Computer Based Image Algorithm For Wireless Sensor Networks To Prevent Hotspot Locating Attack

Similar documents
A Cloud-Based Scheme for Protecting Source-Location Privacy against Hotspot-Locating Attack in Wireless Sensor Networks

PROTECTING SOURCE LOCATION PRIVACY AGAINST WORMHOLE ATTACK USING DAWN IN WIRELESS SENSOR NETWORKS

Source Anonymous Message Authentication and Source Privacy using ECC in Wireless Sensor Network

Ensuring Trustworthiness and Security during Data Transmission in Multihop Wireless Networks

ENERGY EFFICIENT APPROACH TO PROTECT SOURCE LOCATION PRIVACY FROM GLOBAL EAVESDROPPER IN SENSOR NETWORK

Towards a Statistical Context for Source Obscurity in Sensor Networks

Challenges in Mobile Ad Hoc Network

Catching BlackHole Attacks in Wireless Sensor Networks

Nodes Energy Conserving Algorithms to prevent Partitioning in Wireless Sensor Networks

Preserving Trajectory Privacy using Personal Data Vault

Survey on Traffic Pattern Discovery System For MANETs

Detection and Localization of Multiple Spoofing using GADE and IDOL in WSN. U.Kavitha 1.

Chongqing, China. *Corresponding author. Keywords: Wireless body area network, Privacy protection, Data aggregation.

An Efficient Data-Centric Routing Approach for Wireless Sensor Networks using Edrina

Mitigating Malicious Activities by Providing New Acknowledgment Approach

Sybil Attack Detection with Reduced Bandwidth overhead in Urban Vehicular Networks

Analysis and Performance evaluation of Traditional and Hierarchal Sensor Network

SCALABLE MESSAGE AUTHENTICATION SCHEME BASED ON ECC IN WIRELESS SENSOR NETWORKS

Reliable Privacy-Preserving Communications for Wireless Ad Hoc Networks

Ad-hoc Trusted Information Exchange Scheme for Location Privacy in VANET

ENSF: ENERGY-EFFICIENT NEXT-HOP SELECTION METHOD USING FUZZY LOGIC IN PROBABILISTIC VOTING-BASED FILTERING SCHEME

Use of Symmetric And Asymmetric Cryptography in False Report Filtering in Sensor Networks

Distributed Bottom up Approach for Data Anonymization using MapReduce framework on Cloud

Protecting Sink Location Against Global Traffic Monitoring Attacker

Location Privacy Protection in Contention Based Forwarding for VANETs

Strongly Anonymous Communications in Mobile Ad Hoc Networks

Energy Efficient Data Gathering For Throughput Maximization with Multicast Protocol In Wireless Sensor Networks

LIGHTWEIGHT KEY MANAGEMENT SCHEME FOR HIERARCHICAL WIRELESS SENSOR NETWORKS

Efficient Message Caching Scheme for MANET

Protecting source location privacy based on multirings in wireless sensor networks

ANALYSIS OF METHODS FOR PREVENTING SELECTIVE JAMMING ATTACKS USING NS-2

A Secure Location-Based Coupon Redeeming System

Accumulative Privacy Preserving Data Mining Using Gaussian Noise Data Perturbation at Multi Level Trust

@IJMTER-2016, All rights Reserved ,2 Department of Computer Science, G.H. Raisoni College of Engineering Nagpur, India

A Survey on Traffic Pattern Discovery in Mobile Ad hoc Network

An Cross Layer Collaborating Cache Scheme to Improve Performance of HTTP Clients in MANETs

Analysis of Cluster-Based Energy-Dynamic Routing Protocols in WSN

Bloom Filter for Network Security Alex X. Liu & Haipeng Dai

(INTERFERENCE AND CONGESTION AWARE ROUTING PROTOCOL)

Energy Aware and Anonymous Location Based Efficient Routing Protocol

International Journal of Advance Research in Computer Science and Management Studies

A Feedback-based Multipath Approach for Secure Data Collection in. Wireless Sensor Network.

Identifying Packet Loss In Wireless Sensor Network

CASER Protocol Using DCFN Mechanism in Wireless Sensor Network

EEEM: An Energy-Efficient Emulsion Mechanism for Wireless Sensor Networks

Detection of Spoofing Attack and Localization of Multiple Adversaries in WSN

Maximizing the Lifetime of Clustered Wireless Sensor Network VIA Cooperative Communication

Performance Analysis of Mobile Ad Hoc Network in the Presence of Wormhole Attack

Data Gathering for Wireless Sensor Network using PEGASIS Protocol

Energy Efficiency and Latency Improving In Wireless Sensor Networks

DETECTING, DETERMINING AND LOCALIZING MULTIPLE ATTACKS IN WIRELESS SENSOR NETWORK - MALICIOUS NODE DETECTION AND FAULT NODE RECOVERY SYSTEM

Published by: PIONEER RESEARCH & DEVELOPMENT GROUP ( 1

Enhancing the Life Time of Wireless Sensor Network by Using the Minimum Energy Scheduling Algorithms

Selective Forwarding Attacks Detection in WSNs

ISSN Vol.04,Issue.05, May-2016, Pages:

Statistical Traffic Pattern Discovery System For Wireless Mobile Networks

Providing Security and Energy Management in Location Based Routing of Manet s

Comparison of TDMA based Routing Protocols for Wireless Sensor Networks-A Survey

SECURE AND EFFICIENT HYBRID APPROACH FOR DATA TRANSMISSION IN ZIGBEE NETWORK

A Low-Overhead Hybrid Routing Algorithm for ZigBee Networks. Zhi Ren, Lihua Tian, Jianling Cao, Jibi Li, Zilong Zhang

A NOVEL APPROACH FOR DETECTING COMPROMISED NODES IN WIRELESS SENSOR NETWORKS

Wireless Network Security Spring 2014

Pseudonym Based Security Architecture for Wireless Mesh Network

Detection and Localization of Multiple Spoofing Attackers in Wireless Networks Using Data Mining Techniques

Dynamic Key Ring Update Mechanism for Mobile Wireless Sensor Networks

ABSTRACT I. INTRODUCTION

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 2, April-May, 2013 ISSN:

Study Of Methods For Preventing Selective Jamming Attacks:A Review

Packet Forwarding Method by Clustering Approach to Prevent Vampire Attacks in Wireless Sensor Networks Vijimol Vincent K 1, D.

Wireless Network Security Spring 2013

Clone Detection for Efficient System in Wireless Sensor Network Using Ad Hoc on Demand Distance Vector (AODVC)

Hybrid Security Using Encryption Algorithm in Wireless Adhoc Network

A Location-based Directional Route Discovery (LDRD) Protocol in Mobile Ad-hoc Networks

ESTABLISHMENT OF SECURE COMMUNICATION IN WIRELESS SENSOR NETWORKS

Energy and Memory Efficient Clone Detection in Wireless Sensor Networks

Maintaining Source Privacy under Eavesdropping and Node Compromise Attacks

SECLOUD: Source and Destination Seclusion Using Clouds for Wireless Ad hoc Networks

QADR with Energy Consumption for DIA in Cloud

A Review Paper On The Performance Analysis Of LMPC & MPC For Energy Efficient In Underwater Sensor Networks

CROSS LAYER PROTOCOL (APTEEN) USING WSN FOR REAL TIME APPLICATION

MODIFIED VERTICAL HANDOFF DECISION ALGORITHM FOR IMPROVING QOS METRICS IN HETEROGENEOUS NETWORKS

SELECTING VOTES FOR ENERGY EFFICIENCY IN PROBABILISTIC VOTING-BASED FILTERING IN WIRELESS SENSOR NETWORKS USING FUZZY LOGIC

DYNAMIC SEARCH TECHNIQUE USED FOR IMPROVING PASSIVE SOURCE ROUTING PROTOCOL IN MANET

Chapter 18 Privacy Enhancing Technologies for Wireless Sensor Networks

Impact of Black Hole and Sink Hole Attacks on Routing Protocols for WSN

Spoofing Detection in Wireless Networks

Mobile Health Monitoring Based On New Power Management Approach

Routing Scheme in Energy efficient based Protocols for Wireless Sensor Networks

Energy Aware Node Placement Algorithm for Wireless Sensor Network

Energy Efficient Clustering Protocol for Wireless Sensor Network

Reservation Packet Medium Access Control for Wireless Sensor Networks

SECURED KEY MANAGEMENT ALGORITHM FOR DATA TRANSMISSION IN MOBILE ADHOC NETWORKS

Mobile Element Scheduling for Efficient Data Collection in Wireless Sensor Networks: A Survey

International Journal of Modern Trends in Engineering and Research e-issn No.: , Date: April, 2016

COOPERATIVE DATA SHARING WITH SECURITY IN VEHICULAR AD-HOC NETWORKS

Cryptanalysis of a Markov Chain Based User Authentication Scheme

A Study on Issues Associated with Mobile Network

Presented by: Mariam Ahmed Moustafa Faculty of Engineering, Alexandria University, Egypt. 24 March 2016 RIPE NCC / MENOG 16

Security Issues & Challenging Attributes in Mobile Ad-Hoc Networks (MANET)

Shortcut Tree Routing using Neighbor Table in ZigBee Wireless Networks

Transcription:

Computer Based Image Algorithm For Wireless Sensor Networks To Prevent Hotspot Locating Attack J.Anbu selvan 1, P.Bharat 2, S.Mathiyalagan 3 J.Anand 4 1, 2, 3, 4 PG Scholar, BIT, Sathyamangalam ABSTRACT: Abrupt due to the open nature of the sensor network, the adversary can eavesdrop and track the information. In this paper, an algorithm called computer based image recognition is introduced to overcome such problem. Here the traffic is analysed using this method. In proposed scheme, the adversary model is considered where it is assumed that the adversary can monitor the small area or the entire network. Then introducing the hotspot-locating attack, considering that through the network traffic the adversaries identify the object s location. Finally for the effective source location privacy, the irregular shapes of fake packets are sent in the form of clouds. Insertion of cloud provides more privacy and it is made active only at the need of transmission I. INTRODUCTION Wireless Sensor Network (WSN) found many applications in military and security applications, environmental and habitat monitoring, medical application and in data collection. In this paper, we use WSN application for data and habitat monitoring. For example, we are trying to save the particular animal organization say pandas. The movement and the activities of the pandas are regularly monitored and send the information to sink. Since WSN is open source network, the data transmission is not secure. The possibilities of attack are higher which may results in lack of data. In wireless sensor networks, privacy is the most important concern. The privacy threats can be classified into two ways: data-oriented privacy and content privacy. In data-oriented privacy threat, the adversary can observe the packet details and after finding the location of the source the pseudonym packet is inserted. In the content privacy threat, the adversary can eavesdrops on the data transmission in the network and tracks the traffic flow. However the adversary could not interpret the data. Some of the existing methods are based on either routing based model or global model. In the routing based scheme, to avoid the adversary problem the packets are sent from source to sink through different routes. By doing so, the learning of the data by the adversary is made difficult. And also this includes the back-tracing method i.e. the adversary tries to get the information from sink to the source. If the adversary locate the sink, through back tracing the source route can be identified. However, this increases the need of more paths which results in the increasing of energy and bandwidth. On the contrary, global adversary scheme uses weak adversary model. Here the source nodes are allowed to send the packets only at the particular time slot. If there are no packets to be sent by the source node, it must send fake packets to the sink. Hence, the adversary could not find the real and the fake packets. However due to the fake packets there may be unnecessary traffic in the network and also increase the packet losses in the network. In this paper, we first define the hotspot phenomenon which causes the inconsistency in the network due to the higher density. Secondly the adversary model [1], assuming that it can monitor the larger area through various devices is discussed. Then, for the location privacy against the attack the cloud scheme [9] is created. The cloud with the irregular fake packets is inserted to provide effective source location privacy [2]. Finally, we proposed the scheme called computer based image recognition. This method, is mainly used to analyse the traffic pattern while the send from source to the sink. Copyright @ IJIRCCE www.ijircce.com 2838

The intruder tries to capture the data while sending from the source to the sink. After getting the data the intruder modifies the data and sends to the sink. After sink receiving the data, it verifies with the time to be received. If there happens any delay during the packet delivery, the node confirms that there received a fake packet and try to find out the attacking node. If the node that sending the fake packets is identified then the node is removed from network. Our contribution can be summarized as follows: 1) to develop the realistic model; 2) we define hotspot phenomenon 3) to define the novel scheme for source location privacy against Hotspot-Locating attack 4) to propose a new scheme called computer based image recognition. The remainder of this paper is organized as follows: reviews of related works are done in section II. The network and the adversary models are discussed in section III. The details about the hotspot attack are given in section IV. We presented our scheme in section V. conclusion and future work is given in section VI. Fig.1: Architecture of WSN II. RELATED WORKS Nowadays location privacy plays an important role in both wired and in the wireless networks. Generally, the location privacy can be provided in pervasive computing by ensuring that the attacker cannot associate two or more of the following pieces of information: who, where, and when. Onion routing [7] is a technique which provides the anonymous communication over a computer network. In the proposed system the nodes conceals in the network/mac address for the mobile ad- hoc networks. In Routing based scheme [7], the node sends the data through different routes to provide the source location privacy. In this method, the adversary is assumed to be monitoring only the small area. However, this scheme fails when the adversary is capable of monitoring the large area or the entire network. This also includes the concept of the back-tracing attack. But it also fails, when the sink is identified by the adversary then through hop by hop movement finally identifies the source. This method also increases the bandwidth and power consumption. In Global based scheme, the adversary is assumed to monitor the entire network. Each node can send the packets only at the periodic time slots. In the remaining time the packet sends the fake packet. If the time interval of the packet increases, then the packet Copyright @ IJIRCCE www.ijircce.com 2839

delay will rapidly increase. If the fake packet allocation is increased, then the energy consumption is also increased. Through this technique complexity increases Ying Jian [7] uses a routing protocol called phantom routing which is designed to protect the location privacy of the source nodes in the sensor network. In this routing method each packet takes the random walk before reaching the destination. Many of the schemes use the asymmetric key cryptosystem which uses the two keys for the security concern. However this method requires more energy to work, so a less energy consuming cryptosystem is needed. III. NETWORK AND ADVERSARY MODEL A. NETWORK MODEL As illustrated in fig.1, the architecture of the considered WSN consists of the sensor nodes deployed in the open area. The sensor nodes are the device with the low computational power and use public key cryptography, but perform the operations like sensing, data processing and communication operations. Here the communications within the network by the sensor nodes are bidirectional. B. ADVERSARY MODEL The adversary is capable of monitoring the data transmission in the network and learns the data. The adversary distributes the devices random to monitor the data say observation points. Here the adversary is assumed to have the following characteristics: 1. Passive: In networks, attacks are two types, passive and active. In active attack, the adversary will not harm the data. But the passive attack is more dangerous because in this type of attack the adversary will harm the data by decrypting the original data. 2. Use well equipped devices: For the data monitoring, considering the adversary uses the well equipped devices which can also monitor the larger area in the network. 3. Technology: If adversary finds the location, it needs to know considered technology. Assuming that the adversary knows the privacy preserving scheme and the cryptosystem methods. IV. HOTSPOT-LOCATING ATTACK A hotspot is formed when the more number of packets arises from the small area. Due to more number of packets there may be traffic in the network. Through this the adversary can try to learn the data. To avoid this problem the packets are send in the form of the cloud with irregular shapes which makes inconsistency to the adversary to track the data from network. The adversary randomly distributes the devices for monitoring the data transmission. If adversary finds the area but there is no animal say panda, then it is known as the false positive. However the adversaries are well equipped to track the data during the transmission. The adversary attempts to make use of the fact that the sensor nodes at the hotspot send more packet than the other region. Since hotspot means the group of animals stay together for several reason, example, shelter and food. Different phases are considered for the hotspot-locating attack [9] using the adversary model. This process involves the three phases: Identifying, Monitoring, Analysis phase. In the identifying phase, the adversary searches the hotspot location area by its distributed device which is placed at random. In monitoring phase, the monitoring device collects the traffic information. Finally in the analysis phase, the adversary uses the network traffic to collect the data for searching the panda and to change the location. Copyright @ IJIRCCE www.ijircce.com 2840

Fig 2 no of packets vs time The adversary may attack the data in two ways: Inside tracing and boundary tracing. For the event packet transmission, the fake packet is inserted along with the real data to make the inconsistency to the adversary. The packets are encrypted using a shared key and sent to the sink. Then sink after getting the information it decrypts the data using the shared key. Then moves the fake packet to the next node periodically. Finally, the clouds are merged to get the entire information. The merging of the two clouds reduces energy consumption and the adversary has an inconsistence in finding the fake packet and the real data. The main advantages of merging cloud are it provides the stronger privacy to the network and as said before it reduces the energy costs. Also by the cloud merging we can increase the anonymity set without the extra set. For the merging cloud splitting attack, the adversary tries for the reduction of the cloud size. Considering the source and sink unlink ability, when the adversary eavesdrops on both, it cannot link the packet. Copyright @ IJIRCCE www.ijircce.com 2841

V. COMPUTER BASED IMAGE RECOGNITION ALGORITHM The image recognition algorithm, is mainly used to analyse the traffic pattern while the send from source to the sink. The intruder tries to capture the data while sending from the source to the sink. After getting the data the intruder modifies the data and sends to the sink. After sink receiving the data, it verifies with the time to be received. If there happens any delay during the packet delivery, the node confirms that there received a fake packet and try to find out the attacking node. If the node that sending the fake node is identified then the node is removed from network. A. Simulation results Table 1 illustrate four thousand nodes are uniformly distributed over size of 3500m x 3500m; the sink is located at the origin. The network has one hotspot and is fixed. The number of source nodes in the hotspot is 100. Fig.2. illustrate the energy consumption of the packet in the network. To reduce the energy cost, our scheme uses efficient cryptosystem which includes symmetric key cryptosystem and hash function. Comparing with the existing method, this method consumes less energy because the packets are sent only during the event and not periodically. So it saves the energy. Fig.3. illustrate the throughput performance of the packet. Since the packet is sent only at the event, the network traffic can get reduced which results in the reduction of packet loss. PARAMETER VALUE Number of nodes 4000 Network size 3500m x 3500m Copyright @ IJIRCCE www.ijircce.com 2842

Number of hotspot 1 Number of sensor nodes in hotspot Sink location 100 origin Nodes and hotspot Uniformly distributed Table 1 simulation parameters VI. CONCLUSION AND FUTURE WORK The image recognition algorithm, is mainly used to analyse the traffic pattern while the send from source to the sink. The intruder tries to capture the data while sending from the source to the sink. After getting the data the intruder modifies the data and sends to the sink. After sink receiving the data, it verifies with the time to be received. If there happens any delay during the packet delivery, the node confirms that there received a fake packet and try to find out the attacking node. If the node that sending the fake node is identified then the node is removed from network. In future work, we can use different algorithms to locate hotspots in the traffic-pattern image by the traffic analysis techniques. REFERENCES [1]. Na Li, Nan Zhang, Sajal K. Das, Bhavani Thuraisingham, Privacy preservation in wireless sensor networks: A state-of-the-art survey in Ad Hoc Networks (2009), p. 1501 1514, 2009. [3]. C. Ozturk, Y. Zhang, and W. Trappe, Source-location privacy in energy constrained sensor network routing" in Proceedings of the 2nd ACM workshop on Security of ad hoc and sensor networks (SASN), October 2004, pp. 88-93. [4]. M. Shao, Y. Yang, S. Zhu and G. Cao, Towards statistically strong source anonymity for sensor networks, Proc. of IEEE INFOCOM 08, pp. 51 59, Phoenix, Az, USA, April 2008 [5]. T. Roosta, S. Shieh, S. Sastry: Taxonomy of Security Attacks in Sensor Networks, 1st IEEE Int. Conference on System Integration and Reliability Improvements 2006, Hanoi (2006) pp. 13 15. [6]. M. Mahmoud and X. Shen, Lightweight privacy-preserving routing and incentive protocol for hybrid ad hoc wireless networks", Proc. of IEEE INFOCOM, International Workshop on Security in Computers, Networking and Communications (SCNC), Shanghai, China, April 10-15, 2011. [7]. Y. Jian, S. Chen, Z. Zhang, and L. Zhang, A Novel Scheme for Protecting Receiver s Location Privacy in Wireless Sensor Networks IEEE Trans. Wireless Comm., vol. 7, no. 10, pp. 3769-3779, Oct. 2008. [8]. Y. Li and J. Ren, Source-Location Privacy through Dynamic Routing in Wireless Sensor Networks Proc. IEEE INFOCOM 10, Mar. 2010. [9]. Mohamed M.E.A. Mahmoud and Xuemin (Sherman) Shen, A Cloud-Based Scheme for Protecting Source-Location Privacy against Hotspot- Locating Attack in Wireless Sensor Networks, IEEE transactions on parallel and distributed systems, vol. 23, no. 10, pp. 1805-1818, Oct. 2012. [10]. R. Lu, X. Lin, H. Zhu, and X. Shen, Timed Efficient Source Privacy Preservation Scheme for Wireless Sensor Networks, Proc. IEEE Int l Conf. Comm., May 2010. [11]. Y. Fan, Y. Jiang, H. Zhu, and X. Shen, An Efficient Privacy- Preserving Scheme against Traffic Analysis Attacks in Network Coding, Proc. IEEE INFOCOM 09, Apr. 2009. [12]. H. Wang, B. Sheng, and Q. Li, Privacy-Aware Routing in Sensor Networks, Computer Networks, vol. 53, no. 9, pp. 1512-1529, 2009. [13]. P. Kalnis, G. Ghinita, K. Mouratidis, and D. Papadias, Preventing Location-Based Identity Inference in Anonymous Spatial Queries, IEEE Trans. Knowledge and Data Eng., vol. 19, no. 12, pp. 1719-1733, Dec. 2007. [14]. B. Gedik and L. Liu, Protecting Location Privacy with Personalized K-Anonymity: Architecture and Algorithms, IEEE Trans. Mobile Computing, vol. 7, no. 1, pp. 1-18, Jan. 2008. [15]. K. Pongaliur and L. Xiao, Maintaining Source Privacy under Eavesdropping and Node Compromise Attacks, Proc. IEEE INFOCOM, Apr. 2011. Copyright @ IJIRCCE www.ijircce.com 2843