Shortest Paths: Basics. Algorithms and Networks 2016/2017 Johan M. M. van Rooij Hans L. Bodlaender

Similar documents
Shortest Paths: Algorithms for standard variants. Algorithms and Networks 2017/2018 Johan M. M. van Rooij Hans L. Bodlaender

Contents. shortest paths. Notation. Shortest path problem. Applications. Algorithms and Networks 2010/2011. In the entire course:

Object-oriented programming. and data-structures CS/ENGRD 2110 SUMMER 2018

Shortest Paths. Nishant Mehta Lectures 10 and 11

Shortest Paths. Nishant Mehta Lectures 10 and 11

Route Planning. Reach ArcFlags Transit Nodes Contraction Hierarchies Hub-based labelling. Tabulation Dijkstra Bidirectional A* Landmarks

Shortest path problems

Today. Maximum flow. Maximum flow. Problem

Theory of Computing. Lecture 7 MAS 714 Hartmut Klauck

Shortest Path Problem

Minimum Spanning Trees

Title. Ferienakademie im Sarntal Course 2 Distance Problems: Theory and Praxis. Nesrine Damak. Fakultät für Informatik TU München. 20.

Highway Dimension and Provably Efficient Shortest Paths Algorithms

Algorithm Design and Analysis

CS420/520 Algorithm Analysis Spring 2009 Lecture 14

Analysis of Algorithms, I

V1.0: Seth Gilbert, V1.1: Steven Halim August 30, Abstract. d(e), and we assume that the distance function is non-negative (i.e., d(x, y) 0).

All Shortest Paths. Questions from exercises and exams

Classical Shortest-Path Algorithms

Shortest Paths. CSE 373 Data Structures Lecture 21

Sources for this lecture 2. Shortest paths and minimum spanning trees

Algorithms and Data Structures

Optimal tour along pubs in the UK

Week 12: Minimum Spanning trees and Shortest Paths

15 211: RECITATION7, SECTION M. Hui Han Chin,

Single Source Shortest Path

Introduction to Graph Theory

Lecture 5: Graph algorithms 1

Algorithms for Data Science

Minimum-Spanning-Tree problem. Minimum Spanning Trees (Forests) Minimum-Spanning-Tree problem

What is a minimal spanning tree (MST) and how to find one

CSE 431/531: Algorithm Analysis and Design (Spring 2018) Greedy Algorithms. Lecturer: Shi Li

Algorithms and Data Structures

5.4 Shortest Paths. Jacobs University Visualization and Computer Graphics Lab. CH : Algorithms and Data Structures 456

Chapter 9 Graph Algorithms

Theory of Computing. Lecture 10 MAS 714 Hartmut Klauck

Algorithms and Data Structures

Graph Algorithms. Parallel and Distributed Computing. Department of Computer Science and Engineering (DEI) Instituto Superior Técnico.

ME/CS 132: Advanced Robotics: Navigation and Vision

Algorithms on Graphs: Part III. Shortest Path Problems. .. Cal Poly CSC 349: Design and Analyis of Algorithms Alexander Dekhtyar..

CSC 373 Lecture # 3 Instructor: Milad Eftekhar

Graphs. Part II: SP and MST. Laura Toma Algorithms (csci2200), Bowdoin College

CHAPTER 13 GRAPH ALGORITHMS

Theory of Computing. Lecture 4/5 MAS 714 Hartmut Klauck

Chapter 9 Graph Algorithms

Algorithm Design (8) Graph Algorithms 1/2

Single Source Shortest Path (SSSP) Problem

Reach for A : an Efficient Point-to-Point Shortest Path Algorithm

Lecture #7. 1 Introduction. 2 Dijkstra s Correctness. COMPSCI 330: Design and Analysis of Algorithms 9/16/2014

Introduction to Parallel & Distributed Computing Parallel Graph Algorithms

- Logic and Algorithms - Graph Algorithms

CSE 417 Branch & Bound (pt 4) Branch & Bound

Outline. Computer Science 331. Definitions: Paths and Their Costs. Computation of Minimum Cost Paths

Syllabus. simple: no multi-edges undirected edges in-/out-/degree /0: absent 1: present (strongly) connected component subgraph, induced graph

COMP 251 Winter 2017 Online quizzes with answers

Algorithm Design, Anal. & Imp., Homework 4 Solution

Lecture 6: Shortest distance, Eulerian cycles, Maxflow

Chapter 9 Graph Algorithms

Graph Representations and Traversal

Advanced Algorithm Design and Analysis (Lecture 5) SW5 fall 2007 Simonas Šaltenis

Outline. Computer Science 331. Analysis of Prim's Algorithm

11/22/2016. Chapter 9 Graph Algorithms. Introduction. Definitions. Definitions. Definitions. Definitions

1 Shortest Paths. 1.1 Breadth First Search (BFS) CS 124 Section #3 Shortest Paths and MSTs 2/13/2018

CS 561, Lecture 10. Jared Saia University of New Mexico

Design and Analysis of Algorithms 演算法設計與分析. Lecture 13 December 18, 2013 洪國寶

Highway Hierarchies (Dominik Schultes) Presented by: Andre Rodriguez

Traveling Salesman Problem. Algorithms and Networks 2014/2015 Hans L. Bodlaender Johan M. M. van Rooij

SPANNING TREES. Lecture 21 CS2110 Spring 2016

22 Elementary Graph Algorithms. There are two standard ways to represent a

Weighted Graph Algorithms Presented by Jason Yuan

Last week: Breadth-First Search

Dynamic-Programming algorithms for shortest path problems: Bellman-Ford (for singlesource) and Floyd-Warshall (for all-pairs).

Highway Hierarchies Star

Lecture 2 - Graph Theory Fundamentals - Reachability and Exploration 1

Dijkstra s Algorithm Last time we saw two methods to solve the all-pairs shortest path problem: Min-plus matrix powering in O(n 3 log n) time and the

Accurate High-Performance Route Planning

Graphs. Part I: Basic algorithms. Laura Toma Algorithms (csci2200), Bowdoin College

Dijkstra s algorithm for shortest paths when no edges have negative weight.

Shortest Paths. March 21, CTU in Prague. Z. Hanzálek (CTU) Shortest Paths March 21, / 44

Week 11: Minimum Spanning trees

Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Shortest Paths Date: 10/13/15

Point-to-Point Shortest Path Algorithms with Preprocessing

CS 125 Section #5 Graph Traversal and Linear Programs October 6, 2016

The Shortest Path Problem. The Shortest Path Problem. Mathematical Model. Integer Programming Formulation

CS 341: Algorithms. Douglas R. Stinson. David R. Cheriton School of Computer Science University of Waterloo. February 26, 2019

Travelling Salesman Problem. Algorithms and Networks 2015/2016 Hans L. Bodlaender Johan M. M. van Rooij

Greedy Algorithms. At each step in the algorithm, one of several choices can be made.

Algorithms for Minimum Spanning Trees

Single Source Shortest Path: The Bellman-Ford Algorithm. Slides based on Kevin Wayne / Pearson-Addison Wesley

CS 561, Lecture 10. Jared Saia University of New Mexico

CSE 431/531: Analysis of Algorithms. Greedy Algorithms. Lecturer: Shi Li. Department of Computer Science and Engineering University at Buffalo

Review of course COMP-251B winter 2010

Algorithm Design and Analysis

TIE Graph algorithms

Directed Graphs. DSA - lecture 5 - T.U.Cluj-Napoca - M. Joldos 1

Design and Analysis of Algorithms - - Assessment

Shortest Path Algorithm

from notes written mostly by Dr. Carla Savage: All Rights Reserved

10/31/18. About A6, Prelim 2. Spanning Trees, greedy algorithms. Facts about trees. Undirected trees

Detecting negative cycles with Tarjan s breadth-first scanning algorithm

Transcription:

Shortest Paths: Basics Algorithms and Networks 2016/2017 Johan M. M. van Rooij Hans L. Bodlaender 1

Shortest path problem(s) Undirected single-pair shortest path problem Given a graph G=(V,E) and a length function l:e!r 0 on the edges, a start vertex s 2 V, and a target vertex t 2 V, find the shortest path from s to t in G. The length of the path is the sum of the lengths of the edges. Variants: Directed graphs. Travel on edges in one direction only, or with different lengths. More required than a single-pair shortest path. Single-source, single-target, or all-pairs shortest path problem. Unit length edges vs a length function. Positive lengths vs negative lengths, but no negative cycles. Why no negative cycles? Directed Acyclic Graphs? 2

Notation and basic assumption Notation V = n, E = m. For directed graphs we use A instead of E. d l (s,t): distance from s to t: length of shortest path from s to t when using edge length function l. d(s,t): the same, but l is clear from the context. In single-pair, single-source, and/or single-target variants, s is the source vertex and t is the target vertex. Assumption d(s,s) = 0: we always assume there is a path with 0 edges from a vertex to itself. 3

Shortest paths and other courses Algorithms course (Bachelor, level 3) Dijkstra. Bellman-Ford. Floyd-Warshall. Path planning course (Master, period 2) A* and bidirectional Dijkstra (maybe also other courses). Many extensions to this. 4

Shortest paths in algorithms and networks This lecture: Recap on what you should know. Floyd-Warshall. Bellman-Ford. Dijkstra. A* and bidirectional search. Large scale shortest paths algorithms in practice. Contraction hierarchies. Partitioning using natural cuts. Next week: Johnson s algorithm (all-pairs). Gabow s algorithm (using the numbers). Bottleneck paths 5

Applications Route planning. Shortest route from A to B. Subproblem in vehicle routing problems. Preprocessing for travelling salesman problem on graphs. Subroutine in other graph algorithms. Preprocessing in facility location problems. Subproblem in several flow algorithms. Many other problems can be modelled a shortest path problems. State based problems where paths are sequences of state transitions. Longest paths on directed acyclic graphs. 6

Shortest Paths Algorithms and Networks RECAP ON ALGORITHMS YOU SHOULD KNOW 7

Algorithms on (directed) graphs with negative weights What if l(u,v) < 0? What if there are negative cycles reachable from s? No shortest paths! Floyd-Warshall: In O(n 3 ) time: all pairs shortest paths. For instance with negative weights, no negative cycles. Bellman-Ford algorithm: In O(nm) time: single source shortest path problem For instance with negative weights, no negative cycles reachable from s. Also: detects whether a negative cycle exists. 8

Floyd-Warshall All-Pairs Shortest Paths Dynamic programming: O(n 3 ) (Floyd-Warshall, 1962) Algorithm: 1. Initialise: D(u,v) = l(u,v) for all (u, v) 2 E D(u,v) = otherwise 2. For all u 2 V - For all v 2 V - For all w 2 V - D(v,w) = min{ D(v,u) + D(u,w), D(v,w) } Invariant of the outer loop: D(v,w) is length of the shortest path from v to w only visiting vertices that have had the role of u in the outer loop. 9

Bellman-Ford algorithm Single source for graphs with negative lengths Clearly: O(nm) time 1. Initialize: set D[v] = for all v 2 V. 2. Repeat V -1 times: For every edge (u,v) 2 E: D[v] = min{ D[v], D[u]+ l(u,v) }. 3. For every edge (u,v) 2 E If D[v] > D[u] + l(u,v) then there exists a negative cycle. Invariant: If there is no negative cycle reachable from s, then after i runs of main loop, we have: If there is a shortest path from s to u with at most i edges, then D[u]=d(s,u), for all u. If there is no negative cycle reachable from s, then every vertex has a shortest path with at most n 1 edges. If there is a negative cycle reachable from s, then there will always be an edge where an update step is possible. 10

Finding a negative cycle in a graph Reachable from s: Apply Bellman-Ford, and look back with pointers. Or: add a vertex s with edges to each vertex in G. s G 11

Basics of single source algorithms (including Bellman-Ford) Each vertex v has a variable D[v]. Invariant: d(s,v) D[v] for all v Initially: D[s]=0; v s: D[v] = D[v] is the shortest distance from s to v found thus far. Update step over edge (u,v): D[v] = min{ D[v], D[u]+ l(u,v) }. 12 To compute a shortest path (not only the length), one could maintain pointers to the `previous vertex on the current shortest path (sometimes NULL): p(v). Initially: p(v) = NULL for each v. Update step becomes: p-values build paths of length D[v]. Shortest paths tree! If D[v] > D[u]+ l(u,v) then D[v] = D[u] + l(u,v); p(v) = u; End if;

Dijkstra s algorithm Dijkstra s Algorithm 1. Initialize: set D[v] = for all v 2 V. 2. Take priority queue Q, initially containing all vertices. 3. While Q is not empty, Select vertex v from Q with minimum value D[v]. Update D[u] across all outgoing edges (v,u). Update the priority queue Q for all such u. Assumes all lengths are non-negative. Correctness proof (done in `Algoritmiek course). Note: if all edges have unit-length, then this becomes Breath-First Search. Priority queue only has priorities 1 and. 13

On Dijkstra s algorithm Running time depends on the data structure chosen for the priority queue. Selection happens at most n times. Updates happen at most m times. Depending on the data structure used, the running time is: O(n 2 ): array. Selection in O(n) time, updates in O(1) time. O((m + n) log n): Red-black tree (or other), heap. Selection and updates in O(log n). O(m + n log n): Fibonacci heaps. Selection (delete min) in amortised O(log n), update in amortised O(1) time. 14

Shortest Paths Algorithms and Networks OPTIMISATIONS FOR DIJKSTRA S ALGORITHM 15

Optimisation: bidirectional search For a single pair shortest path problem: Start a Dijkstra-search from both sides simultaneously. Analysis needed for more complicated stopping criterion. Faster in practice. s t s t Combines nicely with another optimisation that we will see next (A*). 16

A* Consider shortest paths in geometric setting. For example: route planning for car system. Standard Dijkstra would explore many paths that are clearly in the wrong direction. Utrecht to Groningen would look at roads near Den Bosch or even Maastricht. A* modifies the edge length function used to direct Dijkstra s algorithm into the right direction. To do so, we will use a heuristic as a height function. 17

Modifying distances with height functions Let h:v!r 0 be any function to the positive reals. Define new lengths l h : l h (u,v) = l(u,v) h(u) + h(v). Modify distances according to the height h(v) of a vertex v. Lemmas: 1. For any path P from u to v: l h (P) = l(p) h(u) + h(v). 2. For any two vertices u, v: d h (u,v) = d(u,v) h(u) + h(v). 3. P is a shortest path from u to v with lengths l, if and only if, it is so with lengths l h. Height function is often called a potential function. We will use height functions more often in this lecture! 18 Remember this: next week we will use height-functions a lot!

A heuristic for the distance to the target Definitions: Let h:v!r 0 be a heuristic that approximates the distance to target t. For example, Euclidean distance to target on the plane. Use h as a height function: l h (u,v) = l(u,v) h(u) + h(v). The new distance function measures the deviation from the Euclidean distance to the target. We call h admissible if: for each vertex v: h(v) d(v,t). We call h consistent if: For each (u,v) in E: h(u) l(u,v) + h(v). Euclidean distance is admissible and consistent. 19

A* algorithm uses an admissible heuristic A* using an admissible and consistent heuristic h as height function is an optimisation to Dijkstra. We call h admissible if: For each vertex v: h(v) d(v,t). Consequence: never stop too early while running A*. We call h consistent if: For each (u,v) in E: h(u) l(u,v) + h(v). Consequence: all new lengths l h (u,v) are non-negative. If h(t) = 0, then consistent implies admissible. A* without a consistent heuristic can take exponential time. Then it is not an optimisation of Dijkstra, but allows vertices to be reinserted into the priority queue. When the heuristic is admissible, this guarantees that A* is correct (stops when the solution is found). 20

A* and consistent heuristics In A* with a consistent heuristic arcs/edges in the wrong direction are less frequently used than in standard Dijkstra. Faster algorithm, but still correct. Well, the quality of the heuristic matters. h(v) = 0 for all vertices v is consistent and admissible but useless. Euclidian distance can be a good heuristic for shortest paths in road networks. 21

Advanced Shortest Path Algorithms Algorithms and Networks 2016/2017 Johan M. M. van Rooij Hans L. Bodlaender 22

Shortest Paths and Other Courses Last week: Recap on what you should know. Floyd-Warshall O(n 3 ). Bellman-Ford O(nm). Dijkstra O(m + n log n) using Fibonacci heap. A* and bidirectional search. Large scale shortest paths algorithms in practice. Contraction hierarchies. Partitioning using natural cuts. This lecture: Johnson s algorithm (all-pairs). Gabow s algorithm (using the numbers). Bottleneck paths. 23

All Pairs Shortest Paths: Johnson s Algorithm Observation If all weights are non-negative we can run Dijkstra with each vertex as starting vertex. This gives O(n 2 log n + nm) time using a Fibonacci heap. This is faster than O(n 3 ) on sparse graphs. Johnson: improvement for sparse graphs with reweighting technique: O(n 2 log n + nm) time. Works with negative lengths, but no negative cycles. 24

A recap on height functions Let h:v!r be any function to the reals. Define new lengths l h : l h (u,v) = l(u,v) h(u) + h(v). Modify distances according to the height h(v) of a vertex v. Lemmas: 1. For any two vertices u, v: d h (u,v) = d(u,v) h(u) + h(v). 2. For any path P from u to v: l h (P) = l(p) h(u) + h(v). 3. P is a shortest path from u to v with lengths l, if and only if, it is so with lengths l h. New lemma: 4. G has a negative-length circuit with lengths l, if and only if, it has a negative-length circuit with lengths l h. 25

What height function h is good? Look for height function h with: l h (u,v) 0, for all edges (u,v). If so, we can: Compute l h (u,v) for all edges. Run Dijkstra but now with l h (u,v). Special method to construct a good height function h by solving a single-source shortest path problem using Bellman-Ford. 26

Choosing h 1. Add a new vertex s to the graph. 2. Solving single-source shortest path problem with negative edge lengths: use Bellman-Ford. If negative cycle detected: stop. 3. Set h(v) = d(s,v) s 0 Note: for all edges (u,v): l h (u,v) = l(u,v) h(u) + h(v) = l(u,v) + d(s,u) d(s,v) 0 because: d(s,u) + l(u,v) d(s,v) G 27

Johnson s algorithm 1. Build graph G (as shown). 2. Compute d(s,v) for all v using Bellman-Ford. 3. Set l h (u,v) = l(u,v) + d G (s,u) d G (s,v) for all (u,v) in A. 4. For all u do: Use Dijkstra s algorithm to compute d h (u,v) for all v. Set d(u,v) = d h (u,v) d G (s,u) + d G (s,v). O(n 2 log n + nm) time 28

Shortest Paths - Algorithms and Networks USING THE NUMBERS 29

Using the numbers Consider the single source shortest paths problem with non-negative distances. Suppose D is an upper bound on the maximum distance from s to a vertex v. Let L be the largest length of an edge. Single source shortest path problem is solvable in O(m + D) time. 30

In O(m+D) time Keep array of doubly linked lists: L[0],, L[D], Maintain that for v with D[v] D, v in L[D[v]]. Keep a current minimum m. Invariant: all L[k] with k < m are empty. Run Dijkstra while: Update D[v] from x to y: take v from L[x] (with pointer), and add it to L[y]: O(1) time each. Extract min: while L[m] empty, m ++; then take the first element from list L[m]. Total time: O(m+D) 31

Corollary and extension Single-source shortest path: in O(m+nL) time. Take D=nL. Gabow (1985): Single-source shortest path problem can be solved in O(m log R L) time, where: R = max{2, m/n}. L: maximum length of edge. Gabow s algorithm uses a scaling technique! 32

Gabow s Algorithm: Main Idea First, build a scaled instance: For each edge e set l (e) = l(e) / R. Recursively, solve the scaled instance and switch to using Dijkstra using the numbers if weights are small enough. R * d l (s,v) is when we scale back our scaled instance. We want d(s,v). What error did we make while rounding? Another shortest paths instance can be used to compute the error correction terms on the shortest paths! 33

Computing the correction terms through another shortest path problem Set for each edge (x,y) 2 E: Z(x,y) = l(x,y) + R * d l (s,x) - R * d l (s,y) Works like a height function, so the same shortest paths! Height function h(x) = - R * d l (s,x) Z compares the differences of the shortest paths (with rounding error) from s to x and y to the edge length l(x,y). Claim: For all vertices v in V: d(s,v) = d Z (s,v) + R * d l (s,v) Proof by property of the height function: d Z (s,v) = d(s,v) h(s) + h(v) = d(s,v) + R * d l (s,s) R * d l (s,v) (d l (s,s) = 0) = d(s,v) R * d l (s,v) (next reorder) Thus, we can compute distances for l by computing distances for Z and for l. 34

Gabow s algorithm Algorithm 1. If L R, then 2. Else solve the problem using the O(m+nR) algorithm (Base case) For each edge e: set l (e) = l(e) / R. Recursively, compute the distances but with the new length function l. Set for each edge (u,v): Z(u,v) = l(u,v) + R* d l (s,u) R * d l (s,v). Compute d Z (s,v) for all v (how? After the example!) Compute d(s,v) using: d(s,v) = d Z (s,v) + R * d l (s,v) 35

Example 191 a 180 s t 223 b 116 36

A property of Z For each edge (u,v) E we have: Z(u,v) = l(u,v) + R* d l (s,u) R * d l (s,v) 0 Because: l(u,v) R * l (u,v) R * (d l (s,v) d l (s,u)). So, a variant of Dijkstra can be used to compute distances for Z. 37

Computing distances for Z For each vertex v we have: d Z (s,v) nr for all v reachable from s Consider a shortest path P for distance function l from s to v. For each of the less than n edges e on P, l(e) R + R*l (e). So, d(s,v) l(p) nr + R*l (P) = nr + R* d l (s,v). Use that d(s,v) = d Z (s,v) + R * d l (s,v). So, we can use the O(m+nR) algorithm (Dijkstra with doubly-linked lists) to compute all values d Z (v). 38

Running time of Gabow s algorithm? Algorithm 1. If L R, then 2. Else solve the problem using the O(m+nR) algorithm (Base case) For each edge e: set l (e) = l(e) / R. Recursively, compute the distances but with the new length function l. Set for each edge (u,v): Z(u,v) = l(u,v) + R* d l (s,u) R * d l (s,v). Compute d Z (s,v) for all v (how? After the example!) Compute d(s,v) using: d(s,v) = d Z (s,v) + R * d l (s,v) Gabow s algorithm uses O(m log R L) time. 39

Gabow s algorithm (analysis) Each recursive step costs O(m) time: Base case costs O(m+nR) time. Single source shortest paths for Z costs O(m + nr) time each. This is both O(m) time as: R = max{2, m/n}. In each recursive call, we solve the problem with L := L/R Without rounding, recursion depth at most log R L. So, Gabow s algorithm uses O(m log R L) time. 40

Large Scale Shortest Paths Algorithms Algorithms and Networks 2016/2017 Johan M. M. van Rooij Hans L. Bodlaender 41

Shortest Paths Algorithms and Networks LARGE SCALE SHORTEST PATHS ALGORITHMS 42

Large scale shortest paths algorithms The world s road network is huge. Open street map has: 2,750,000,000 nodes. Standard (bidirectional) Dijkstra takes too long. Many-to-many computations are very challenging. We briefly consider two algorithms. Contraction Hierarchies. Partitioning through natural cuts. Both algorithms have two phases. Time consuming preprocessing phase. Very fast shortest paths queries. My goal: give you a rough idea on these algorithms. Look up further details if you want to. 43

Contraction hierarchies Every node gets an extra number: its level of the hierarchy. In theory: can be the numbers 1,2,..., V. In practice: low numbers are crossings of local roads, high numbers are highway intersections. Level 4 We want to run bidirectional Dijkstra (or a variant) such that: The forward search only considers going up in the hierarchy. The backward search only considers going down in the hierarchy. Level 3 Level 2 Level 1 s If levels chosen wisely, a lot less options to explore. t 44

Shortcuts in contraction hierarchies We want to run bidirectional Dijkstra (or a variant) such that: The forward search only considers going up in the hierarchy. The backward search only considers going down in the hierarchy. This will only be correct if we add shortcuts. Additional edges from lower level nodes to higher level nodes are added as shortcuts to preserve correctness. Example: shortest path from u to v goes through lower level node w: add shortcut from u to v. Shortcuts are labelled with the shortest paths they bypass. Level 3 v Level 2 u Level 1 w 45

Preprocessing for contraction hierarchies Preprocessing phase: Assign a level to each node. For each node, starting from the lowest level nodes upwards: Consider it s adjacent nodes of higher level and check whether the shortest path between these two nodes goes through the current node. If so, add a shortcut edge between the adjacent nodes. Great way of using preprocessing to accelerate lots of shortest paths computations. But: This preprocessing is very expensive on huge graphs. Resulting graph can have many more edges (space requirement). If the graph changes locally, lots of recomputation required. 46

Partitioning using natural cuts Observation Shortest paths from cities in Brabant to cities above the rivers have little options of crossing the rivers. This is a natural small-cut in the graph. Many such cuts exist at various levels: Sea s, rivers, canals,... Mountains, hills,... Country-borders, village borders,... Etc... 47

Example of natural cuts From: Delling, Goldberg, Razenshteyn, Werneck. Graph Partitioning with Natural Cuts. 48

Using natural cuts (Large) parts of the graph having a small cut can be replaced by equivalent smaller subgraphs. Mostly a clique on the boundary vertices. Can be a different graph also (modelling highways). 49

Computing shortest paths using natural cuts When computing shortest paths: For s and t, compute the distance to all partition-boundary vertices of the corresponding partition. Replace all other partitions by their simplifications. Graph is much smaller than the original graph. This idea can be used hierarchically. First partition at the continent/country level. Partition each part into smaller parts. Etc. Finding good partitions with small natural cuts at the lowest level is easy. Finding a good hierarchy is difficult. 50

Finding natural cuts Repeat the following process a lot of times: Pick a random vertex v. Use breadth first search to find a group of vertices around v. Stop when we have x vertices in total! this is the core. Continue until we have y vertices in total! this is the ring. Use max-flow min-cut to compute the min cut between the core and vertices outside the ring. The resulting cut could be part of natural cut. After enough repetitions: We find lots of cuts, creating a lot of islands. Recombine these islands to proper size partitions. Recombining the islands to a useful hierarchy is difficult. 51

Conclusion on using natural cuts Preprocessing still very expensive on huge graphs. Space requirement less extreme, because hierarchical partitioning of the graph into regions. Local changes to the graph can be processed with less recomputation time. Nice research/experimentation project(s): Finding a good algorithm for building a hierarchical natural cuts partioning on real data. Or: experimental evaluation of different standard approaches on real data. 52

Shortest Paths Algorithms and Networks CONCLUSION 53

Summary on Shortest Paths We have seen: Recap on what you should know. Floyd-Warshall O(n 3 ). Bellman-Ford O(nm). Dijkstra O(m + n log n) using Fibonacci heap. A* and bidirectional search. Johnson s algorithm O(nm + n 2 log n). Gabow s algorithm O(m log R L). Large scale shortest paths algorithms in practice. Contraction hierarchies. Partitioning using natural cuts. Any questions? 54