Topics for This Week

Similar documents
Chapter 4: Network Layer

Chapter 4: outline. Network Layer 4-1

CS555, Spring /5/2005. April 12, 2005 No classes attend Senior Design Projects conference. Chapter 4 roadmap. Internet AS Hierarchy

Computer Networking Introduction

Chapter 4: Network Layer. Lecture 12 Internet Routing Protocols. Chapter goals: understand principles behind network layer services:

Last time. Transitioning to IPv6. Routing. Tunneling. Gateways. Graph abstraction. Link-state routing. Distance-vector routing. Dijkstra's Algorithm

DATA COMMUNICATOIN NETWORKING

Chapter IV: Network Layer

CSC 4900 Computer Networks: Routing Protocols

Announcements. CS 5565 Network Architecture and Protocols. Project 2B. Project 2B. Project 2B: Under the hood. Routing Algorithms

CSc 450/550 Computer Networks Internet Routing

Routing in the Internet

Network Routing. Packet Routing, Routing Algorithms, Routers, Router Architecture

Internet Protocol: Routing Algorithms. Srinidhi Varadarajan

Hierarchical Routing. Our routing study thus far - idealization all routers identical network flat not true in practice

Initial motivation: 32-bit address space soon to be completely allocated. Additional motivation:

Chapter 4: Network Layer

Chapter 4: Network Layer, partb

CSCE 463/612 Networks and Distributed Processing Spring 2018

CS 43: Computer Networks Internet Routing. Kevin Webb Swarthmore College November 14, 2013

Chapter 4: Network Layer. TDTS06 Computer networks. Subnets. Subnets. Subnets. IP Addressing: introduction

Department of Computer and IT Engineering University of Kurdistan. Computer Networks II Border Gateway protocol (BGP) By: Dr. Alireza Abdollahpouri

CSCI Topics: Internet Programming Fall 2008

CS 457 Networking and the Internet. Shortest-Path Problem. Dijkstra s Shortest-Path Algorithm 9/29/16. Fall 2016

Routing. Jens A Andersson Communication Systems

Chapter 4 Network Layer

Lecture 19: Network Layer Routing in the Internet

CS 43: Computer Networks Internet Routing. Kevin Webb Swarthmore College November 16, 2017

HY 335 Φροντιστήριο 8 ο

Routing Unicast routing protocols

Internet rou)ng. V. Arun CS491G: Computer Networking Lab University of MassachuseFs Amherst

CS 43: Computer Networks. 24: Internet Routing November 19, 2018

Inter-AS routing and BGP. Network Layer 4-1

Network Layer: Routing. Routing. Routing protocol. Graph abstraction for routing algorithms: graph nodes are routers graph edges are physical links

Lecture 4 The Network Layer. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it

Network layer: Overview. Network layer functions Routing IP Forwarding

Why dynamic route? (1)

Intra-AS Routing. Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley.

Chapter 5 Network Layer: The Control Plane

Routing. Outline. Algorithms Scalability

Chapter 4: Network Layer: Part II

Network layer functions

Lecture 9. Network Layer (cont d) Network Layer 1-1

Course on Computer Communication and Networks. Lecture 7 Network Layer, Chapter 4 (6/e) - Part B (7/e Ch5)

Lecture 4. The Network Layer (cont d)

BGP. Daniel Zappala. CS 460 Computer Networking Brigham Young University

Master Course Computer Networks IN2097

CPSC 826 Internetworking. The Network Layer: Routing & Addressing Outline. The Network Layer

CSC 8560 Computer Networks: Control Plane

IP Protocols. ALTTC/Oct

UNIT III THE NETWORK LAYER

Computer Networks ICS 651. IP Routing RIP OSPF BGP MPLS Internet Control Message Protocol IP Path MTU Discovery

EECS 3214: Computer Networks Protocols and Applications

Inter-AS routing. Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley

Network layer. Key Network-Layer Functions. Network service model. Interplay between routing and forwarding. CSE 4213: Computer Networks II

Lecture 5 The Network Layer part II. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it

Network Layer: Routing

5.1 introduction 5.5 The SDN control 5.2 routing protocols plane. Control Message 5.3 intra-as routing in Protocol the Internet

Routing. Info 341 Networking and Distributed Applications. Addresses, fragmentation, reassembly. end-to-end communication UDP, TCP

Inter-Domain Routing: BGP

Last time. Network layer. Introduction. Virtual circuit vs. datagram details. IP: the Internet Protocol. forwarding vs. routing

ECE 428 Internet Protocols (Network Layer: Layer 3)

Networking: Network layer

internet technologies and standards

ROUTING INTRODUCTION TO IP, IP ROUTING PROTOCOLS AND PROXY ARP

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 14

Internetworking Part 2

Chapter 4: Advanced Internetworking. Networking CS 3470, Section 1

Dongsoo S. Kim Electrical and Computer Engineering Indiana U. Purdue U. Indianapolis

Basic Idea. Routing. Example. Routing by the Network

IP - The Internet Protocol. Based on the slides of Dr. Jorg Liebeherr, University of Virginia

Interplay between routing, forwarding

The Interconnection Structure of. The Internet. EECC694 - Shaaban

Routing by the Network

OSPF (Open Shortest Path First)

IP : Internet Protocol

OSPF (Open Shortest Path First)

Chapter 4: Network Layer. Chapter 4 Network Layer. Chapter 4: Network Layer. Network layer. Chapter goals:

Internet Routing Protocols Tuba Saltürk

Lecture 12. Introduction to IP Routing. Why introduction? Routing

Department of Computer Science Southern Illinois University Carbondale

Forelesning nr 5, m andag 16. sept em ber Chapt er 4, Net w ork Layer and Rout ing. Datakom høsten

Network layer: Overview. Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing

CSCD 330 Network Programming Spring 2018

Lecture 4 - Network Layer. Transport Layer. Outline. Introduction. Notes. Notes. Notes. Notes. Networks and Security. Jacob Aae Mikkelsen

Introduction to routing in the Internet

Router Architecture Overview

Network layer: Overview. Network Layer Functions

Interplay Between Routing, Forwarding

Chapter 4 Network Layer. Network Layer 4-1

Network Layer: Routing

CSCD 330 Network Programming Spring 2017

Chapter 4: outline. 4.5 routing algorithms link state distance vector hierarchical routing. 4.6 routing in the Internet RIP OSPF BGP

Introduction to routing in the Internet

Module 3 Network Layer CS755! 3-1!

EEC-684/584 Computer Networks

Routing Protocols --- Exterior Gateway Protocol

Network Layer: Internet Protocol

Inter-networking. Problem. 3&4-Internetworking.key - September 20, LAN s are great but. We want to connect them together. ...

Network layer: Overview. Network layer functions Routing IP Forwarding

Transcription:

Topics for This Week Routing Protocols in the Internet OSPF, BGP More on IP Fragmentation and Reassembly ICMP Readings Sections 5.6.4-5.6.5 1

Hierarchical Routing aggregate routers into regions, autonomous systems (AS) routers in same AS run same routing protocol intra-as routing protocol routers in different AS can run different intra- AS routing protocol gateway routers special routers in AS run intra-as routing protocol with all other routers in AS also responsible for routing to destinations outside AS run inter-as routing protocol with other gateway routers 2

Intra-AS and Inter-AS routing a C C.b b d A A.a a b A.c c B.a a B c b Gateways: perform inter-as routing amongst themselves perform intra-as routing with other routers in their AS inter-as, intra-as routing in gateway A.c network layer link layer physical layer 3

Intra-AS and Inter-AS routing a Host h1 C C.b b A.a a d A b c Intra-AS routing within AS A Inter-AS routing between A and B A.c B.a a B c b Intra-AS routing within AS B Host h2 4

Why different Intra- and Inter-AS routing? Policy: Inter-AS: admin wants control over how its traffic routed, who routes through its net. Intra-AS: single admin, so no policy decisions needed Scale: hierarchical routing saves table size, reduced update traffic Performance: Intra-AS: can focus on performance Inter-AS: policy may dominate over performance 5

Intra-AS Routing (stop) Also known as Interior Gateway Protocols (IGP) Most common IGPs: RIP: Routing Information Protocol OSPF: Open Shortest Path First IGRP: Interior Gateway Routing Protocol (Cisco proprietary) 6

RIP ( Routing Information Protocol) Distance vector algorithm Included in BSD-UNIX Distribution in 1982 Distance metric: # of hops (max = 15 hops) Can you guess why? Distance vectors: exchanged every 30 sec via Response Message (also called advertisement) Each advertisement: route to up to 25 destination nets 7

RIP: Link Failure and Recovery If no advertisement heard after 180 sec neighbor/link declared dead routes via neighbor invalidated new advertisements sent to neighbors neighbors in turn send out new advertisements (if tables changed) link failure info quickly propagates to entire net poison reverse used to prevent ping-pong loops (infinite distance = 16 hops) 8

RIP Table processing RIP routing tables managed by application-level process called routed (daemon) advertisements sent in UDP packets, periodically repeated 9

OSPF (Open Shortest Path First) open : publicly available Gated Uses Link State algorithm LS packet dissemination Topology map at each node Route computation using Dijkstra s algorithm OSPF advertisement carries one entry per neighbor router Advertisements disseminated to entire AS (via flooding) 10

Neighbor Discovery and Maintenance OSPF Hello protocol Sends Hello packets on all its interfaces Every Hello Interval (default 10 sec) Helps detect the failure of neighbors Neighbor is designated as failed If no Hello for Dead Interval (40 sec) 11

OSPF advanced features (not in RIP) Security: all OSPF messages authenticated (to prevent malicious intrusion); Multiple same-cost paths allowed (only one path in RIP) For each link, multiple cost metrics for different TOS (eg, satellite link cost set low for best effort; high for real time) Integrated uni- and multicast support: Multicast OSPF (MOSPF) uses same topology data base as OSPF Hierarchical OSPF in large domains. 12

Inter-AS routing 13

Internet Inter-AS routing: BGP BGP (Border Gateway Protocol): the de facto standard Path Vector protocol: similar to Distance Vector protocol each Border Gateway broadcast to neighbors (peers) entire path (I.e, sequence of ASs) to destination E.g., Gateway X may send its path to dest. Z: Path (X,Z) = X,Y1,Y2,Y3,,Z 14

Internet Inter-AS routing: BGP Suppose: gateway X send its path to peer gateway W W may or may not select path offered by X cost, policy (don t route via competitors AS), loop prevention reasons. If W selects path advertised by X, then: Path (W,Z) = W, Path (X,Z) Note: X can control incoming traffic by controlling its route advertisements to peers: e.g., don t want to route traffic to Z don t advertise any routes to Z 15

Internet Inter-AS routing: BGP BGP messages exchanged using TCP. BGP messages: OPEN: opens TCP connection to peer and authenticates sender UPDATE: advertises new path (or withdraws old) KEEPALIVE keeps connection alive in absence of UPDATES; also ACKs OPEN request NOTIFICATION: reports errors in previous msg; also used to close connection 16

The Internet Network layer Transport layer: TCP, UDP Network layer Routing protocols path selection RIP, OSPF, BGP routing table IP protocol addressing conventions datagram format packet handling conventions ICMP protocol error reporting router signaling Link layer physical layer 17

More on IP 18

IP Packet Format 19

Fields in IP Packet IP protocol version Current version is 4 Header length Number of 32-bit quantities in the header Type of Service 3-bit Priority Delay, Throughput, Reliability bits Total length Including header (maximum 65535 bytes) 20

Fields in IP Packet Identification All fragments of a packet have same identification Flags Don t Fragment, More Fragments Fragment offset Where in the original packet (count in 8 byte units) Time to live Life time of packet Protocol Type TCP, UDP etc 21

IP Fragmentation & Reassembly Each subnet has its own MTU size Maximum Transmission Unit An IP packet is chopped into smaller pieces if Packet size is greater than network MTU Don t fragment option is not set Each datagram has unique identification All fragments carry original datagram id All fragments except the last have more flag set 22

IP Fragmentation &Reassembly Datagram assembly done only at destination Why not at a router? Use datagram id to put pieces together The last piece indicated with more bit 0 Offset plus the length tell whether any Holes missing in the middle Setup a reassembly timer after first fragment If all pieces in time, pass the pkt to upper layer If some do not arrive in time, discard the fragments No recovery from lost fragments (why?) 23

IP Fragmentation & Reassembly large IP datagram fragmented within net one datagram becomes several datagrams reassembled only at final destination IP header bits used to identify, order related fragments reassembly 24

IP Fragmentation and Reassembly length =4000 ID =x moreflag =0 offset =0 One large datagram becomes several smaller datagrams length =1500 ID =x moreflag =1 offset =0 length =1500 ID =x moreflag =1 offset =1480 length =1040 ID =x moreflag =0 offset =2960 25

Fragmentation Example 26

Internet Control Message Protocol An error reporting mechanism Time exceeded Packet discarded because TTL was 0 Destination unreachable Router cannot locate destination Source quench Buffer overflow, request source to reduce rate Redirect Suggest a better router 27

ICMP Message Transport ICMP messages carried in IP datagrams Treated like any other datagram But no error message sent if ICMP message causes error Message sent to the source 8 bytes of the original header included 28

ICMP Usage Testing reachability ICMP echo request/reply ping Tracing route to a destination Time-to-live field Traceroute Path MTU discovery Don t fragment bit 29

Protocol Configuration Items to be configured IP address Default router address Subnet mask DNS server address Reverse Address Resolution Protocol (RARP) ICMP address mask request and router discovery Bootstrap protocol (BOOTP) 30

IP addresses: how to get one? Hard-coded by system admin in a file Dynamic Host Configuration Protocol dynamically get address: plug-and-play host broadcasts DHCP discover msg DHCP server responds with DHCP offer msg host requests IP address: DHCP request msg DHCP server sends address: DHCP ack msg 31

Network Layer Summary Network service datagram vs virtual circuit Routing protocols Link state and distance vector RIP, OSPF, PGP Case studies ATM, IPv4 32

Hierarchical OSPF 33

Hierarchical OSPF Two-level hierarchy: local area, backbone. Link-state advertisements only in area each node has detailed area topology; only know direction (shortest path) to nets in other areas. Area border routers: summarize distances to nets in own area, advertise to other Area Border routers. Backbone routers: run OSPF routing limited to backbone. Boundary routers: connect to other ASs. 34

Traceroute yahoo.com 1 rsfc-v15.eswitch.umn.edu (128.101.35.253) 2 192.168.99.30 (192.168.99.30) 3 tc3x.router.umn.edu (160.94.26.70) 4 tc2x.router.umn.edu (160.94.26.98) 5 otr-tc2.northernlights.gigapop.net (192.42.152.134) 6 otr-onvoy.northernlights.gigapop.net (192.42.152.14) 7 core1-ge1-1-0.msc.mr.net (137.192.3.254) 35

Traceroute yahoo.com 8 p4-0.chcgil1-cr1.bbnplanet.net (4.24.149.97) 9 p5-0.chcgil1-br1.bbnplanet.net (4.24.5.241) 10 so-3-0-0.chcgil2-br1.bbnplanet.net (4.24.9.69) 11 p1-0.chcgil2-cr1.bbnplanet.net (4.24.7.134) 12 pos1-2.core1.chicago1.level3.net (209.0.225.33) 13 so-4-0-0.mp2.chicago1.level3.net (209.247.10.169) 36

Traceroute yahoo.com 14 so-3-0-0.mp1.sanjose1.level3.net (64.159.1.129) 15 gigabitethernet9-2.ipcolo4.sanjose1.level3.net (64.159.2.138) 16 * * * 17 ge-3-3-0.msr1.pao.yahoo.com (216.115.101.42) 18 vlan29.bas2-m.snv.yahoo.com (216.115.100.126) 19 w9.snv.yahoo.com (216.115.102.81) 37