Unified Mathematics (Uni-Math)

Similar documents
Geometric Algebra for Computer Graphics

Introduction to Geometric Algebra Lecture I

APPENDIX A CLIFFORD ALGEBRA

Geometric Algebra. 8. Conformal Geometric Algebra. Dr Chris Doran ARM Research

Introduction to Geometric Algebra Lecture VI

Introduction to Geometric Algebra

SEMINARI CHIMICI. Dr. Eckhard Hitzer Department of Applied Physics University of Fukui - Japan

METR 4202: Advanced Control & Robotics

Visualizing Quaternions

PRIMITIVES INTERSECTION WITH CONFORMAL 5D GEOMETRY

b) develop mathematical thinking and problem solving ability.

To Do. Outline. Translation. Homogeneous Coordinates. Foundations of Computer Graphics. Representation of Points (4-Vectors) Start doing HW 1

PLAY WITH GEOMETRY ANIMATED AND INTERACTIVE, FREE, INSTANT ACCESS, ONLINE GEOMETRIC ALGEBRA JAVA APPLETS WITH CINDERELLA

Geometry. Course Requirements

UNIT 1 GEOMETRY TEMPLATE CREATED BY REGION 1 ESA UNIT 1

CS184: Using Quaternions to Represent Rotation

Game Mathematics. (12 Week Lesson Plan)

Graphics and Interaction Transformation geometry and homogeneous coordinates

Curriculum Catalog

COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates

Foundations for Functions Knowledge and Skills: Foundations for Functions Knowledge and Skills:

Prerequisites: Completed Algebra 1 and Geometry and passed Algebra 2 with a C or better

Geometry Critical Areas of Focus

Precalculus, Quarter 2, Unit 2.1. Trigonometry Graphs. Overview

Curriculum Catalog

Geometric Hand-Eye Calibration for an Endoscopic Neurosurgery System

Module 1 Session 1 HS. Critical Areas for Traditional Geometry Page 1 of 6

CS354 Computer Graphics Rotations and Quaternions

(based on Assessment Criteria)

Ohio Tutorials are designed specifically for the Ohio Learning Standards to prepare students for the Ohio State Tests and end-ofcourse

Important. Compact Trigonometry CSO Prioritized Curriculum. Essential. Page 1 of 6

CS612 - Algorithms in Bioinformatics

From Grassmann s vision to Geometric Algebra Computing

Introduction to Geometric Algebra Lecture V

This image cannot currently be displayed. Course Catalog. Geometry Glynlyon, Inc.

Vector Algebra Transformations. Lecture 4

Course Number 432/433 Title Algebra II (A & B) H Grade # of Days 120

Functions and Transformations

2012 Curriculum Catalog

Trigonometric Ratios

Design of Algorithms of Robot Vision Using Conformal Geometric Algebra

Advanced Geometric Approach for Graphics and Visual Guided Robot Object Manipulation

Curriculum Catalog

Curriculum Map: Mathematics

Motivation. Parametric Curves (later Surfaces) Outline. Tangents, Normals, Binormals. Arclength. Advanced Computer Graphics (Fall 2010)

Sequence of Geometry Modules Aligned with the Standards

High School Geometry

Coordinate Free Perspective Projection of Points in the Conformal Model Using Transversions

Curriculum Catalog

Ohio Tutorials are designed specifically for the Ohio Learning Standards to prepare students for the Ohio State Tests and end-ofcourse

Revision Checklist for IGCSE Mathematics A guide for Students

Junior Year: Geometry/Trigonometry

CURRICULUM CATALOG. GSE Geometry ( ) GA

Quaternions and Dual Coupled Orthogonal Rotations in Four-Space

Pre AP Geometry. Mathematics Standards of Learning Curriculum Framework 2009: Pre AP Geometry

Math background. 2D Geometric Transformations. Implicit representations. Explicit representations. Read: CS 4620 Lecture 6

Computer Animation Fundamentals. Animation Methods Keyframing Interpolation Kinematics Inverse Kinematics

East Penn School District Secondary Curriculum

Overview The content in this document provides an overview of the pacing and concepts covered in a subject for the year.

VW 1LQH :HHNV 7KH VWXGHQW LV H[SHFWHG WR

Amarillo ISD Math Curriculum

CMSC 425: Lecture 6 Affine Transformations and Rotations

Content Standard 1: Numbers, Number Sense, and Computation

GEOMETRY Graded Course of Study

Geometry. Geometry Higher Mathematics Courses 69

CCSSM Curriculum Analysis Project Tool 1 Interpreting Functions in Grades 9-12

Versor Cheat Sheet. versor.mat.ucsb.edu. February 4, 2013

Homework 5: Transformations in geometry

Geometry New Jersey 1. POINTS AND LINES 2. LINES AND ANGLES 3. COORDINATE GEOMETRY 1. Tutorial Outline

ROCKWOOD CURRICULUM WRITING PROCESS OVERVIEW

Mathematics High School Geometry An understanding of the attributes and relationships of geometric objects can be applied in diverse contexts

Quaternions and Rotations

A Correlation of Pearson Mathematics Geometry Common Core, 2015 To the Missouri Learning Standards for Mathematics Geometry

INTERACTIVE VISUALISATION OF FULL GEOMETRIC DESCRIPTION OF CRYSTAL SPACE GROUPS

New York State Regents Examination in Geometry (Common Core) Performance Level Descriptions

Wallingford Public Schools - HIGH SCHOOL COURSE OUTLINE

Cambridge IGCSE mapping

NFC ACADEMY COURSE OVERVIEW

Quaternions and Rotations

Houghton Mifflin MATHEMATICS Level 5 correlated to NCTM Standard

3D Rotations and Complex Representations. Computer Graphics CMU /15-662, Fall 2017

A-C Valley Junior-Senior High School

Honors Precalculus: Solving equations and inequalities graphically and algebraically. Page 1

Quaternion to Euler Angle Conversion for Arbitrary Rotation Sequence Using Geometric Methods

CURRICULUM CATALOG. Geometry ( ) TX

θ x Week Date Lecture (M: 2:05p-3:50, 50-N202) 1 23-Jul Introduction + Representing Position & Orientation & State 2 30-Jul

6-12 Math Course Sequence Effective

Modeling Adaptive Deformations during Free-form Pose Estimation

Mathematics High School Geometry

This image cannot currently be displayed. Course Catalog. Pre-algebra Glynlyon, Inc.

The Making of a Geometric Algebra Package in Matlab Computer Science Department University of Waterloo Research Report CS-99-27

correlated to the Utah 2007 Secondary Math Core Curriculum Geometry

ANALYSIS OF POINT CLOUDS Using Conformal Geometric Algebra

12.1 Quaternions and Rotations

Mathematics, Years 7 curriculum overview

3D Kinematics. Consists of two parts

Visual Recognition: Image Formation

Prentice Hall Mathematics: Course Correlated to: Massachusetts State Learning Standards Curriculum Frameworks (Grades 7-8)

- number of elements - complement linear, simple quadratic and cubic sequences - exponential sequences and - simple combinations of these

Geometry CCLS 2011 Compiled by Eleanore Livesey Mathematical Practices

Transcription:

Unified Mathematics (Uni-Math) with Geometric Algebra (GA) David Hestenes Arizona State University For geometry, you know, is the gateway to science, and that gate is so low and small that you can enter only as a little child. William Kingdon Clifford Santalo 2016

Purpose of this Talk To demonstrate how geometric algebra unifies and simplifies Ø geometry, algebra and trigonometry at the elementary level, Ø thereby simplifying and facilitating mathematical applications to physics and engineering at the most advanced levels. References Introductory survey: Oersted Medal Lecture 2002 (AJP) <http://modelingnts.la.asu.edu> Most thorough treatment of GA fundamentals: New Foundations for Classical Mechanics (Springer) Interactive presentation for high school: GA Primer <http://geocalc.clas.asu.edu/gaprimer/>

To Enter the Gate to Geometric Algebra You must relearn how to multiply vectors Learn how vector multiplication is designed for optimal encoding of geometric structure.

Basic geometric-algebraic objects (H. Grassmann, 1844) Geometric object Point Directed line segment Directed plane segment α a a c b Algebraic object scalar (0-vector) α vector (1-vector) a bivector (2-vector) Directed volume a b trivector (3-vector) pseudoscalar in 3D

Orientation & antisymmetry of the outer product Anticommutivity Parallelogram rule for multiplication b = b a b a a a = Orientation ( ) of vectors determines orientation of products: b

What we have established so far: Geometry is built out of basic geometric objects with dimensions 0, 1, 2, 3,..., namely: point, line segment, plane segment, space segment,... Basic geometric objects are represented by algebraic objects with grades 0, 1, 2, 3,..., namely: scalar, vector, bivector, trivector (pseudoscalar),... [0-vector, 1-vector, 2-vector, 3-vector,... (k-vectors)] The outer product (wedge product) enables us to build k-vectors out of vectors, as in To represent geometric concepts of magnitude and direction, we need to extend the rules for combining k-vectors. Assume familiarity with vector addition & scalar multiplication!

Geometric algebra = Clifford algebra (1878) with geometric meaning! symmetric inner product (scalar-valued) antisymmetric outer product: Combine to form a single geometric product: Theorem: Collinear vectors commute: Orthogonal vectors anticommute:

Understanding the import of this formula: is the single most important step in unifying the mathematical language of physics. This formula integrates the concepts of vector complex number quaternion spinor Lorentz transformation And much more! We consider first how it integrates vectors and complex numbers into a powerful tool for 2D physics.

Consider the important special case of a unit bivector i It has two kinds of geometric interpretation! I. Object interpretation as an oriented area (additive) Can construct i from a pair of orthogonal unit vectors: b So i oriented unit area for a plane II. Operator interpretation as rotation by 90 o (multiplicative) depicted as a directed arc b a So i rotation by a right angle: a

The operator interpretation of i generalizes to the concept of Rotor, the entity produced by the geometric product ab of unit vectors with relative angle θ. Rotor is depicted as a directed arc on the unit circle. a 2 = b 2 = 1 ab = U θ Reversion:

Defining sine and cosine functions from products of unit vectors i = unit bivector Rotor:

The concept of rotor generalizes to the concept of complex number interpreted as a directed arc. Reversion = complex conjugation Modulus This represention of complex numbers in a real GA is a special case of spinors for 3D.

Our development of GA to this point is sufficient to formulate and solve any problem in 2D physics without resorting to coordinates. Of course, like any powerful tool, it takes some skill to apply it effectively. For example, every physicist knows that skillful use of complex numbers avoids decomposing them into real and imaginary parts whenever possible. Likewise, skillful use of the geometric product avoids decomposing it into inner and outer products. In the next portion of this lecture I demonstrate how rotor algebra facilitates the treatment of 2D rotations and mechanics. In particular, note the one-to-one correspondence between algebraic operations and geometric depictions!

Properties of rotors Rotor equivalence of directed arcs is like Vector equivalence of directed line segments

Properties of rotors Rotor equivalence of directed arcs is like Vector equivalence of directed line segments

Properties of rotors Rotor equivalence of directed arcs is like Vector equivalence of directed line segments

Properties of rotors Product of rotors Addition of arcs U θ, U ϕ U θ U ϕ = U θ+ϕ

Properties of rotors Rotor-vector product = vector U θ, v U θ v = u

Basis for Generated by orthonormal frame Scalars (0-vectors} Vectors (1-vectors) Bivectors (2-vectors) Pseudoscalar (3-vector): Expanded form for any multivector M in

Reflection in a plane with normal a Canonical form: if

Reflection in a plane with normal a Canonical form: if Proof:

Reflection in a plane with normal a Canonical form: if Proof:

Reflection in a plane with normal a Canonical form: if Proof:

Reflection in a plane with normal a Canonical form: if Proof:

Reflection in a plane with normal a Canonical form: if Proof:

Rotation as double reflection represented by rotor: Proof:

Rotation as double reflection represented by rotor: Proof:

Rotation as double reflection represented by rotor: Proof:

Rotation as double reflection represented by rotor: Proof:

Rotation as double reflection represented by rotor: Proof:

Rotation as double reflection represented by rotor: Proof: U represents rotation through twice the angle between a and b.

Summary: Orthogonal transformations in Euclidean space Orthogonal transformation Defining property : Canonical form: Unimodular versor: Versor parity: Main advantage: if U odd (reflection) if U even (rotation) Composition of transformations: Reduced to versor products:

U 1 Rotor products composition of rotations in 3D

U 1, U 2 Rotor products composition of rotations in 3D

Rotor products composition of rotations in 3D U 1, U 2 U 2 U 1

Rotor products composition of rotations in 3D U 1, U 2 U 2 U 1 = (bc)(ca)

Rotor products composition of rotations in 3D U 1, U 2 U 2 U 1 = (bc)(ca) = ba = U 3 U 2 U 1 = U 3

Noncommutativity of Rotations U 2 (U 1 ) = U 2 U 1 U 1 (U 2 ) = U 1 U 2

U 2 (U 1 ) Noncommutativity of Rotations

U 2 (U 1 ) = U 2 U 1 Noncommutativity of Rotations

Noncommutativity of Rotations U 2 (U 1 ) = U 2 U 1 U 1 (U 2

Noncommutativity of Rotations U 2 (U 1 ) = U 2 U 1 U 1 (U 2 )

Noncommutativity of Rotations U 2 (U 1 ) = U 2 U 1 U 1 (U 2 ) = U 1 U 2

What have we learned so far? Rules for multiplying vectors that apply to vector spaces of any dimension. Geometric meaning of the geometric product and its component parts in Integration of complex numbers with vectors, and interpretation as directed arcs. How rotor algebra clarifies and facilitates the treatment of rotations in 2D and 3D.

Point symmetry groups of molecules & crystals Increasing in importance as we enter the age of nanoscience and molecular biology GA makes point groups accessible to students early in the curriculum at no academic cost Each finite symmetry group is generated multiplicatively by 3 vectors in GA

Generators: a, b, c Symmetries of the Cube Relations: Symbol: {4, 3, 2}

32 Lattice Point Groups Generators: a, b, c Relations: Roots of 1 Crystallographic restriction: Groups {p, q, r} Tetrahedral group {3, 3, 3} Octahedral group {4, 3, 2} Icosahedral group {5, 3, 2}

230 distinct 3D Space Groups Generated by reflections in 5D Minkowski space wherein Euclidean points are represented by null vectors the optimal representation for 3D Euclidean space D. Hestenes & J. Holt, The Crystallographic Space Groups in Geometric Algebra, Journal of Mathematical Physics. 48, 023514 (2007) Echard Hitzer & Christian Perwass http://www.spacegroup.info Interactive Visualization of the 32 3D Point Groups Interactive Visualization of the 17 2D Space Groups Space Group Visualizer for the 230 3D Space Groups Contacts with International Union of Crystallography (IUCr) Towards Official Adoption of The Space Group Visualizer Software Great potential for molecular modeling and diffraction theory!

Summary for rotations in 2D, 3D and beyond Thm. I: Every rotation can be expressed in the canonical form: where and U is even Note: Thm. II: Every rotation in 3D can be expressed as product of two reflections: Generalizations: III. Thm I applies to Lorentz transformations of spacetime IV. Cartan-Dieudonné Thm (Lipschitz, 1880): Every orthogonal transformation can be represented in the form: Advantages over matrix form for rotations: coordinate-free composition of rotations: parametrizations (see NFCM)

Rotor vs. matrix representations for rotations Rotation U : σ k e k = U(σ k ) Matrix representation: e k = α kj σ j α kj = σ j U(σ k ) Rotor representation: e k = Uσ k U Matrix from rotor: α kj = e k σ j = Uσ k U σ j Rotor from matrix (NFCM, p. 286) Result: Establishes Form ψ = 1 + e k σ k = 1 + α kj σ k σ j Normalize to: ψ U = ( ψψ ) 1 2 α kj U But it is invariably simpler to use rotors without reference to matrices!

Time dependent rotor U = U(t) Rotating frame: Rotational Kinematics Rotor eqn. of motion: Frame eqn. of motion: = rotational velocity (bivector) from dynamics Rotor eqn. is easier to solve than vector or 3 3 matrix eqns. Quaternions used in aerospace industry Rigid body solutions in NFCM, Chap.13 Proofs:

Classical model of spin: Magnetic resonance: Solution: Resonance at Produces spiraling spin reversal in time: Can be tuned to γ for different materials [Ref. NFCM. p. 473]

Constant Acceleration without coordinates! hodograph: v 0 t v 0 gt v 0 r g v v g trajectory:

Constant Acceleration: Vector algebraic model v 0 t v 0 2r/t trajectory v gt v 0 v r/t gt r hodograph v Reduces all projectile problems to solving a parallelogram!

Solving a parallelogram with Geometric Algebra v 0 2r/t v Problem: Determine (a) the range r of a target sighted in a direction that has been hit by a projectile launched with velocity ; (b) launching angle for maximum range; (c) time of flight General case: Elevated target. Complicated solution with rectangular coordinates in AJP. Much simpler GA solution in NFCM. gt

Solving a parallelogram with GA v 0 2r/t v gt v 0 horizontal θ θ gt 2r/t v

A challenge to the math-science community! Critically examine the following claims: GA provides a unified mathematical language that is conceptually and computationally superior to alternative math systems in every application domain. GA can enhance student understanding and accelerate student learning. GA is ready to incorporate into the curriculum. GA provides new insight into the structure and interpretation of quantum mechanics and relativity theory. Research on the design and use of mathematical software is equally important for instruction and for applications.

A proposal for GA in the curriculum Unification and simplification of the high school math-science curriculum with Geometric Algebra should be centered on geometry because: Ø Geometry is the foundation for mathematical modeling in physics and engineering and for the science of measurement in the real world. Ø The computationally and conceptually superior methods of analytic geometry with GA facilitate real world applications. Ø Reformulated Euclidean geometry with vector methods emphasizes the natural connection to kinematics and rigid body motions. The effect will be to simplify theorems and proofs, and vastly increase applicability of mathematics to physics and engineering. Whether or not the high school geometry course can be reformed in practice, the course content deserves to be reformed to make it more useful in physics and engineering applications. Reform of the high school math-science curriculum can be greatly deepened and accelerated by introducing GA modeling software that is equally attractive to math and science teachers!

References Introductory survey: Oersted Medal Lecture 2002 (AJP) <http://modelingnts.la.asu.edu> Most thorough treatment of GA fundamentals: New Foundations for Classical Mechanics (Springer) Interactive presentation for high school: GA Primer <http://geocalc.clas.asu.edu/gaprimer/>

Geometric Algebra (GA) software for modeling & simulation to unify the math-art-science-technology (MAST) curriculum Algebra Geometry Trigonometry GA modeling & simulation tools Art & Animation Physics Engineering Design Chemistry Molecular Biology