functions forwarding: move packets from router s input to appropriate router output routing: determine route taken by packets from source to dest. analogy: routing: process of planning trip from source to dest forwarding: process of getting through single interchange Routing algorithms Network Layer 4-5

Interplay between routing and forwarding routing algorithm local forwarding table header value output link 0100 0101 0111 1001 3 2 2 1 value in arriving packet s header 0111 1 3 2 Network Layer 4-6

Connection setup 3 rd important function in some architectures: ATM, frame relay, X.25 Before datagrams flow, two hosts and intervening routers establish virtual connection Routers get involved Network and transport layer cnctn service: Network: between two hosts Transport: between two processes Network Layer 4-7

Network service model Q: What service model for channel transporting datagrams from sender to rcvr? Example services for individual datagrams: guaranteed delivery Guaranteed delivery with less than 40 msec delay Example services for a flow of datagrams: In-order datagram delivery Guaranteed minimum bandwidth to flow Restrictions on changes in interpacket spacing (jitter) Network Layer 4-8

Network layer service models: Network Architecture Service Model Bandwidth Guarantees? Loss Order Timing Congestion feedback Internet ATM ATM ATM best effort CBR VBR ABR none constant rate guaranteed rate guaranteed minimum no yes yes no no yes yes yes no yes yes no no (inferred via loss) no congestion no congestion yes Network Layer 4-9

Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram s 4.3 What s inside a router 4.4 IP: Internet Protocol Datagram format IPv4 addressing ICMP IPv6 4.5 Routing algorithms Link state Distance Vector Hierarchical routing 4.6 Routing in the Internet RIP OSPF BGP 4.7 Broadcast and multicast routing Network Layer 4-10

Network layer connection and connection-less service Datagram provides -layer connectionless service VC provides -layer connection service Analogous to the transport-layer services, but: Service: host-to-host No choice: provides one or the other Implementation: in the core Network Layer 4-11

Virtual circuits source-to-dest path behaves much like telephone circuit performance-wise actions along source-to-dest path call setup, teardown for each call before data can flow each packet carries VC identifier (not destination host address) every router on source-dest path maintains state for each passing connection link, router resources (bandwidth, buffers) may be allocated to VC Network Layer 4-12

VC implementation A VC consists of: 1. Path from source to destination 2. VC numbers, one number for each link along path 3. Entries in forwarding tables in routers along path Packet belonging to VC carries a VC number. VC number must be changed on each link. New VC number comes from forwarding table Network Layer 4-13

Forwarding table VC number 12 1 2 3 22 32 interface number Incoming interface Incoming VC # Outgoing interface Outgoing VC # 1 12 2 22 2 63 1 18 3 7 2 17 1 97 3 87 Routers maintain connection state information! Network Layer 4-14

Virtual circuits: signaling protocols used to setup, maintain teardown VC used in ATM, frame-relay, X.25 not used in today s Internet application transport data link physical 5. Data flow begins 6. Receive data 4. Call connected 3. Accept call 1. Initiate call 2. incoming call application transport data link physical Network Layer 4-15

Datagram s no call setup at layer routers: no state about end-to-end connections no -level concept of connection packets forwarded using destination host address packets between same source-dest pair may take different paths application transport data link physical 1. Send data 2. Receive data application transport data link physical Network Layer 4-16

Forwarding table 4 billion possible entries Destination Address Range Link Interface 11001000 00010111 00010000 00000000 through 0 11001000 00010111 00010111 11111111 11001000 00010111 00011000 00000000 through 1 11001000 00010111 00011000 11111111 11001000 00010111 00011001 00000000 through 2 11001000 00010111 00011111 11111111 otherwise 3 Network Layer 4-17

Longest prefix matching Prefix Match Link Interface 11001000 00010111 00010 0 11001000 00010111 00011000 1 11001000 00010111 00011 2 otherwise 3 Examples DA: 11001000 00010111 00010110 10100001 Which interface? DA: 11001000 00010111 00011000 10101010 Which interface? Network Layer 4-18

Datagram or VC : why? Internet data exchange among computers elastic service, no strict timing req. smart end systems (computers) can adapt, perform control, error recovery simple inside, complexity at edge many link types different characteristics uniform service difficult ATM evolved from telephony human conversation: strict timing, reliability requirements need for guaranteed service dumb end systems telephones complexity inside Network Layer 4-19

Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram s 4.3 What s inside a router 4.4 IP: Internet Protocol Datagram format IPv4 addressing ICMP IPv6 4.5 Routing algorithms Link state Distance Vector Hierarchical routing 4.6 Routing in the Internet RIP OSPF BGP 4.7 Broadcast and multicast routing Network Layer 4-20

Router Architecture Overview Two key router functions: run routing algorithms/protocol (RIP, OSPF, BGP) forwarding datagrams from incoming to outgoing link Network Layer 4-21

Input Port Functions Physical layer: bit-level reception Data link layer: e.g., Ethernet see chapter 5 Decentralized switching: given datagram dest., lookup output port using forwarding table in input port memory goal: complete input port processing at line speed queuing: if datagrams arrive faster than forwarding rate into switch fabric Network Layer 4-22

Three types of switching fabrics Network Layer 4-23

Switching Via Memory First generation routers: traditional computers with switching under direct control of CPU packet copied to system s memory speed limited by memory bandwidth (2 bus crossings per datagram) Input Port Memory Output Port System Bus Network Layer 4-24

Switching Via a Bus datagram from input port memory to output port memory via a shared bus bus contention: switching speed limited by bus bandwidth 1 Gbps bus, Cisco 1900: sufficient speed for access and enterprise routers (not regional or backbone) Network Layer 4-25

Switching Via An Interconnection Network overcome bus bandwidth limitations Banyan s, other interconnection nets initially developed to connect processors in multiprocessor Advanced design: fragmenting datagram into fixed length cells, switch cells through the fabric. Cisco 12000: switches Gbps through the interconnection Network Layer 4-26

Output Ports Buffering required when datagrams arrive from fabric faster than the transmission rate Scheduling discipline chooses among queued datagrams for transmission Network Layer 4-27

Output port queueing buffering when arrival rate via switch exceeds output line speed queueing (delay) and loss due to output port buffer overflow! Network Layer 4-28

Input Port Queuing Fabric slower than input ports combined -> queueing may occur at input queues Head-of-the-Line (HOL) blocking: queued datagram at front of queue prevents others in queue from moving forward queueing delay and loss due to input buffer overflow! Network Layer 4-29