Harder case. Image matching. Even harder case. Harder still? by Diva Sian. by swashford

Similar documents
Harder case. Image matching. Even harder case. Harder still? by Diva Sian. by swashford

Image matching. Announcements. Harder case. Even harder case. Project 1 Out today Help session at the end of class. by Diva Sian.

Image Features. Work on project 1. All is Vanity, by C. Allan Gilbert,

CS4670: Computer Vision

CS5670: Computer Vision

BSB663 Image Processing Pinar Duygulu. Slides are adapted from Selim Aksoy

Local Features: Detection, Description & Matching

Edge and corner detection

Local Feature Detectors

Local Patch Descriptors

Local features: detection and description. Local invariant features

Local features: detection and description May 12 th, 2015

Local features and image matching. Prof. Xin Yang HUST

Midterm Wed. Local features: detection and description. Today. Last time. Local features: main components. Goal: interest operator repeatability

Automatic Image Alignment (feature-based)

Local invariant features

Mosaics. Today s Readings

Feature descriptors. Alain Pagani Prof. Didier Stricker. Computer Vision: Object and People Tracking

Feature descriptors and matching

Patch Descriptors. CSE 455 Linda Shapiro

Motion Estimation and Optical Flow Tracking

The bits the whirl-wind left out..

2D Image Processing Feature Descriptors

Computer Vision for HCI. Topics of This Lecture

The SIFT (Scale Invariant Feature

CS 378: Autonomous Intelligent Robotics. Instructor: Jivko Sinapov

Outline 7/2/201011/6/

SIFT: SCALE INVARIANT FEATURE TRANSFORM SURF: SPEEDED UP ROBUST FEATURES BASHAR ALSADIK EOS DEPT. TOPMAP M13 3D GEOINFORMATION FROM IMAGES 2014

Feature Based Registration - Image Alignment

Prof. Feng Liu. Spring /26/2017

Patch Descriptors. EE/CSE 576 Linda Shapiro

Lecture: RANSAC and feature detectors

SCALE INVARIANT FEATURE TRANSFORM (SIFT)

CS 4495 Computer Vision A. Bobick. CS 4495 Computer Vision. Features 2 SIFT descriptor. Aaron Bobick School of Interactive Computing

EECS150 - Digital Design Lecture 14 FIFO 2 and SIFT. Recap and Outline

Feature Detectors and Descriptors: Corners, Lines, etc.

Computer Vision. Recap: Smoothing with a Gaussian. Recap: Effect of σ on derivatives. Computer Science Tripos Part II. Dr Christopher Town

Image Features: Local Descriptors. Sanja Fidler CSC420: Intro to Image Understanding 1/ 58

Augmented Reality VU. Computer Vision 3D Registration (2) Prof. Vincent Lepetit

Wikipedia - Mysid

Digital Image Processing (CS/ECE 545) Lecture 5: Edge Detection (Part 2) & Corner Detection

CAP 5415 Computer Vision Fall 2012

Lecture 6: Finding Features (part 1/2)

Automatic Image Alignment

Category vs. instance recognition

Problems with template matching

Introduction. Introduction. Related Research. SIFT method. SIFT method. Distinctive Image Features from Scale-Invariant. Scale.

Automatic Image Alignment

Multi-modal Registration of Visual Data. Massimiliano Corsini Visual Computing Lab, ISTI - CNR - Italy

Eppur si muove ( And yet it moves )

CS 556: Computer Vision. Lecture 3

Building a Panorama. Matching features. Matching with Features. How do we build a panorama? Computational Photography, 6.882

Features Points. Andrea Torsello DAIS Università Ca Foscari via Torino 155, Mestre (VE)

Local Image preprocessing (cont d)

School of Computing University of Utah

SUMMARY: DISTINCTIVE IMAGE FEATURES FROM SCALE- INVARIANT KEYPOINTS

Feature Matching and RANSAC

Scale Invariant Feature Transform

Robert Collins CSE598G. Intro to Template Matching and the Lucas-Kanade Method

Feature Detection and Matching

Local Image Features

Ulas Bagci

Object Recognition with Invariant Features

Local Image Features

3D from Photographs: Automatic Matching of Images. Dr Francesco Banterle

Key properties of local features

Scale Invariant Feature Transform

AK Computer Vision Feature Point Detectors and Descriptors

Computer Vision I - Appearance-based Matching and Projective Geometry

Feature Detection. Raul Queiroz Feitosa. 3/30/2017 Feature Detection 1

Corner Detection. GV12/3072 Image Processing.

Motion illusion, rotating snakes

CS 556: Computer Vision. Lecture 3

Final Exam Study Guide

Capturing, Modeling, Rendering 3D Structures

Local Image Features

SIFT - scale-invariant feature transform Konrad Schindler

Matching. Compare region of image to region of image. Today, simplest kind of matching. Intensities similar.

EE795: Computer Vision and Intelligent Systems

Scott Smith Advanced Image Processing March 15, Speeded-Up Robust Features SURF

Scale Invariant Feature Transform by David Lowe

Chapter 3 Image Registration. Chapter 3 Image Registration

Local features and image matching May 8 th, 2018

CS231A Section 6: Problem Set 3

CEE598 - Visual Sensing for Civil Infrastructure Eng. & Mgmt.

SURF. Lecture6: SURF and HOG. Integral Image. Feature Evaluation with Integral Image

Bias-Variance Trade-off (cont d) + Image Representations

Image Processing. Image Features

Image correspondences and structure from motion

CS664 Lecture #21: SIFT, object recognition, dynamic programming

Object Category Detection: Sliding Windows

Image processing and features

Visual Tracking (1) Tracking of Feature Points and Planar Rigid Objects

Object Detection Design challenges

CSE 252B: Computer Vision II

Prof. Noah Snavely CS Administrivia. A4 due on Friday (please sign up for demo slots)

Advanced Video Content Analysis and Video Compression (5LSH0), Module 4

Image Matching. AKA: Image registration, the correspondence problem, Tracking,

EE368 Project Report CD Cover Recognition Using Modified SIFT Algorithm

Designing Applications that See Lecture 7: Object Recognition

Transcription:

Image matching Harder case by Diva Sian by Diva Sian by scgbt by swashford Even harder case Harder still? How the Afghan Girl was Identified by Her Iris Patterns Read the story NASA Mars Rover images

Answer below (look for tiny colored squares ) Features NASA Mars Rover images with SIFT feature matches Figure by Noah Snavely All is Vanity, by C. Allan Gilbert, 1873-1929 Reading - M. Brown et al. Multi-Image Matching using Multi-Scale Oriented Patches, CVPR 2005 Image Matching Image Matching

Invariant local features Find features that are invariant to transformations geometric invariance: translation, rotation, scale photometric invariance: brightness, exposure, Advantages of local features Locality features are local, so robust to occlusion and clutter Distinctiveness: can differentiate a large database of objects Quantity hundreds or thousands in a single image Efficiency real-time performance achievable Feature Descriptors More motivation Feature points are used for: Image alignment (e.g., panoramas) 3D reconstruction Motion tracking Object recognition Indexing and database retrieval Robot navigation many others What makes a good feature? Snoop demo

Want uniqueness Look for image regions that are unusual Lead to unambiguous matches in other images Local measures of uniqueness Suppose we only consider a small window of pixels What defines whether a feature is a good or bad candidate? How to define unusual? Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute. High level idea is that corners are good. You want to find windows that contain strong gradients AND gradients oriented in more than one direction Feature detection Local measure of feature uniqueness How does the window change when you shift by a small amount? Feature detection Define E(u,v) = amount of change when you shift the window by (u,v) flat region: no change in all directions edge : no change along the edge direction corner : significant change in all directions E(u,v) is small for all shifts We want E(u,v) is small for some shifts to be E(u,v) is small for no shifts Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.

Feature detection: the math Consider shifting the window W by (u,v) how do the pixels in W change? compare each pixel before and after by Sum of the Squared Differences (SSD) W this defines an SSD error E(u,v): Small motion assumption Taylor Series expansion of I: If the motion (u,v) is small, then first order approx is good Plugging this into the formula on the previous slide Feature detection: the math Consider shifting the window W by (u,v) how do the pixels in W change? compare each pixel before and after by summing up the squared differences this defines an error of E(u,v): W Feature detection: the math This can be rewritten: For the example above You can move the center of the green window to anywhere on the blue unit circle Which directions will result in the largest and smallest E values? We can find these directions by looking at the eigenvectors of H

Quick eigenvalue/eigenvector review The eigenvectors of a matrix A are the vectors x that satisfy: Feature detection: the math This can be rewritten: The scalar! is the eigenvalue corresponding to x The eigenvalues are found by solving: In our case, A = H is a 2x2 matrix, so we have x - x + The solution: Once you know!, you find x by solving Eigenvalues and eigenvectors of H Define shifts with the smallest and largest change (E value) x + = direction of largest increase in E.! + = amount of increase in direction x + x - = direction of smallest increase in E.!- = amount of increase in direction x + Feature detection Local measure of feature uniqueness E(u,v) = amount of change when you shift the window by (u,v) Eigenvalues of H E(u,v) is small for all shifts We want E(u,v) is small for some shifts to be large =? E(u,v) is small for no shifts

Feature detection summary Here s what you do Compute the gradient at each point in the image Create the H matrix from the entries in the gradient Compute the eigenvalues. Find points with large response (! - > threshold) Choose those points where! - is a local maximum as features Feature detection summary Here s what you do Compute the gradient at each point in the image Create the H matrix from the entries in the gradient Compute the eigenvalues. Find points with large response (! - > threshold) Choose those points where! - is a local maximum as features The Harris operator! - is a variant of the Harris operator for feature detection The Harris operator Harris operator The trace is the sum of the diagonals, i.e., trace(h) = h 11 + h 22 Very similar to! - but less expensive (no square root) Called the Harris Corner Detector or Harris Operator Lots of other detectors, this is one of the most popular

Harris detector example f value (red high, blue low) Threshold (f > value) Find local maxima of f

Harris features (in red) Invariance Suppose you rotate the image by some angle Will you still pick up the same features? What if you change the brightness? Scale? Rotation: yes (with some caveats image resampling errors ) Change brightness: probably, but will have to adjust thresholds Scale: no, generally. Scale invariant detection Suppose you re looking for corners Feature descriptors We know how to detect good points Next question: How to match them?? Key idea: find scale that gives local maximum of f f is a local maximum in both position and scale Common definition of f: Laplacian (or difference between two Gaussian filtered images with different sigmas) Show other scales and how the feature looks less corner like

Feature descriptors We know how to detect good points Next question: How to match them?? Invariance Suppose we are comparing two images I 1 and I 2 I 2 may be a transformed version of I 1 What kinds of transformations are we likely to encounter in practice? Lots of possibilities (this is a popular research area) Simple option: match square windows around the point State of the art approach: SIFT David Lowe, UBC http://www.cs.ubc.ca/~lowe/keypoints/ Invariance Suppose we are comparing two images I 1 and I 2 I 2 may be a transformed version of I 1 What kinds of transformations are we likely to encounter in practice? We d like to find the same features regardless of the transformation This is called transformational invariance Most feature methods are designed to be invariant to Translation, 2D rotation, scale They can usually also handle Limited 3D rotations (SIFT works up to about 60 degrees) Limited affine transformations (some are fully affine invariant) Limited illumination/contrast changes How to achieve invariance Need both of the following: 1. Make sure your detector is invariant Harris is invariant to translation and rotation Scale is trickier SIFT uses automatic scale selection (previous slides) simpler approach is to detect features at many scales using a Gaussian pyramid (e.g., MOPS) and add them all to database 2. Design an invariant feature descriptor A descriptor captures the information in a region around the detected feature point The simplest descriptor: a square window of pixels What s this invariant to? Let s look at some better approaches

Rotation invariance for feature descriptors Find dominant orientation of the image window This is given by x +, the eigenvector of H corresponding to! +! + is the larger eigenvalue Rotate the window according to this angle Multiscale Oriented PatcheS descriptor Take 40x40 square window around detected feature Scale to 1/5 size (using prefiltering) Rotate to horizontal Sample 8x8 square window centered at feature Intensity normalize the window by subtracting the mean, dividing by the standard deviation in the window 40 pixels 8 pixels CSE 576: Computer Vision Figure by Matthew Brown Adapted from slide by Matthew Brown Detections at multiple scales Scale Invariant Feature Transform Basic idea: Take 16x16 square window around detected feature Compute edge orientation (angle of the gradient - 90 ) for each pixel Throw out weak edges (threshold gradient magnitude) Create histogram of surviving edge orientations 0 2" angle histogram Adapted from slide by David Lowe

SIFT descriptor Full version Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below) Compute an orientation histogram for each cell 16 cells * 8 orientations = 128 dimensional descriptor Properties of SIFT Extraordinarily robust matching technique Can handle changes in viewpoint Up to about 60 degree out of plane rotation Can handle significant changes in illumination Sometimes even day vs. night (below) Fast and efficient can run in real time Lots of code available http://people.csail.mit.edu/albert/ladypack/wiki/index.php/known_implementations_of_sift Adapted from slide by David Lowe When does SIFT fail? Patches SIFT thought were the same but aren t: Feature matching Given a feature in I 1, how to find the best match in I 2? 1. Define distance function that compares two descriptors 2. Test all the features in I 2, find the one with min distance

Feature distance How to define the difference between two features f 1, f 2? Simple approach is SSD(f 1, f 2 ) sum of square differences between entries of the two descriptors can give good scores to very ambiguous (bad) matches f 1 f 2 Feature distance How to define the difference between two features f 1, f 2? Better approach: ratio distance = SSD(f 1, f 2 ) / SSD(f 1, f 2 ) f 2 is best SSD match to f 1 in I 2 f 2 is 2 nd best SSD match to f 1 in I 2 gives large values (~1) for ambiguous matches f 1 f ' 2 f 2 I 1 I 2 I 1 I 2 Eliminating bad matches True/false positives 50 true match 75 200 false match 50 true match 75 200 false match feature distance feature distance Throw out features with distance > threshold How to choose the threshold? Throw out features with distance > threshold The threshold affects performance True positives = # of detected matches that are correct Suppose we want to maximize these how to choose threshold? False positives = # of detected matches that are incorrect Suppose we want to minimize these how to choose threshold?

Evaluating the results How can we measure the performance of a feature matcher? Evaluating the results How can we measure the performance of a feature matcher? 1 the matcher correctly found a match true # true positives matched positive # true positives rate Different threshold settings give you different points on this graph threshold = 0? threshold =!? 1 the matcher correctly found a match 0.7 true # true positives matched positive # true positives rate features that really do have a match features that really do have a match 0 0.1 false positive rate 1 # false positives matched # true negatives the matcher said yes when the right answer was no 0 0.1 false positive rate 1 # false positives matched # true negatives the matcher said yes when the right answer was no features that really don t have a match features that really don t have a match Evaluating the results How can we measure the performance of a feature matcher? # true positives matched # true positives 0.7 1 true positive rate ROC curve ( Receiver Operator Characteristic ) 0 0.1 false positive rate 1 # false positives matched # true negatives ROC Curves Generated by counting # current/incorrect matches, for different threholds Want to maximize area under the curve (AUC) Useful for comparing different feature matching methods For more info: http://en.wikipedia.org/wiki/receiver_operating_characteristic Tons of applications Features are used for: Image alignment (e.g., panoramas) 3D reconstruction Motion tracking Object recognition Indexing and database retrieval Robot navigation