Ethernet Switches (more)

Similar documents
Part 5: Link Layer Technologies. CSE 3461: Introduction to Computer Networking Reading: Chapter 5, Kurose and Ross

Hubs. Interconnecting LANs. Q: Why not just one big LAN?

Ethernet Switches Bridges on Steroids. Ethernet Switches. IEEE Wireless LAN. Ad Hoc Networks

Hubs, Bridges, and Switches (oh my) Hubs

Chapter 5: The Data Link Layer. Chapter 5 Data Link Layer. Chapter 5 outline. Link Layer: Introduction

Master Course Computer Networks IN2097

Chapter 5: The Data Link Layer

Wireless Challenges : Computer Networking. Overview. Routing to Mobile Nodes. Lecture 25: Wireless Networking

Chapter 5: The Data Link Layer last revised 24/11/03

CPEG 514. Lecture 11 Asynchronous Transfer Mode (ATM) CPEG 514

Chapter 5 Link Layer and LANs

Master Course Computer Networks IN2097

ATM Technology in Detail. Objectives. Presentation Outline

Chapter 5 Link Layer and LANs. 5: DataLink Layer 5-1

Chapter 5 The Link Layer and LANs

Review. Error Detection: CRC Multiple access protocols. LAN addresses and ARP Ethernet. Slotted ALOHA CSMA/CD

Internetworking Part 1

Chapter 5 Link Layer and LANs. Chapter 5: The Data Link Layer. Link Layer. Our goals: understand principles behind data link layer services:

Communication Networks

Lecture 7. Network Layer. Network Layer 1-1

Getting Connected (Chapter 2 Part 4) Networking CS 3470, Section 1 Sarah Diesburg

Asynchronous Transfer Mode

Chapter 5 The Link Layer and LANs

Chapter 5 part 2 LINK LAYER. Computer Networks Timothy Roscoe Summer Networks & Operating Systems Computer Networks

ATM Logical Connections: VCC. ATM Logical Connections: VPC

Chapter 5 Link Layer and LANs

ATM. Asynchronous Transfer Mode. (and some SDH) (Synchronous Digital Hierarchy)

Asynchronous Transfer Mode (ATM) ATM concepts

ATM. Asynchronous Transfer Mode. these slides are based on USP ATM slides from Tereza Carvalho. ATM Networks Outline

15-441: Computer Networking. Wireless Networking

Chapter 5: The Data Link Layer. Chapter 5 Link Layer and LANs. Ethernet. Link Layer. Star topology. Ethernet Frame Structure.

Chapter 5. understand principles behind data link layer. layer technologies. Some terminology: hosts and routers are nodes communication channels that

Chapter 10. Circuits Switching and Packet Switching 10-1

Chapter 5: The Data Link Layer. Chapter 5 Link Layer and LANs. Link Layer: Introduction. Link Layer. Link layer: context. Link Layer Services

Wireless Networks. Communication Networks

Chapter 4. DataLink Layer. Reference: Computer Networking: A Top Down Approach 4 th edition. Jim Kurose, Keith Ross Addison-Wesley, July 2007.

WAN Technologies (to interconnect IP routers) Mario Baldi

Link Layer and Ethernet

ATM Asynchronous Transfer Mode revisited

Link Layer and Ethernet

Virtual Link Layer : Fundamentals of Computer Networks Bill Nace

Bandwidth-on-Demand up to very high speeds. Variety of physical layers using optical fibre, copper, wireless. 3BA33 D.Lewis

Network management and QoS provisioning - revise. When someone have to share the same resources is possible to consider two particular problems:

BROADBAND AND HIGH SPEED NETWORKS

This Lecture. BUS Computer Facilities Network Management X.25. X.25 Packet Switch. Wide Area Network (WAN) Technologies. X.

MPLS AToM Overview. Documentation Specifics. Feature Overview

Wireless LANs. ITS 413 Internet Technologies and Applications

Data Link Layer. Our goals: understand principles behind data link layer services: instantiation and implementation of various link layer technologies

Wireless Network and Mobility

Lecture 4 - Network Layer. Transport Layer. Outline. Introduction. Notes. Notes. Notes. Notes. Networks and Security. Jacob Aae Mikkelsen

WAN Technologies CCNA 4

Data Communication & Networks G Session 7 - Main Theme Networks: Part I Circuit Switching, Packet Switching, The Network Layer

Outline. Circuit Switching. Circuit Switching : Introduction to Telecommunication Networks Lectures 13: Virtual Things

Master Course Computer Networks IN2097

Data Link Protocols. TCP/IP Suite and OSI Reference Model. The TCP/IP protocol stack does not define the lower layers of a complete protocol stack

Lecture 16: QoS and "

Last time. Wireless link-layer. Introduction. Characteristics of wireless links wireless LANs networking. Cellular Internet access

Chapter 2 - Part 1. The TCP/IP Protocol: The Language of the Internet

Ch. 4 - WAN, Wide Area Networks

! Cell streams relating to different media types are multiplexed together on a statistical basis for transmission and switching.

ET4254 Communications and Networking 1

Common Protocols. The grand finale. Telephone network protocols. Traditional digital transmission

BROADBAND AND HIGH SPEED NETWORKS

Multiple Access in Cellular and Systems

ICE 1332/0715 Mobile Computing (Summer, 2008)

ST.MOTHER THERESA ENGINEERING COLLEGE

Protocol Architecture (diag) Computer Networks. ATM Connection Relationships. ATM Logical Connections

Local Area Networks NETW 901

William Stallings Data and Computer Communications 7 th Edition. Chapter 11 Asynchronous Transfer Mode

Data Communication & Networks G Session 5 - Main Theme Wireless Networks. Dr. Jean-Claude Franchitti

Medium Access Protocols

DigiPoints Volume 1. Leader Guide. Module 12 Asynchronous Transfer Mode. Summary. Outcomes. Objectives. Prerequisites

Summary of MAC protocols

standard. Acknowledgement: Slides borrowed from Richard Y. Yale

Computer Networks. Today. Principles of datalink layer services Multiple access links Adresavimas, ARP LANs Wireless LANs VU MIF CS 1/48 2/48

Asynchronous. nous Transfer Mode. Networks: ATM 1

1/29/2008. From Signals to Packets. Lecture 6 Datalink Framing, Switching. Datalink Functions. Datalink Lectures. Character and Bit Stuffing.

Packet Switching Techniques

Packet Switching - Asynchronous Transfer Mode. Introduction. Areas for Discussion. 3.3 Cell Switching (ATM) ATM - Introduction

Chapter 4 Network Layer

Virtual Link Layer : Fundamentals of Computer Networks Bill Nace

Links Reading: Chapter 2. Goals of Todayʼs Lecture. Message, Segment, Packet, and Frame

Chapter 3. Underlying Technology. TCP/IP Protocol Suite 1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Topics for Today. More on Ethernet. Wireless LANs Readings. Topology and Wiring Switched Ethernet Fast Ethernet Gigabit Ethernet. 4.3 to 4.

CISC452 Telecommunications Systems. Lesson 6 Frame Relay and ATM

Telematics. 5th Tutorial - LLC vs. MAC, HDLC, Flow Control, E2E-Arguments

Chapter 6 Wireless and Mobile Networks

Chapter 5 Data Link Layer

CCNA 4 - Final Exam (A)

Links. CS125 - mylinks 1 1/22/14

Chapter 6 Wireless and Mobile Networks. Csci 4211 David H.C. Du

Flow control: Ensuring the source sending frames does not overflow the receiver

Communication Networks ( ) / Fall 2013 The Blavatnik School of Computer Science, Tel-Aviv University. Allon Wagner

CompSci 356: Computer Network Architectures. Lecture 7: Switching technologies Chapter 3.1. Xiaowei Yang

Lecture 6 Datalink Framing, Switching. From Signals to Packets

1997, Scott F. Midkiff 1

Wireless and Mobile Networks 7-2

ECE 650 Systems Programming & Engineering. Spring 2018

ATM Quality of Service (QoS)

WiFi Networks: IEEE b Wireless LANs. Carey Williamson Department of Computer Science University of Calgary Winter 2018

Transcription:

Ethernet Switches layer 2 (frame) forwarding, filtering using LAN addresses Switching: A-to-B and A - to-b simultaneously, no collisions large number of interfaces often: individual hosts, star-connected into switch Ethernet, but no collisions!

Ethernet Switches cut-through switching: frame forwarded from input to output port without awaiting for assembly of entire frame slight reduction in latency combinations of shared/dedicated, 10/100/1000 Mbps interfaces

Ethernet Switches (more) Dedicated Shared

IEEE 802.11 Wireless LAN wireless LANs: untethered (often mobile) networking IEEE 802.11 standard: MAC protocol unlicensed frequency spectrum: 900Mhz, 2.4Ghz Basic Service Set (BSS) (a.k.a. cell ) contains: wireless hosts access point (AP): base station BSS s combined to form distribution system (DS)

Ad Hoc Networks Ad hoc network: IEEE 802.11 stations can dynamically form network without AP Applications: laptop meeting in conference room, car interconnection of personal devices battlefield IETF MANET (Mobile Ad hoc Networks) working group

IEEE 802.11 MAC Protocol: CSMA/CA 802.11 CSMA sender: - if sense channel idle for DISF sec. then transmit entire frame (no collision detection) -if sense channel busy then binary backoff 802.11 CSMA receiver: if received OK return ACK after SIFS

IEEE 802.11 MAC Protocol 802.11 CSMA others: NAV: Network Allocation Vector 802.11 frame has transmission time field others (hearing data) defer access for NAV time units

Hidden Terminal effect hidden terminals: A, C cannot hear each other obstacles, signal attenuation collisions at B goal: avoid collisions at B CSMA/CA: CSMA with Collision Avoidance

Collision Avoidance: RTS-CTS exchange CSMA/CA: explicit channel reservation sender: send short RTS: request to send receiver: reply with short CTS: clear to send CTS reserves channel for sender, notifying (possibly hidden) stations avoid hidden station collisions

Collision Avoidance: RTS-CTS exchange RTS and CTS short: collisions less likely, of shorter duration end result similar to collision detection IEEE 802.11 allows: CSMA CSMA/CA: reservations polling from AP

Point to Point Data Link Control one sender, one receiver, one link: easier than broadcast link: no Media Access Control no need for explicit MAC addressing e.g., dialup link, ISDN line popular point-to-point DLC protocols: PPP (point-to-point protocol) HDLC: High level data link control (Data link used to be considered high layer in protocol stack!)

PPP Design Requirements [RFC 1557] packet framing: encapsulation of network-layer datagram in data link frame carry network layer data of any network layer protocol (not just IP) at same time ability to demultiplex upwards bit transparency: must carry any bit pattern in the data field error detection (no correction) connection liveness: detect, signal link failure to network layer network layer address negotiation: endpoint can learn/configure each other s network address

PPP non-requirements no error correction/recovery no flow control out of order delivery OK no need to support multipoint links (e.g., polling) Error recovery, flow control, data re-ordering all relegated to higher layers!

PPP Data Frame Flag: delimiter (framing) Address: does nothing (only one option) Control: does nothing; in the future possible multiple control fields Protocol: upper layer protocol to which frame delivered (eg, PPP-LCP, IP, IPCP, etc)

PPP Data Frame info: upper layer data being carried check: cyclic redundancy check for error detection

Byte Stuffing data transparency requirement: data field must be allowed to include flag pattern <01111110> Q: is received <01111110> data or flag? Sender: adds ( stuffs ) extra < 01111110> byte after each < 01111110> data byte Receiver: two 01111110 bytes in a row: discard first byte, continue data reception single 01111110: flag byte

Byte Stuffing flag byte pattern in data to send flag byte pattern plus stuffed byte in transmitted data

PPP Data Control Protocol Before exchanging networklayer data, data link peers must configure PPP link (max. frame length, authentication) learn/configure network layer information for IP: carry IP Control Protocol (IPCP) msgs (protocol field: 8021) to configure/learn IP address

Asynchronous Transfer Mode: ATM 1980s/1990 s standard for high-speed (155Mbps to 622 Mbps and higher) Broadband Integrated Service Digital Network architecture Goal: integrated, end-end transport of voice, video, data meeting timing/qos requirements of voice, video (versus Internet best-effort model) next generation telephony: technical roots in telephone world packet-switching (fixed length packets, called cells ) using virtual circuits

ATM architecture adaptation layer: only at edge of ATM network data segmentation/reassembly roughly analogous to Internet transport layer ATM layer: network layer cell switching, routing physical layer

ATM: network or link layer? Vision: end-to-end transport: ATM from desktop to desktop ATM is a network technology Reality: used to connect IP backbone routers IP over ATM ATM as switched link layer, connecting IP routers

ATM Adaptation Layer (AAL) ATM Adaptation Layer (AAL): adapts upper layers (IP or native ATM applications) to ATM layer below AAL present only in end systems, not in switches AAL layer segment (header/trailer fields, data) fragmented across multiple ATM cells analogy: TCP segment in many IP packets

ATM Adaption Layer (AAL) (more) Different versions of AAL layers, depending on ATM service class: AAL1: for CBR (Constant Bit Rate) services, eg. circuit emulation AAL2: for VBR (Variable Bit Rate) services, eg. MPEG video AAL5: for data (eg. IP datagrams) User data AAL PDU ATM cell

AAL5 - Simple And Efficient AL (SEAL) AAL5: low overhead AAL used to carry IP datagrams 4 byte cyclic redundancy check PAD ensures payload multiple of 48 bytes large AAL5 data unit to be fragmented into 48-byte ATM cells

ATM Layer Service: transport cells across ATM network analogous to IP network layer very different services than IP network layer Network Architecture Service Model Bandwidth Guarantees? Loss Order Timing Congestion feedback Internet ATM ATM ATM ATM best effort CBR VBR ABR UBR none constant rate guaranteed rate guaranteed minimum none no yes yes no no no yes yes yes yes no yes yes no no no (inferred via loss) no congestion no congestion yes no

ATM Layer: Virtual Circuits VC transport: cells carried on VC from source to dest call setup, teardown for each call before data can flow each packet carries VC identifier (not destination ID) every switch on source-dest path maintains state for each passing connection link, switch resources (bandwidth, buffers) may be allocated to VC: to get circuit-like perf. Permanent VCs (PVC) long lasting connections typically: permanent route between IP routers Switched VCs (SVC): dynamically set up on per-call basis

ATM VCs Advantages of ATM VC approach: QoS performance guarantee for connection mapped to VC (bandwidth, delay, delay jitter) Drawbacks of ATM VC approach: Inefficient support of datagram traffic one PVC between each source/dest pair does not scale (N*2 connections needed) SVC introduces call setup latency, processing overhead for short lived connections

ATM Layer: ATM cell 5-byte ATM cell header 48-byte payload Why?: small payload -> short cell-creation delay for digitized voice halfway between 32 and 64 (compromise!) Cell header Cell format

ATM cell header VCI: virtual channel ID will change from link to link thru net PT: Payload type (eg. RM cell versus data cell) CLP: Cell Loss Priority bit CLP = 1 implies low priority cell, can be discarded if congestion HEC: Header Error Checksum cyclic redundancy check

ATM Physical Layer (more) Two pieces (sublayers) of physical layer: Transmission Convergence Sublayer (TCS): adapts ATM layer above to PMD sublayer below Physical Medium Dependent: depends on physical medium being used TCS Functions: Header checksum generation: 8-bit CRC Cell delineation With unstructured PMD sublayer, transmission of idle cells when no data cells to send

ATM Physical Layer Physical Medium Dependent (PMD) sublayer SONET/SDH: transmission frame structure (like a container carrying bits); bit synchronization bandwidth partitions (TDM) several speeds: OC1 = 51.84 Mbps; OC3 = 155.52 Mbps; OC12 = 622.08 Mbps TI/T3: transmission frame structure (old telephone hierarchy): 1.5 Mbps/ 45 Mbps unstructured: just cells (busy/idle)

IP-Over-ATM Classic IP only 3 networks (eg. LAN segments) MAC (802.3) and IP addresses IP over ATM replace network (eg. LAN segment) with ATM network ATM addresses, IP addresses ATM network Ethernet LANs Ethernet LANs

IP-Over-ATM Issues: IP datagrams into ATM AAL5 PDUs from IP addresses to ATM addresses just like IP addresses to 802.3 MAC addresses! Ethernet LANs ATM network

Datagram Journey in IP-over-ATM Network at Source Host: IP layer finds mapping between IP, ATM dest address (using ARP) passes datagram to AAL5 AAL5 encapsulates data, segments to cells, passes to ATM layer ATM network: moves cell along VC to destination at Destination Host: AAL5 reassembles cells into original datagram if CRC OK, datgram is passed to IP

ARP in ATM Nets ATM network needs destination ATM address just like Ethernet needs destination Ethernet address IP/ATM address translation done by ATM ARP (Address Resolution Protocol) ARP server in ATM network performs broadcast of ATM ARP translation request to all connected ATM devices hosts can register their ATM addresses with server to avoid lookup

X.25 and Frame Relay Like ATM: wide area network technologies virtual circuit oriented origins in telephony world can be used to carry IP datagrams can thus be viewed as Link Layers by IP protocol

X.25 X.25 builds VC between source and destination for each user connection Per-hop control along path error control (with retransmissions) on each hop using LAP-B variant of the HDLC protocol per-hop flow control using credits congestion arising at intermediate node propagates to previous node on path back to source via back pressure

IP versus X.25 X.25: reliable in-sequence end-end delivery from end-to-end intelligence in the network IP: unreliable, out-of-sequence end-end delivery intelligence in the endpoints gigabit routers: limited processing possible 2000: IP wins

Frame Relay Designed in late 80s, widely deployed in the 90s Frame relay service: no error control end-to-end congestion control

Frame Relay (more) Designed to interconnect corporate customer LANs typically permanent VCs: pipe carrying aggregate traffic between two routers switched VCs: as in ATM corporate customer leases FR service from public Frame Relay network (eg. Sprint, ATT)

Frame Relay (more) address flags data CRC flags Flag bits, 01111110, delimit frame address: 10 bit VC ID field 3 congestion control bits FECN: forward explicit congestion notification (frame experienced congestion on path) BECN: congestion on reverse path DE: discard eligibility

Frame Relay - VC Rate Control Committed Information Rate (CIR) defined, guaranteed for each VC negotiated at VC set up time customer pays based on CIR DE bit: Discard Eligibility bit Edge FR switch measures traffic rate for each VC; marks DE bit DE = 0: high priority, rate compliant frame; deliver at all costs DE = 1: low priority, eligible for discard when congestion

Frame Relay - CIR & Frame Marking Access Rate: rate R of the access link between source router (customer) and edge FR switch (provider); 64Kbps < R < 1,544Kbps Typically, many VCs (one per destination router) multiplexed on the same access trunk; each VC has own CIR Edge FR switch measures traffic rate for each VC; it marks (ie. DE <= 1) frames which exceed CIR (these may be later dropped)

Summary principles behind data link layer services: error detection, correction sharing a broadcast channel: multiple access link layer addressing, ARP various link layer technologies Ethernet hubs, bridges, switches IEEE 802.11 LANs PPP ATM X.25, Frame Relay