Advanced Networking. Multicast

Similar documents
Advanced Networking. Multicast

Multicast Communications

What is Multicasting? Multicasting Fundamentals. Unicast Transmission. Agenda. L70 - Multicasting Fundamentals. L70 - Multicasting Fundamentals

Broadcast Routing. Multicast. Flooding. In-network duplication. deliver packets from source to all other nodes source duplication is inefficient:

DATA COMMUNICATOIN NETWORKING

Why multicast? The concept of multicast Multicast groups Multicast addressing Multicast routing protocols MBONE Multicast applications Conclusions

Multicast EECS 122: Lecture 16

ICS 351: Today's plan. routing protocol comparison encapsulation network dynamics multicasting in general IP multicasting IGMP PIM

ETSF10 Internet Protocols Routing on the Internet

ETSF10 Internet Protocols Routing on the Internet

CSCE 463/612 Networks and Distributed Processing Spring 2018

Multicast Communications. Slide Set were original prepared by Dr. Tatsuya Susa

IP Multicast. What is multicast?

Broadcast and Multicast Routing

Advanced Network Training Multicast

CSE 123A Computer Networks

DD2490 p IP Multicast routing. Multicast routing. Olof Hagsand KTH CSC

List of groups known at each router. Router gets those using IGMP. And where they are in use Where members are located. Enhancement to OSPF

IPv6 PIM. Based on the forwarding mechanism, IPv6 PIM falls into two modes:

Multicast service model Host interface Host-router interactions (IGMP) Multicast Routing Distance Vector Link State. Shared tree.

Mobile Communications. Ad-hoc and Mesh Networks

Contents. Overview Multicast = Send to a group of hosts. Overview. Overview. Implementation Issues. Motivation: ISPs charge by bandwidth

IP Multicast Technology Overview

Multicast Technology White Paper

Multicast over Vehicle Ad Hoc Networks

Module 7 Implementing Multicast

Multicast routing protocols

ETSF10 Internet Protocols Routing on the Internet

IP Multicast. Overview. Casts. Tarik Čičić University of Oslo December 2001

Multicast Communications. Tarik Čičić, 4. March. 2016

Analysis of Performance of Core Based Tree and Centralized Mode of Multicasting Routing Protocol

IP Multicast. Falko Dressler Regionales Rechenzentrum Grundzüge der Datenkommunikation IP Multicast

Performance Comparison of MANET (Mobile Ad hoc Network) Protocols (ODMRP with AMRIS and MAODV)

IP Multicast: Does It Really Work? Wayne M. Pecena, CPBE, CBNE

Multicast overview. Introduction to multicast. Information transmission techniques. Unicast

Configuring IP Multicast Routing

Multicast overview. Introduction to multicast. Information transmission techniques. Unicast

CS 268: IP Multicast Routing

Exercises to Communication Systems

Configuring IP Multicast Routing

Developing IP Muiticast Networks

4.2 Multicast IP supports multicast to support one-to-many (radio, news, IP multicast was originally a many-to-many (any source MC or

Survey of Topology-based Multicast Routing Protocols for Mobile Ad hoc Networks

IP Multicast Routing Protocols

ASM. Engineering Workshops

Internet Multicast Routing

Configuring IP Multicast Routing

Exercises to Communication Systems

Content. 1. Introduction. 2. The Ad-hoc On-Demand Distance Vector Algorithm. 3. Simulation and Results. 4. Future Work. 5.

Ad Hoc Networks: Issues and Routing

IP Multicast Technology Overview

Topic: Multicast routing

Review. Some slides are in courtesy of J. Kurose and K. Ross

LECTURE 9. Ad hoc Networks and Routing

Integrated Services - Overview

Internet2 Multicast Workshop

PIM Configuration. Page 1 of 9

Enhancement of the CBT Multicast Routing Protocol

Study and Comparison of Mesh and Tree- Based Multicast Routing Protocols for MANETs

Configuring IP Multicast Routing

MULTICASTING IN MANET USING THE BEST EFFECTIVE PROTOCOLS

Table of Contents 1 PIM Configuration 1-1

Multicast routing Draft

Multicast as an ISP service

A COMPARISON OF REACTIVE ROUTING PROTOCOLS DSR, AODV AND TORA IN MANET

Network Layer II. Getting IP addresses. DHCP client-server scenario. DHCP client-server scenario. C compiler. You writing assignment 2

Lecture 6. TCP/IP Network Layer (4)

Today s Plan. Class IV Multicast. Class IV: Multicast in General. 1. Concepts in Multicast What is Multicast? Multicast vs.

Lecture 19: Multicast. CSE 123: Computer Networks Stefan Savage

IPv6 and Multicast. Outline. IPv6 Multicast. S Computer Networks - Spring 2005

CS4700/CS5700 Fundamentals of Computer Networks

Multicast. Midterm. EECS 122: Lecture 16. University of California Berkeley. Exam was not meant to be easy

FSOS Multicast Configuration Guide

ITEC310 Computer Networks II

IP Multicast: PIM Configuration Guide, Cisco IOS Release 12.4T

3. Evaluation of Selected Tree and Mesh based Routing Protocols

Multicast H3C Low-End Ethernet Switches Configuration Examples. Table of Contents

Acknowledgments. Part One - Introduction to the TCP/IP Protocol

Distributed Systems Multicast & Group Communication Services

Unicast Routing in Mobile Ad Hoc Networks. Dr. Ashikur Rahman CSE 6811: Wireless Ad hoc Networks

IPv6 PIM-DM configuration example 36 IPv6 PIM-SM non-scoped zone configuration example 39 IPv6 PIM-SM admin-scoped zone configuration example 42 IPv6

Keywords-MANETs, Multicast mode, Clustering, Inter-domain routing.

QoS Routing By Ad-Hoc on Demand Vector Routing Protocol for MANET

Mobile Ad-hoc and Sensor Networks Lesson 04 Mobile Ad-hoc Network (MANET) Routing Algorithms Part 1

Computer Networks. Wenzhong Li. Nanjing University

Presenting a multicast routing protocol for enhanced efficiency in mobile ad-hoc networks

Kapitel 5: Mobile Ad Hoc Networks. Characteristics. Applications of Ad Hoc Networks. Wireless Communication. Wireless communication networks types

IP Multicast: PIM Configuration Guide, Cisco IOS Release 15S

Financial Services Design for High Availability

AMRIS: A Multicast Protocol for Ad hoc Wireless Networks

Routing Protocols in MANET: Comparative Study

Lab 7-3 Routing IP Multicast with PIM Sparse Mode

Configuring Basic IP Multicast

Mobile Ad-hoc Networks

A REVERSE AND ENHANCED AODV ROUTING PROTOCOL FOR MANETS

Distributed Core Multicast (DCM): a multicast routing protocol for many groups with few receivers

Computer Networks. Routing

Muhammad Jaseemuddin Dept. of Electrical & Computer Engineering Ryerson University Toronto, Canada

Multicast VPN C H A P T E R. Introduction to IP Multicast

Internetworking. Problem: There is more than one network (heterogeneity & scale)

Transcription:

Advanced Networking Multicast Renato Lo Cigno Alessandro Russo LoCigno@disi.unitn.it - Russo@disi.unitn.it Homepage: disi.unitn.it/locigno/index.php/teaching-duties/advanced-networking

The Multicast Tree problem Problem: find the best (e.g., min cost) tree which interconnects all the members Advanced Networking Multicasting 2

Steiner tree problem Given a graph G connected and undirected Weight function FIND G ST = G = ( V, E, w) w : E R ( V, E, w) ST T V ST multicast set w( G ) = w( i, j) is minimum ST ( i, j) E ST T V ST are called Steiner nodes ST The Steiner Tree Problem is NP-Complete, i.e., It is an NP Problem (solution can be verified in polynomial time) And it is NP-hard (any NP problem may be converted into it) Special case: when T=V à Minimum Spanning Tree (MST), which can be solved in polynomial time Advanced Networking Multicasting 3

Steiner and Minimum Steiner tree ST has more solutions that MST MST is easier NOTE:MST is a problem: Dijkstra is an algorithm to find a MST! Given a Steiner Tree, we have two solutions ST with cost 3 MST with cost 4 Advanced Advanced Networking Networking Multicasting Multicasting 4 4

Given a ST Minumum Spanning Tree (MST) Compute all possible STs, and Pick the minimum one Solutions: Dynamic programming might be used to solve the MST Several Heuristics (greedy) to find a solution quickly: Pruned Dijkstra Heuristic: Dijkstra over the source Shortest Path Heuristic: Incrementally from the source Kruskal based: Incrementally over links weights Advanced Networking Multicasting 5

CYCLE! Kruskal Example 3 6 5 4 8 4 7 9 7 9 3 6 2 Advanced Networking Multicasting 6

Multicast Tree options GROUP SHARED TREE: just one spanning tree; the root is the CORE or the Rendez Vous point; all messages go through the CORE SOURCE BASED TREE: each source is the root of its own tree connecting to all the members; thus N separate trees Advanced Networking Multicasting 7

Group Shared Tree Predefined CORE for given m-cast group (e.g., posted on web page) New members join and leave the tree with explicit join and leave control messages Tree grows as new branches are grafted onto the tree CBT (Core Based Tree) and PIM Sparse-Mode are Internet m-cast protocols based on GSTree All packets go through the CORE Advanced Networking Multicasting 8

Group Shared Tree Advanced Networking Multicasting 9

Source Based Tree Each source is the root of its own tree: the tree of shortest paths Packets delivered on the tree using reverse path forwarding (RPF); i.e., a router accepts a packet originated by source S only if such packet is forwarded by the neighbor on the shortest path to S In other words, m-cast packets are forwarded on paths which are the reverse of shortest paths to S Advanced Networking Multicasting 10

Source Based Tree Advanced Networking Multicasting 11

Source-Based tree: DVMRP DVMRP was the first m-cast protocol deployed on the Internet; used in Mbone (Multicast Backbone) Initially, the source broadcasts the packet to ALL routers (using RPF) Routers with no active Hosts (in this m-cast group) prune the tree; i.e., they disconnect themselves from the tree Advanced Networking Multicasting 12

Source-Based tree: DVMRP Recursively, interior routers with no active descendents self-prune. After timeout (2 hours in Internet) pruned branches grow back Problems: only few routers are mcast-able; solution: tunnels Advanced Networking Multicasting 13

PIM (Protocol Independent Multicast) Is becoming the de facto inter AS m-cast protocol standard Protocol Independent because it can operate on different routing infrastructures Extract required routing information from any unicast routing protocol Work across multiple AS with different unicast routing protocols PIM can operate in two modes: Sparse Mode RFC 2362 Dense Mode RFC 3973 Advanced Networking Multicasting 14

PIM Strategy Flooding is inefficient over large sparse internet Little opportunity for shared spanning trees Focus on providing multiple shortest path unicast routes Dense mode For intra-as Alternative to MOSPF Sparse mode Inter-AS multicast routing Advanced Networking Multicasting 15

PIM Sparse Mode A sparse group: Number of networks/domains with group members present significantly small than number of networks/domains in internet Internet spanned by group not sufficiently resource rich to ignore overhead of current multicast schemes Advanced Networking Multicasting 16

PIM Sparse Mode For a group, one router designated rendezvous point (RP) Group destination router sends join message towards RP requesting its members be added to group Use unicast shortest path route to send Reverse path becomes part of distribution tree for this RP to listeners in this group Node sending to group sends towards RP using shortest path unicast route Destination router may replace group-shared tree with shortest path tree to any source By sending a join back to source router along unicast shortest path Selection of RP dynamic Not critical Advanced Networking Multicasting 17

PIM Sparse Mode Initially, members join the Shared Tree rooted on a Randez Vous Point Join messages are sent to the RP, and routers along the path learn about the multicast session, creating a tree from the RP to the receivers The source send the packet to the router which encapsulate such a packet in a unicast message towards the RP. The RP unpack the message and send the packet on the tree. Later, once the connection to the shared tree has been established, opportunities to connect DIRECTLY to the source are explored (thus establishing a partial Source Based tree) e.g., load exceeds the forwarding threshold Advanced Networking Multicasting 18

Group Destination Router Group Source Router Group Destination Router Has local group members Router becomes destination router for given group when at least one host joins group Using IGMP or similar Group source router Attaches to network with at least one host transmitting on multicast address via that router Advanced Networking Multicasting 19

Example of PIM Operation Advanced Networking Multicasting 20

A dense group: Designed for wired-static networks PIM Dense Mode Routers are close to each other Dense clients within an area (e.g., an organization) Flood and Prune Protocol Heavily use of Timers Advanced Networking Multicasting 21

PIM Dense Mode For a group there is one or many sources Each source floods data towards each interface Routers check whether there are nodes/ routers on interfaces interested in that multicast group Forward packets towards such interfaces except the RPF Otherwise send a prune to the RPF (i.e., next hop on the RPF), actually leaving the group Advanced Networking Multicasting 22

PIM Dense Mode Routers get/keep in touch through Hello msgs Routers send Prune to leave a group: no clients on that group; Join to receive again data from that group after a Prune; Graft when the RPF changes or a client joins a pruned group GraftAck to ack a graft on downstream interfaces Advanced Networking Multicasting 23

PIM Dense Mode Advanced Networking Multicasting 24

Sparse vs. Dense Mode RP must be configured Explicit join Traffic flows to where it s needed Just routers along paths keep the state Scales better than DM Flood and Prune -> congestion? Routers must keep (S,G) state information Routers negotiate traffic forwarding: assert msgs More reliable on dynamic network: Routers knows all (S,G) No RP constraints Advanced Networking Multicasting 25

IPv4 Multicast Space Host Extension for IP Multicasting Groups may be permanent or transient: Permanent groups have well-known addresses Transient groups receive address dynamically The multicast addresses are in the range 224.0.0.0 through 239.255.255.255. Which authority coordinates addresses assignments?? http://www.iana.org The Internet Assigned Numbers Authority (IANA) is the body responsible for coordinating some of the key elements that keep the Internet running smoothly; Advanced Networking Multicasting 26

From IANA websites: IANA Activities IANA s various activities can be broadly grouped in to three categories: Domain Names: IANA manages the DNS root, the.int and.arpa domains, and an IDN practices resource. Number Resources: IANA coordinates the global pool of IP and AS numbers, providing them to Regional Internet Registries Protocol Assignments: Internet protocols numbering systems are managed by IANA in conjunctionwith standards bodies Advanced Networking Multicasting 27

Assigning Multicast Addresses How does IANA assign IPv4 multicast addresses: Local Network Control Block: range 224.0.0.0-224.0.0.255 reserved for routing protocols and low-level topology discovery or maintenance protocols 224.0.0.0 224.0.0.1 224.0.0.2 224.0.0.4 24.0.0.13 Never assigned All Hosts on this Subnet All Routers on this Subnet DVMRP Routers All PIM Routers (hello messages ) Advanced Networking Multicasting 28

Assigning Multicast Addresses There are several addresses blocks already assigned Internetwork Control Block (224.0.1.0-224.0.1.255 (224.0.1/24)) AD-HOC Block I (224.0.2.0-224.0.255.255) RESERVED (224.1.0.0-224.1.255.255 (224.1/16)) SDP/SAP Block (224.2.0.0-224.2.255.255 (224.2/16)) Advanced Networking Multicasting 29

Assigning Protocol Number IANA assigns IP protocol numbers TCP has IP protocol number 6 UDP is 17 PIM messages have IP protocol number 103 IANA port numbers ssh is 22 echo is 7 telnet 23 PIM over Reliable Transport: is a congestioncontrol modification for JP messages pim-port 8471 tcp pim-port 8471 sctp Advanced Networking Multicasting 30

Useful Links IETF Datatracker The IETF Datatracker is a web-based system for managing information about Internet-Drafts (I- Ds), RFCs and several other important aspects of the IETF process http://datatracker.ietf.org/ IETF TOOLS team The purpose of the TOOLS team is to provide IETF feedback and guidance during the development of software tools to support various parts of IETF activities http://tools.ietf.org/ Advanced Networking Multicasting 31

Wired and Wireless Multicasting Traditional multicast algorithms have been designed for wired networks Static networks Several configurations are done manually (e.g., RP) Is the world completely wired? Smartphones Tablets Netbooks Next generation cars Advanced Networking Multicasting 32

Multicast over MANETs MANET: Mobile Ad hoc Networks More about MANETs on Nomadic Networks course Why Multicast over Wireless network? Mobile inventory: tracks good and services location, determining the delivery time Group-oriented mobile commerce Mobile auction and reverse auction: offering, selling, and bidding Military command and control systems Intelligent distributed transportation systems Emergency rescue operation Locate and lead people to safe areas Advanced Networking Multicasting 33

Multicast over MANETs Multicast protocol designed over wired networks cannot be used over MANET because of: Limited bandwidth availability Error-prone shared broadcast channel (Pro & cons) Node mobility and dynamic topology Lack of infrastructure The hidden terminal problem Energy constrains Multicast may improve the efficiency of wireless links by exploiting the broadcast channel Advanced Networking Multicasting 34

Wireless Multicast Routing Protocol The goal is always the same: High Packet Delivery Ratio Robustness Data packets may be lost/dropped due to node mobility and shared broadcast channel (collisions) à low packet delivery ratio Control overhead Control messages are required to build and maintain the multicast tree and to identify multicast clients, as well Efficiency The ratio between the total number of data packets received by the receivers and the total number of packets transmitted in the network Advanced Networking Multicasting 35

Wireless Multicast Routing Protocol Quality of Service QoS in multicast routing protocol is a fundamental issue that involves the following parameters: throughput, delay, and jitter Dependency on the unicast routing protocol (+) Designed on a given unicast routing protocol to perform better, (-) however they cannot operate in heterogeneous networks (+) Independent ones can operate in heterogeneous networks, (-) perhaps cannot use features provided by unicast routing protocols Resource management Nodes should reduce the number of packets transmitted to limit the energy consumption, as well as limit the amount of information tracked/stored to reduce the memory usage Advanced Networking Multicasting 36

Multicast over MANETs Does PIM work over unstructured wireless networks? Wireless Routing protocol OLSR, DSDV, AODV, and more PIM was designed for wired networks, it is not supposed to work on MANETs, however PIM is protocol independent needs several changes to work on MANETs Advanced Networking Multicasting 37

MANET: Multicast Routing Protocols Flooding Reliable Considerable overhead Inefficient Advanced Networking Multicasting 38

MANET: Multicast Routing Protocols Tree-Based approaches: source or shared tree based (efficient against data forwarding) Ad hoc Multicast Routing protocol utilizing Increasing id-numbers (AMRIS): assigns ID to nodes building a tree rooted at a Sid Node (e.g., source) Tree initialization: create and advertise a multicast session Tree maintenance: data driven tree rejoin through Branch Reconstruction (direct parent join/broadcast parent join within K hops) Multicast Ad hoc On-Demand Distance Vector (MAODV) Similar to AODV, it discovers routes on demand broadcasting RREQ and RREP messages High control overhead Advanced Networking Multicasting 39

MANET: Multicast Routing Protocols Mesh-Based: multiple paths between sourcereceiver pair (robust against mobility) On-Demand Multicast Routing Protocol (ODMRP) On-demand route construction Source sends periodic Join-Query Intermediate nodes forward the packet, learning the path back to source Multicast group members send Join-Reply in response to Join-Query Core-Assisted Mesh Protocol shared mesh among groups guarantee reverse shortest path between source and receivers Advanced Networking Multicasting 40

MANET: Multicast Routing Protocols Stateless Multicast: no multicast info stored on routers, source lists receivers in the packet header: small groups, good for mobility! Differential Destination Multicast (DDM) multicast information are provided in each packet source controls multicast membership source encodes all group members within the data packet using the DDM header format packets are sent to the next hop group member via single hop broadcast REF: http://tools.ietf.org/id/draft-ietf-manet-ddm-00.txt Advanced Networking Multicasting 41

MANET: Multicast Routing Protocols Hybrid Protocols: provides either robustness or efficiency from mesh and tree approaches Ad hoc Multicast Routing Protocol (AMRoute) Tree based protocol Each group has a core node which is responsible for member and tree maintenance Based on Join-Req/Join-Ack, Tree-Create/ Tree-Create- Nak Use virtual mesh links to establish the multicast tree Multicast Core Extraction Distributed Ad hoc Routing (MCEDAR) Multicast extension of the CEDAR unicast routing protocol Advanced Networking Multicasting 42

MANET: Multicast Routing Protocols Which one? Reactive or Proactive Stateful or stateless Tree, Mesh or Hybrid Control messages overhead: flood or not Dependent on unicast protocol or not Stable or harsh environment Answer: Actually, it depends on the combination environment-application the properties we are interested in (e.g., robustness) Advanced Networking Multicasting 43

Application-Level Multicast Multicast protocols are not supported by all routers ISPs won t replace such routers Reproduce multicast at application level Use Peer-to-peer paradigm among nodes interested in the multicast session Build a logical multicast-overlay over the physical network Nodes have a small view of the network: they know few nodes called neighbors Advanced Networking Multicasting 44

Application-Level Multicast The source sends packets towards a few neighbors Nodes forward data received to their neighbors Exchanging messages about data received, avoiding duplicates Two main strategies: Push and Pull PUSH: nodes send data towards neighbors à sender oriented PULL: nodes request data from neighbors à receiver oriented Advanced Networking Multicasting 45

Example: Following One Chunk Source encodes the first piece of data It issues three copies of chunk number 1 to three neighbors Three nodes have the chunk 1 at the end of cycle 1 Advanced Networking Multicasting 46

Example: Following One Chunk Three node has the chunk number 1 Each node tries to PUSH the chunk to some neighbor In cycle 2 there are 3 + 3 = 6 nodes with chunk 1 Advanced Networking Multicasting 47

Example: Following One Chunk The chunk number 1 is still forwarded towards some neighbors At the end of cycle three, there are 7 nodes have that chunk Advanced Networking Multicasting 48

Example: Following One Chunk The forwarding process for chunk 1 ends The last node receives chunk number 1 After 4 cycles all the nodes got the chunk Remember: it s an example! It s not a bound!! Advanced Networking Multicasting 49

Some questions: Example: Following One Chunk Are chunks path always the same? Is the chunks receiving order correct? Are links stable? It video streaming delay sensitive? But that s another story Advanced Networking Multicasting 50