DetNet. Flow Definition and Identification, Features and Mapping to/from TSN. DetNet TSN joint workshop IETF / IEEE 802, Bangkok

Similar documents
J. Korhonen, Ed. Internet-Draft Intended status: Standards Track Expires: January 1, 2018

LARGE SCALE IP ROUTING LECTURE BY SEBASTIAN GRAF

Da t e: August 2 0 th a t 9: :00 SOLUTIONS

DetNet Requirements on Data Plane and Control Plane

Layering for the TSN Layer 2 Data Plane

Introduction to Multi-Protocol Label

Layering for the TSN Layer 3 Data Plane

MPLS LSP Ping/Traceroute for LDP/TE, and LSP Ping for VCCV

MPLS LSP Ping Traceroute for LDP TE and LSP Ping for VCCV

Principles. IP QoS DiffServ. Agenda. Principles. L74 - IP QoS Differentiated Services Model. L74 - IP QoS Differentiated Services Model

Introduction to MPLS APNIC

Computer Network Architectures and Multimedia. Guy Leduc. Chapter 2 MPLS networks. Chapter 2: MPLS

ENTERPRISE MPLS. Kireeti Kompella

CHAPTER 18 INTERNET PROTOCOLS ANSWERS TO QUESTIONS

A Segment Routing (SR) Tutorial. R. Bonica NANOG70 June 6, 2017

LARGE SCALE IP ROUTING LECTURE BY SEBASTIAN GRAF

Introduction to MPLS. What is MPLS? 1/23/17. APNIC Technical Workshop January 23 to 25, NZNOG2017, Tauranga, New Zealand. [201609] Revision:

IEEE Time-Sensitive Networking (TSN)

Configuring MPLS and EoMPLS

Quality of Service Monitoring and Delivery Part 01. ICT Technical Update Module

DetNet/TSN Flow/QoS mapping between DetNet and TSN. Norman Finn Huawei Technologies Co, Ldt

This tutorial will help you in understanding IPv4 and its associated terminologies along with appropriate references and examples.

Presentation Outline. Evolution of QoS Architectures. Quality of Service Monitoring and Delivery Part 01. ICT Technical Update Module

RMIT University. Data Communication and Net-Centric Computing COSC 1111/2061. Lecture 2. Internetworking IPv4, IPv6

Vorlesung Kommunikationsnetze

Internetworking/Internetteknik, Examination 2G1305 Date: August 18 th 2004 at 9:00 13:00 SOLUTIONS

Configure Virtual LANs in Layer 2 VPNs

Layering for the TSN Layer 3 Data Plane

J. Korhonen, Ed. Intended status: Informational Expires: September 22, Ericsson P. Thubert Cisco Y. Zhuang Huawei L. Berger LabN March 21, 2016

MPLS etc.. MPLS is not alone TEST. 26 April 2016 AN. Multi-Protocol Label Switching MPLS-TP FEC PBB-TE VPLS ISIS-TE MPƛS GMPLS SR RSVP-TE OSPF-TE PCEP

Telematics Chapter 7: MPLS

Configuration and Management of Networks. Pedro Amaral

IPv6 Protocols and Networks Hadassah College Spring 2018 Wireless Dr. Martin Land

MPLS Point-to-Multipoint Traffic Engineering Support for Static Pseudowires

IPv6: An Introduction

Multi Protocol Label Switching (an introduction) Karst Koymans. Thursday, March 12, 2015

Goals and topics. Verkkomedian perusteet Fundamentals of Network Media T Circuit switching networks. Topics. Packet-switching networks

NAT, IPv6, & UDP CS640, Announcements Assignment #3 released

CSC 4900 Computer Networks: Network Layer

SR for SD-WAN over hybrid networks

ET4254 Communications and Networking 1

Foreword xxiii Preface xxvii IPv6 Rationale and Features

This chapter covers the following topics: Label Distribution Protocol (LDP) AToM operations

Yaakov (J) Stein July 2010 Chief Scientist RAD Data Communications

Lecture 2: Basic routing, ARP, and basic IP

Carrier Ethernet Evolution

Configuring Virtual Private LAN Services

Internet Layers. Physical Layer. Application. Application. Transport. Transport. Network. Network. Network. Network. Link. Link. Link.

Basics (cont.) Characteristics of data communication technologies OSI-Model

MPLS AToM Overview. Documentation Specifics. Feature Overview

SEN366 (SEN374) (Introduction to) Computer Networks

IP - The Internet Protocol. Based on the slides of Dr. Jorg Liebeherr, University of Virginia

Configuring RTP Header Compression

Packetization Layer Path Maximum Transmission Unit Discovery (PLPMTU) For IPsec Tunnels

MPLS OAM Technology White Paper

Stream Control Transmission Protocol

IP - The Internet Protocol

L2VPN Interworking. Finding Feature Information

Internetwork Protocols

Networking: Network layer

Protocols. End-to-end connectivity (host-to-host) Process-to-Process connectivity Reliable communication

Comment A: Text for Sequencing sublayer

Introduction. IP Datagrams. Internet Service Paradigm. Routers and Routing Tables. Datagram Forwarding. Example Internet and Conceptual Routing Table

Sections Describing Standard Software Features

Configuring RTP Header Compression

AToM (Any Transport over MPLS)

Pseudowire Concepts and troubleshooting

SERIES Y: GLOBAL INFORMATION INFRASTRUCTURE, INTERNET PROTOCOL ASPECTS AND NEXT-GENERATION NETWORKS Internet protocol aspects Interworking

Internet. 1) Internet basic technology (overview) 3) Quality of Service (QoS) aspects

MPLS Segment Routing in IP Networks

MultiProtocol Label Switching - MPLS ( RFC 3031 )

The Internet. The Internet is an interconnected collection of netw orks.

On Distributed Communications, Rand Report RM-3420-PR, Paul Baran, August 1964

Classifying and Marking MPLS EXP

IPv6 Protocol. Does it solve all the security problems of IPv4? Franjo Majstor EMEA Consulting Engineer Cisco Systems, Inc.

Use of Ethernet Control Word RECOMMENDED. draft-ietf-pals-ethernet-cw-00 Stewart Bryant, Andy Malis & Ingas Bagdonas IETF 100 November 2017

Configuring QoS CHAPTER

CS475 Networks Lecture 8 Chapter 3 Internetworking. Ethernet or Wi-Fi).

Sections Describing Standard Software Features

MPLS MULTI PROTOCOL LABEL SWITCHING OVERVIEW OF MPLS, A TECHNOLOGY THAT COMBINES LAYER 3 ROUTING WITH LAYER 2 SWITCHING FOR OPTIMIZED NETWORK USAGE

TCP/IP Protocol Suite

IP Generic Training Programs. Catalog of Course Descriptions

IPv6. IPv4 & IPv6 Header Comparison. Types of IPv6 Addresses. IPv6 Address Scope. IPv6 Header. IPv4 Header. Link-Local

COMP211 Chapter 4 Network Layer: The Data Plane

TEMPORARY DOCUMENT. Attached is a clean copy of Draft Recommendation X.84. TD 1143 Rev3 is the source document used to produce this clean version.

Connection Oriented Networking MPLS and ATM

MPLS etc.. 9 May 2017 AN

ETSF05/ETSF10 Internet Protocols Network Layer Protocols

Need For Protocol Architecture

TCP /IP Fundamentals Mr. Cantu

Protocol Layers & Wireshark TDTS11:COMPUTER NETWORKS AND INTERNET PROTOCOLS

Need For Protocol Architecture

OSI Network Layer. Network Fundamentals Chapter 5. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1

Mapping of Address and Port Using Translation

LDP Fast Reroute using LDP Downstream On Demand. 1. Problem: 2. Summary: 3. Description:

ECE4110 Internetwork Programming. Introduction and Overview

CS 356: Computer Network Architectures. Lecture 10: IP Fragmentation, ARP, and ICMP. Xiaowei Yang

Request for Comments: Cisco Systems, Inc. September Framework for Layer 2 Virtual Private Networks (L2VPNs)

Introduction to routing in the Internet

Chapter 09 Network Protocols

Transcription:

DetNet Flow Definition and Identification, Features and Mapping to/from TSN DetNet TSN joint workshop IETF / IEEE 802, Bangkok Balázs Varga 2018-11-11 DetNet - Data plane and related functions Page 1 Balázs Varga Ericsson Research 2018-11-11

Topics Overview Data plane MPLS based PSN Native IP DetNet mapping to/from TSN DetNet service/flow parameters Balázs Varga 2018-11-11 DetNet - Data plane and related functions Page 2

Overview DetNet essentials DetNet operates at the IP/MPLS layer is for networks that are under a single administrative control or within a closed group of administrative control. is NOT for large groups of domains such as the Internet. DetNet service provides a capability for the delivery of data flows with (1) extremely low packet loss rates and/or (2) bounded end-to-end delivery latency Note1: These characteristics are accomplished by dedicating network resources such as link bandwidth and buffer space to DetNet flows and/or classes of DetNet flows, and by protecting packets (e.g., by replicating them along multiple paths. Note2: Unused reserved resources are available to non-detnet flows as long as all guarantees are fulfilled. Balázs Varga 2018-11-11 DetNet - Data plane and related functions Page 3

Data plane MPLS and native IP networks Data flows over DetNet network L2 DetNet Layer 2 service L3 DetNet Routing service Data plane for DetNet over an MPLS-based Packet Switched Network (PSN) an IP-based Packet Switched Network (PSN) DetNet functions require flow attributes from data plane Flow-ID Sequence number +-----+ X +-----+ +-----+ X Eth +-----+ +-----+ / \ Eth \ / \ / \ +-----+ \ / \ / 0======== tunnel-1 ========0_ \ \ 0========= tunnel-2 =========0 / \ / \ +-----+ \ DetNet (MPLS) / \ X \ domain / +-----+ +-----+ \ / \ / X IP +-----+ +-----+ IP +-----+ / \ / \ / \ \ 0========= tunnel-1 =========0 / \ / \ +-----+ \ DetNet (IP) domain / \ X \ / +-----+ +-----+ \ / \ / X IP +-----+ +-----+ IP +-----+ Balázs Varga 2018-11-11 DetNet - Data plane and related functions Page 4

MPLS data plane draft-ietf-detnet-dp-sol-mpls-01 Balázs Varga 2018-11-11 DetNet - Data plane and related functions Page 5

MPLS data plane Basics draft-ietf-detnet-dp-sol-mpls-01 DetNet data plane operation DetNet flows over an MPLS-based Packet Switched Network (PSN) DetNet service for IP and Ethernet hosts DetNet specific encapsulation is defined: DetNet PW DetNet Architecture DetNet service sub-layer: provides DetNet service protection and reordering supported based on existing pseudowire (PW) encapsulations and mechanisms DetNet transport sub-layer: DetNet MPLS.. +-----------+ Service d-cw, S-Label +-----------+ Transport T-Label(s) +-----------+.. provides congestion protection (low loss, assured latency, and limited reordering) supported based on existing MPLS Traffic Engineering encapsulations and mechanisms Balázs Varga 2018-11-11 DetNet - Data plane and related functions Page 6

MPLS data plane End-system Encapsulation Two types of end-systems are distinguished: L2 (Ethernet) end-system: application directly over L2. L3 (IP) end-system: application over L3. Two types of services are distinguished: DetNet Layer Two Service: L2 headers MUST either be kept, or provision must be made for their reconstruction at egress from the DetNet domain DetNet Routing Service (IP over MPLS): IP headers are modified per standard router behavior, e.g., TTL handling. +-----+ X +-----+ +-----+ X Eth +-----+ +-----+ / \ Eth \ / \ / \ +-----+ \ / \ / 0======== tunnel-1 ========0_ \ \ 0========= tunnel-2 =========0 / \ / \ +-----+ \ DetNet domain / \ X \ / +-----+ +-----+ \ / \ / X IP +-----+ +-----+ IP +-----+ Balázs Varga 2018-11-11 DetNet - Data plane and related functions Page 7

MPLS data plane Scenarios TSN over DetNet MPLS Enabled Network TSN end systems originate Ethernet encapsulated traffic DetNet Edge Nodes sit at the boundary of a DetNet domain are responsible for mapping non-detnet aware traffic to DetNet services support the imposition and disposition of the required DetNet encapsulation. functionally similar to pseudowire (PW) Terminating Provider Edge (T-PE) nodes which use MPLS-TE LSPs. Transit nodes are normal MPLS LSRs are generally unaware of the special requirements of DetNet flows Balázs Varga 2018-11-11 DetNet - Data plane and related functions Page 8 TSN Edge Transit Edge TSN End System Node Node Node End System (T-PE) (LSR) (T-PE) +---------+ +...+ +...+ +---------+ Appl. <--:Svc Proxy:--End to End Svc.--:Svc Proxy:--> Appl. +---------+ +---------+ +---------+ +---------+ TSN TSN Svc <-- DetNet flow -->: Service : TSN +---------+ +---+ +---+ +---------+ +---------+ +---------+ Transport Trp Trp Transport Trp Trp Transport +-------.-+ +--.+ +-.-+ +--.----.-+ +-.-+ +-.-+ +---.-----+ : Link : /,-----. \ : Link : /,-----. \ +...+ +-[ Sub ]-+ +...+ +-[ Sub ]-+ [Network] `-----' [Network] `-----' <- TSN -> <----- DetNet MPLS ----> <-- TSN ---> This conceptually parallels L2VPN services

MPLS data plane Scenarios DetNet IP Over MPLS Network IP flow is mapped to one or more PWs and MPLS (TE) LSPs Relay nodes map each DetNet flow to MPLS PWs are functionally similar to PW S-PEs or, when at the edge of an MPLS network, T-PEs Transit node is MPLS (TE) LSP aware and performs switching based on MPLS labels, and need not have any specific knowledge of the DetNet service IP DetNet Relay Transit Relay IP DetNet End System Node Node Node End System +---------+ +---------+ Appl. <--------------- End to End Service ----------> Appl. +---------+...-----+ +-----... +---------+ Service <---: Service -- DetNet flow --- Service :--> Service : <- DN MPLS flow -> : +---------+ +---------+ +---------+ +---------+ +---------+ Transport Trp Trp Transport Trp Trp Transport +-------.-+ +-.-+ +-.-+ +---.---.-+ +-.-+ +-.-+ +---.-----+ : Link : /,-----. \ : Link : /,-----. \ +...+ +-[ Sub ]-+ +...+ +-[ Sub ]-+ [Network] [Network] `-----' `----- <---- DetNet MPLS ----> <--------------------- DetNet IP --------------------> Balázs Varga 2018-11-11 DetNet - Data plane and related functions Page 9

MPLS data plane Encapsulation DetNet PW MPLS-based DetNet data plane encapsulation: DetNet control word (d-cw) containing sequencing information for packet replication and duplicate elimination purposes, and the OAM indicator. DetNet service Label (S-label) that identifies a DetNet flow to the peer node that is to process it. Zero or more MPLS transport LSP label(s) (T-label) used to direct the packet along the label switched path (LSP) to the next peer node along the path. The necessary data-link encapsulation is then applied prior to transmission over the physical media. +---------------------------------+ DetNet Flow Payload Packet +---------------------------------+ <--\ DetNet Control Word DetNet data +---------------------------------+ +--> plane MPLS S-Label encapsulation +---------------------------------+ <--/ T-Label(s) +---------------------------------+ Data-Link +---------------------------------+ Physical +---------------------------------+ Balázs Varga 2018-11-11 DetNet - Data plane and related functions Page 10

MPLS data plane Encapsulation DetNet control word 0 1 2 3 d-cw: 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 d-cw MUST always be present in a packet (even if it is not used) A DetNet control word (d-cw) conforms to the Generic PW MPLS Control Word (PWMCW) defined in [RFC4385] Two sequence number sizes are supported: 16 bits and 28 bits. The sequence number size in use for the d-cw associated with a DetNet flow (S-Label) is configured either by a controller plane or manually for each DetNet flow. Zero is an ordinary sequence number with no special meaning +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 0 0 0 0 Sequence Number +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Note: there is a Sequence number format mismatch between TSN and DetNet Balázs Varga 2018-11-11 DetNet - Data plane and related functions Page 11

MPLS data plane Encapsulation Flow and payload type DetNet Flow identification at a DetNet service sub-layer is realized by an S-label S-label is allocated from the platform label space S-label MUST be at the bottom label of the label stack and MUST precede the d-cw +---------------------------------+ DetNet Flow Payload Packet +---------------------------------+ DetNet Control Word +---------------------------------+ S-Label +---------------------------------+ T-Label(s) +---------------------------------+ Data-Link +---------------------------------+ Physical +---------------------------------+ Indication of the DetNet Payload Type only nodes that needs to know the payload type of a flow are the DetNet ingress node and the DetNet egress nodes packet type is indicated to the egress edge node through the value of the S-label Balázs Varga 2018-11-11 DetNet - Data plane and related functions Page 12

MPLS data plane Service Layer PREOF PREOF: Collective name for Packet Replication, Elimination, and Ordering Functions. Node behaviors covered: Edge node Relay node packets going ^ packets coming ^ v down the stack v up the stack +----------------------+ +-----------------------+ Source Destination +----------------------+ +-----------------------+ Service layer: Service layer: Packet sequencing Duplicate elimination Flow replication Flow merging Packet encoding Packet decoding +----------------------+ +-----------------------+ Transport layer: Transport layer: Congestion prot. Congestion prot. Explicit routes Explicit routes +----------------------+ +-----------------------+ Lower layers Lower layers +----------------------+ +-----------------------+ v ^ \ / Balázs Varga 2018-11-11 DetNet - Data plane and related functions Page 13 / \ / \ / \ +----+ / +======+ +==+ \ +----+ src / Seg1 ) \ Seg3 \ dst +----+ \ + \ Segment-2 \+ / +----+ \======+_ \ / \ / \ / _+===/ +------------+ +---------------E----+ +----+ +----R---+ +----+ src -------R +---+ E-----O----+ dst +----+ E--------+ +----+ +-----------R +-----------------+ R: replication points (PRF) E: elimination point (PEF) O: Ordering function (POF)

IP data plane draft-ietf-detnet-dp-sol-ip-01 Balázs Varga 2018-11-11 DetNet - Data plane and related functions Page 14

IP data plane Basics draft-ietf-detnet-dp-sol-ip-01 DetNet data plane operation for IP hosts and routers that provide DetNet service to IP encapsulated data No DetNet specific encapsulation is defined to support IP flows, rather existing IP header information is used to support flow identification and DetNet service delivery ("6-tuple" based flow identification) DetNet Architecture DetNet service sub-layer: provides DetNet service protection and reordering DetNet transport sub-layer: provides congestion protection (low loss, bounded latency, and limited reordering, controller plane based service protection) Note: As no DetNet specific headers are added only transport layer functions are supported Note2: Service protection can be provided on a per sub-net basis using technologies such as MPLS and IEEE802.1 TSN Out-of-scope: Operation of IEEE802.1 TSN end systems over DetNet enabled IP networks is out-of-scope. While TSN flows could be encapsulated in IP packets by an IP End System or DetNet Edge Node in order to produce DetNet IP flows, the details of such are out-of-scope. Balázs Varga 2018-11-11 DetNet - Data plane and related functions Page 15 / \ / \ / \ \ 0========= tunnel-1 =========0 / \ / \ +-----+ \ DetNet (IP) domain / \ X \ / +-----+ +-----+ \ / \ / X IP +-----+ +-----+ IP +-----+

IP data plane Scenarios Simple DetNet (DN) Enabled IP Network DetNet enabled end systems originate IP encapsulated traffic Relay nodes understand the transport requirements of the DetNet flow and ensure that node, interface and sub-network resources are allocated to ensure DetNet service requirements are DetNet service aware but do not perform any DetNet service sub-layer function IP DetNet Relay Relay IP DetNet End System Node Node End System +---------+ +---------+ Appl. <--------------- End to End Service ----------> Appl. +---------+...... +---------+ Service <---: Service :-- DetNet flow ---: Service :--> Service +---------+ +---------+ +---------+ +---------+ Transport Transport Transport Transport +-------.-+ +-.-----.-+ +-.-----.-+ +---.-----+ : Link : \,-----. / /,-----. \ +...+ +-----[ Sub ]----+ +-[ Sub ]-+ [Network] [Network] `-----' `-----' <--------------------- DetNet IP --------------------> Service protection: May be provided at sub-network / link (e.g., 802.1TSN), but not by DetNet IP Balázs Varga 2018-11-11 DetNet - Data plane and related functions Page 16

IP data plane Scenarios Non-DetNet aware IP end systems with IP DetNet Domain End systems are not DetNet aware Edge nodes edge nodes sit at the boundary of the DetNet domain and act as DetNet service proxies for the end applications by initiating and terminating DetNet service for the non-detnet aware IP flows Flow identification existing header information can be used IP Edge Edge IP End System Node Node End System +---------+ +...+ +...+ +---------+ Appl. <---:Svc Proxy:-- E2E Service ---:Svc Proxy:--> Appl. +---------+ +...+ +...+ +---------+ IP <---:IP : :Svc:----- IP flow ----:Svc: :IP :--> IP +---------+ +---+ +---+ +---+ +---+ +---------+ Transport Trp Trp Trp Trp Transport +-------.-+ +-.-+ +-.-+ +-.-+ +-.-+ +---.-----+ : Link : \,-----. / /,-----. \ +...+ +-----[ Sub ]----+ +--[ Sub ]--+ [Network] [Network] `-----' `----- <--- IP ---> <------ DetNet IP -------> <--- IP ---> Balázs Varga 2018-11-11 DetNet - Data plane and related functions Page 17

IP data plane Flow identification 6-tuple Flow identification based on IP (both IPv4 and IPv6) header information. "6-tuple : the traditional 5-tuple + DSCP IP source and destination address fields, the next level protocol or header field, the next level protocol specific fields (e.g. TCP or UDP source and destination ports or IPSec AH/ESP SPI field) the IPv4 Type of Service or IPv6 Traffic Class field (i.e., DSCP) any of the fields can be ignored (wildcarded), and bit masks, prefix based longest match, and ranges can also be used Under discussion: IPv6 flow label, other upper layer protocol header information +-+-+-+-+-+-+-+-+ DSCP ECN +-+-+-+-+-+-+-+-+ 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Version IHL Type of Service Total Length +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Identification Flags Fragment Offset +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Time to Live Protocol Header Checksum +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Source Address +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Destination Address +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Options Padding +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Source port Destination port +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Length Checksum +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Balázs Varga 2018-11-11 DetNet - Data plane and related functions Page 18

IP data plane Service Protection NOT end-to-end Service Protection is done within each link / sub-network independently using the domain specific mechanisms (due the lack of a unified end to end sequencing information that would be available for intermediate nodes). No end-to-end PREOF DetNet IP scenario Balázs Varga 2018-11-11 DetNet - Data plane and related functions Page 19 / \ / \ / \ +----+ / +====+ +==+ \ +----+ src / SubN1 ) \ SubN3 \ dst +----+ \ / \ Sub-Network2 \ / +----+ \_ \ / \ / \ / +---+ +---------E--------+ +-----+ +----+ +----+ src ----R E--------R +---+ E------R E------+ dst +----+ +----+ +---+ +-----R------------+ +-----+ _/ Note: POF (if any) per sub-network, not shown on the figure DetNet Service Layer Function Coverage IP packet 6-tuple is matched and mapped to DetNet capable link/sub-network

Mapping DetNet to/from TSN IETF data plane drafts, IEEE 802.1CB Balázs Varga 2018-11-11 DetNet - Data plane and related functions Page 20

Mapping to TSN IP/MPLS data plane Concept Goal: TSN functions have to identify flows those require TSN treatment (i.e., VLAN/dst-MAC) Active Destination MAC and VLAN Stream id. IP Stream id. Concept: DetNet Flow and TSN Stream mapping is based on the active Stream Identification function, that operates at the frame level. E.g., Function 1 could be the Active Destination MAC and VLAN Stream identification Function 2 could be the IP Stream identification Protocol interworking required at both (ingress and egress) end of a TSN sub-network Note: Work in progress to extend stream identification (IEEE P802.1CBdb) Balázs Varga 2018-11-11 DetNet - Data plane and related functions Page 21

Mapping to TSN TSN-unaware DetNet nodes without any TSN functions Limitation: Active stream identification defined only for IP header MPLS labels are not recognized Mapping DetNet IP data plane: IP DetNet nodes without any TSN functions can be treated as TSN-unaware Talker or Listener. Relay nodes in the TSN sub-network MUST modify the Ethernet encapsulation of the IP DetNet flow (e.g., MAC translation, VLAN-ID setting, Adding Sequence number, etc.) to allow proper TSN specific handling of the flow inside the sub-network. IP (DetNet) Node-1 <--------->... <--: Service :-- DetNet flow ------------------ +---------+ Transport +---------+ +---------------+ L2 L2 Relay with <--- TSN ---- TSN function Stream +----.----+ +--.---------.--+ \ / \ TSN-unaware Talker / Listener TSN-Bridge Relay <-------- TSN sub-network ------- Balázs Varga 2018-11-11 DetNet - Data plane and related functions Page 22

Mapping to TSN TSN-aware DetNet nodes with TSN functions (MPLS example) Mapping: TSN capable MPLS (DetNet) nodes are TSN end stations Maps DetNet flows to/from TSN Streams TSN end station required capabilities includes the following TSN components: For recognizing flows: Stream Identification (MPLS-flow-aware) For FRER used inside the TSN domain, additionally: Sequencing function Sequence encode/decode function For FRER when the node is a replication or elimination point, additionally: Stream splitting function Individual recovery function MPLS (DetNet) Node-1 <---------> +---------+ <-- Service -- DetNet flow ------------------ +---------+ Transport +---------+ +---------------+ L2 with <--- L2 Relay with ---- TSN ---- TSN TSN function Stream +----.----+ +--.---------.--+ \ / \ TSN-aware Talker / Listener TSN-Bridge Relay <--------- TSN sub-network ------------ Balázs Varga 2018-11-11 DetNet - Data plane and related functions Page 23 Note: IEEE P802.1CBdb extends stream identification Note2: Sequence number format mismatch may be a problem

DetNet Flow / Service parameters draft-ietf-detnet-flow-information-model-02 Balázs Varga 2018-11-11 DetNet - Data plane and related functions Page 24

DetNet Flow / Service parameters draft-ietf-detnet-flow-information-model-02 Flows leveraging DetNet service unicast or multicast data flows for an application with constrained requirements on network performance, e.g., low packet loss rate and/or latency. Flows have the following attributes: DataFlowSpecification IPv6FlowLabel MplsLabel TrafficSpecification FlowRank Service parameters Bandwidth Delay parameters: Maximum latency Packet Delay Variation (PDV) Loss parameters: Maximum Packet Loss Ratio (PLR) Maximum consecutive loss tolerance Maximum allowed mis-ordering Connectivity type Service rank Balázs Varga 2018-11-11 DetNet - Data plane and related functions Page 25 Note: orange text highlight differences to IEEE802.1Qcc

Balázs Varga 2018-11-11 DetNet - Data plane and related functions Page 26 Questions