Simulative Investigations of AODV Routing Protocol with Different Propagation Models with CBR Traffic

Similar documents
Analysis QoS Parameters for Mobile Ad-Hoc Network Routing Protocols: Under Group Mobility Model

Routing Protocols in MANETs

Anil Saini Ph.D. Research Scholar Department of Comp. Sci. & Applns, India. Keywords AODV, CBR, DSDV, DSR, MANETs, PDF, Pause Time, Speed, Throughput.

Experiment and Evaluation of a Mobile Ad Hoc Network with AODV Routing Protocol

Estimate the Routing Protocols for Internet of Things

Behaviour of Routing Protocols of Mobile Adhoc Netwok with Increasing Number of Groups using Group Mobility Model

PERFORMANCE ANALYSIS OF AODV ROUTING PROTOCOL IN MANETS

PERFORMANCE BASED EVALUATION OF DSDV, AODV AND DSR ROUTING PROTOCOLS IN MANET

STUDY AND COMPARISION OF PROACTIVE AND REACTIVE ROUTING PROTOCOL FOR MULTICHANNEL WIRELESS AD-HOC NETWORK

ENERGY EFFICIENT MULTIPATH ROUTING FOR MOBILE AD HOC NETWORKS

Routing Protocols in MANET: Comparative Study

Evaluation of Routing Protocols for Mobile Ad hoc Networks

Relative Performance Analysis of Reactive (on-demand-driven) Routing Protocols

Performance Analysis of Wireless Mobile ad Hoc Network with Varying Transmission Power

Performance of Ad-Hoc Network Routing Protocols in Different Network Sizes

Performance Evaluation of MANET through NS2 Simulation

Performance Analysis of AODV under Worm Hole Attack 1 S. Rama Devi, 2 K.Mamini, 3 Y.Bhargavi 1 Assistant Professor, 1, 2, 3 Department of IT 1, 2, 3

Gateway Discovery Approaches Implementation and Performance Analysis in the Integrated Mobile Ad Hoc Network (MANET)-Internet Scenario

Performance Analysis of Aodv Protocol under Black Hole Attack

Impact of Node Velocity and Density on Probabilistic Flooding and its Effectiveness in MANET

PERFORMANCE BASED EVALUATION OF DSDV, AODV AND DSR ROUTING PROTOCOLS IN MANET

Performance Analysis of AODV using HTTP traffic under Black Hole Attack in MANET

Effect of Variable Bit Rate Traffic Models on the Energy Consumption in MANET Routing Protocols

A Comparative Analysis of Energy Preservation Performance Metric for ERAODV, RAODV, AODV and DSDV Routing Protocols in MANET

Performance evaluation of AODV, DSR and DSDV in mobile ad-hoc network using NS-2

Attada Venkataramana et al.,international Journal of Wireless Communications and Network Technologies, 3(1), December January 2014, 9-13

IJMIE Volume 2, Issue 6 ISSN:

Simulation & Performance Analysis of Mobile Ad-Hoc Network Routing Protocol

MANET is considered a collection of wireless mobile nodes that are capable of communicating with each other. Research Article 2014

2013, IJARCSSE All Rights Reserved Page 85

Performance Analysis of Broadcast Based Mobile Adhoc Routing Protocols AODV and DSDV

A COMPARISON OF IMPROVED AODV ROUTING PROTOCOL BASED ON IEEE AND IEEE

QoS Routing By Ad-Hoc on Demand Vector Routing Protocol for MANET

Performance Analysis of Routing Protocols for Mobile Ad-hoc Networks

Performance Analysis of Three Routing Protocols for Varying MANET Size

Comparative Study of Mobility Models using MANET Routing Protocols under TCP and CBR Traffic

Performance Analysis of MANET Routing Protocols OLSR and AODV

Performance Evaluation of Various Routing Protocols in MANET

A COMPARISON OF REACTIVE ROUTING PROTOCOLS DSR, AODV AND TORA IN MANET

Routing Protocols in Mobile Ad-Hoc Network

An Extensive Simulation Analysis of AODV Protocol with IEEE MAC for Chain Topology in MANET

Optimizing Performance of Routing against Black Hole Attack in MANET using AODV Protocol Prerana A. Chaudhari 1 Vanaraj B.

Considerable Detection of Black Hole Attack and Analyzing its Performance on AODV Routing Protocol in MANET (Mobile Ad Hoc Network)

A Reliable Route Selection Algorithm Using Global Positioning Systems in Mobile Ad-hoc Networks

SIMULATION BASED AND ANALYSIS OF ROUTING PROTOCOLS FOR VANET USING VANETMOBISIM AND NS-2

COMPARATIVE ANALYSIS AND STUDY OF DIFFERENT QOS PARAMETERS OF WIRELESS AD-HOC NETWORK

Recent Researches in Communications, Information Science and Education

Figure 1: Ad-Hoc routing protocols.

Study of Route Reconstruction Mechanism in DSDV Based Routing Protocols

Evaluation of Ad-hoc Routing Protocols with. Different Mobility Models for Warfield. Scenarios

Mitigating Superfluous Flooding of Control Packets MANET

Mobility and Density Aware AODV Protocol Extension for Mobile Adhoc Networks-MADA-AODV

Performance Analysis of AODV Routing Protocol with and without Malicious Attack in Mobile Adhoc Networks

Performance Evaluation of Active Route Time-Out parameter in Ad-hoc On Demand Distance Vector (AODV)

Investigation on OLSR Routing Protocol Efficiency

Analysis of Black-Hole Attack in MANET using AODV Routing Protocol

1 Multipath Node-Disjoint Routing with Backup List Based on the AODV Protocol

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

Keywords: AODV, MANET, WRP

Analysis of Routing Protocols in MANETs

Performance Evaluation of DSDV, DSR AND ZRP Protocol in MANET

Performance Evolution of Proactive and Reactive Routing Protocols in Mobile Ad Hoc Networks

Exploring the Behavior of Mobile Ad Hoc Network Routing Protocols with Reference to Speed and Terrain Range

Performance Analysis of DSR Routing Protocol With and Without the Presence of Various Attacks in MANET

Performance Comparison of MANETs Routing Protocols for Dense and Sparse Topology

Impact of Hello Interval on Performance of AODV Protocol

Performance analysis of aodv, dsdv and aomdv using wimax in NS-2

REVIEW ON ROUTING PROTOCOLS FOR MOBILE AD HOC NETWORKS

A STUDY ON AODV AND DSR MANET ROUTING PROTOCOLS

STUDY ON MOBILE ADHOC NETWORK ROUTING PROTOCOLS

Packet Routing using Optimal Flooding Protocol in Cluster based MANET

Performance Analysis of Routing Protocols in Mobile Ad-hoc Network (MANET)

II. ROUTING CATEGORIES

Node Density based Performance Analysis of Two Reactive Routing Protocols in Mobile Ad-hoc Networks

3. Evaluation of Selected Tree and Mesh based Routing Protocols

Performance Analysis and Enhancement of Routing Protocol in Manet

Content. 1. Introduction. 2. The Ad-hoc On-Demand Distance Vector Algorithm. 3. Simulation and Results. 4. Future Work. 5.

Performance Comparison of AODV, DSDV and DSR Protocols in Mobile Networks using NS-2

Scalability Performance of AODV, TORA and OLSR with Reference to Variable Network Size

Performance of DSDV Protocol over Sensor Networks

Simulation and Analysis of AODV and DSDV Routing Protocols in Vehicular Adhoc Networks using Random Waypoint Mobility Model

G.Narasa Reddy, 2 A.Avanthi, 3 R.Prasanth Reddy 1

Energy Efficient EE-DSR Protocol for MANET

Vaibhav Jain 2, Pawan kumar 3 2,3 Assistant Professor, ECE Deptt. Vaish College of Engineering, Rohtak, India. Rohtak, India

Gurleen Kaur Walia 1, Charanjit Singh 2

Power aware Multi-path Routing Protocol for MANETS

Mobile Ad-hoc and Sensor Networks Lesson 04 Mobile Ad-hoc Network (MANET) Routing Algorithms Part 1

An Implementation of Cross Layer Approach to Improve TCP Performance in MANET

ANALYSIS OF DIFFERENT REACTIVE, PROACTIVE & HYBRID ROUTING PROTOCOLS: A REVIEW

Qutaiba A. Razouqi Ali H. Afsari Electrical Engineering Department, Kuwait University P.O.BOX: 5969 Safat. Code No:13060 Kuwait

A Highly Effective and Efficient Route Discovery & Maintenance in DSR

Varying Overhead Ad Hoc on Demand Vector Routing in Highly Mobile Ad Hoc Network

A Novel Hybrid Routing Protocol for Mobile Adhoc Network

6367(Print), ISSN (Online) Volume 4, Issue 2, March April (2013), IAEME & TECHNOLOGY (IJCET)

Comparative Study of Routing Protocols in MANET

ROUTE STABILITY MODEL FOR DSR IN WIRELESS ADHOC NETWORKS

Routing protocols in Mobile Ad Hoc Network

SUMMERY, CONCLUSIONS AND FUTURE WORK

Delayed ACK Approach for TCP Performance Improvement for Ad Hoc Networks Using Chain Topology

Enhanced QoS in MANETs using Analysis of Routing Protocol

Transcription:

Simulative Investigations of AODV Routing Protocol with Different Propagation Models with CBR Traffic Neeraj Choudhary 1, Gurinder Jeet Kaur 2, C.S Lamba 3 and Praveen Sharma 4 1 Govt. Engineering College, Bikaner, India 2,3 RCEW,Rajasthan Technical University, Jaipur, India 4 Suresh Gyan Vihar University, Jaipur, India ABSTRACT Mobile ad-hoc network is a collection of wireless mobile hosts forming a temporary network without the aid of any stand-alone infrastructure or centralized administration. Mobile ad-hoc network have the attributes such as wireless connection, continuously changing topology, distributed operation and ease of deployment. In our study, we examine and display the simulative investigations of Ad-hoc On-demand Distance Vector (AODV) routing protocol with different propagation models. The performance analysis and simulation are carried out to evaluate network performance based on various metrics packets received, packets lost and throughput. This study would be helpful in choosing the appropriate radio propagation model for any active operating environment. Keywords: Mobile Ad-hoc Network (MANET), Ad-Hoc on Demand Distance Vector (AODV), Network Simulator (NS-2), Propagation models. 1. INTRODUCTION Ad-hoc mobile network is a collection of mobile nodes that are dynamically and arbitrarily located in such a manner that the interconnections between nodes are capable of changing on a continual basis. In order to facilitate communication within the network, a routing protocol is used to discover routes between nodes. Routing protocols in traditional wired networks were developed keeping in view that they will select the path from source to the destination and maintain the flow of packets through the best routes available. These protocols were based on link-state or distance vector algorithms those find an optimal path. In the wired networks the nodes didn t move frequently or are dependent on the topology of the network but this is not the case with the ad hoc networks as the nodes are free to move. The topology of the networks change frequently and determination of path is too expensive because each host is in direct communication only with the nodes those are within its transmission range. Moreover the bandwidth available with such networks are very less as compared to the wired networks, hence the periodic updates might consume a large amount of bandwidth and cannot promptly reflect the frequent topology changes in ad hoc networks. The primary goal of such an ad hoc network routing protocol is correct and efficient route establishment between a pair of nodes so that messages may be delivered in a timely manner. Route construction should be done with a minimum of overhead and bandwidth consumption [1]. In this paper, we present investigations on the behavior of AODV networks routing protocol with various propagation model. The rest of the paper is organized as follows: Section 2 gives an overview of reactive routing protocol AODV, Section 3 describes the performance evaluation criteria, Section 4 describes propagation models and Section 5 discusses the result analysis. Finally Section 6 discusses about conclusion derived from the results. 2. AD HOC ON DEMAND DISTANT VECTOR ROUTING Routing protocols for ad-hoc can be classified into two broad categories depending on how they react to topology changes (Figure 1) [2, 3]: Proactive or table-driven protocols Reactive or on-demand protocols Volume 2, Issue 2, February 2013 Page 216

The Ad Hoc On-Demand Distance Vector (AODV) routing protocol described in [4] is an improvement on DSDV because it typically minimizes the number of required broadcasts by creating routes on a demand basis, as opposed to maintaining a complete list of routes as in the DSDV algorithm. Figure 1 Classification of Ad Hoc Routing Protocols AODV protocol allows mobile nodes to quickly obtain routes for new destinations, and it does not require nodes to maintain routes to destinations that are not in active communication. Also, AODV routing permits mobile nodes to respond link breakages and changes in network topology in a timely manner. The main objectives of the protocol is quickly and dynamically adapt to changes of conditions on the network links, for example, due to mobility of nodes the AODV protocol works as a pure on-demand route acquisition system [5]. Control messages [4, 6, 7] used in AODV are: Route Request Message (RREQ) Route Reply Message (RREP) Route Error Message (RERR) Route Reply Acknowledgment (RREP-ACK) Message HELLO Messages When a source node desires to send a message to some destination node, and doesn t have a valid route to the destination, it initiates a path discovery process to locate the other node. It broadcasts a route request (RREQ) control packet to its neighbors, which then forward the request to their neighbors, and so on, either the destination or an intermediate node with a fresh enough route to the destination is located [5]. 3. PERFORMANCE EVALUATION CRITERIA The performance evaluation criteria for the characterization of wireless ad hoc network play a vital role for effective design of high performance network. Besides this it provides comparison of results, which are useful for the verification of performance metrics. There are many metrics that are commonly used to characterize the performance of networks and constituent parts of networks. The performance evaluation criteria we have considered in this dissertation are Packet Received, Packet Lost and Throughput. 3.1 Packet Received and Lost Packet loss is a measure of the number of packets dropped by the routers due to various reasons. Packet loss is determined as the probability of a packet being lost in transit from a source A to a destination B. A One-way Packet Loss Metric for IPPM is defined in RFC 2680 [8]. RFC 3357 [9] contains One-way Loss Pattern Sample Metrics. Most of the multimedia applications are classified as bandwidth and delay sensitive but are generally loss-tolerant, i.e., they require strict bandwidth and delay guarantees but can tolerate certain amount of data/packet losses. Data/packet loss in these applications results in slightly reduced quality of output (e.g., jerks in video or voice output), but can be neglected to some extent. Bulk data transfers may require reliable transmission i.e. small packet loss between A and B. In this situation, if any packets are lost, they must be retransmitted, reducing performance. In addition, congestion-sensitive protocols such as standard TCP assume that packet loss is due to congestion, and respond by reducing their transmission rate accordingly. Congestion and errors are the two main reasons for packet loss. 3.2 Throughput (Kbytes/second) It is defined as total number of packets received by the destination. It is a measure of effectiveness of a routing protocol. Finally what matters is the number of packets delivered successfully. 4. PROPAGATION MODELS In a propagation model, we use a set of mathematical models which are supposed to provide an increasing precision. Propagation radio models are three types: path loss, shadowing and fading. The first type can be expressed as the power loss during the signal propagation in the free space. The second type is characterized by fixed obstacles on the path of Volume 2, Issue 2, February 2013 Page 217

the radio signal propagation. The third category is the fading which is composed of multiple propagation distances, the fast movements of transmitters and receivers units and finally the reflectors. 4.1 Free Space Propagation Model The free space propagation model is the simplest path loss model. The received power is only dependent on the transmitted power, the antenna s gains and on the distance between the sender and the receiver. It accounts mainly for the fact that a radio wave which moves away from the sender has to cover a larger area. So the received power decreases with the square of the distance [14]. The free space propagation model assumes the ideal propagation condition that there is only one clear line -of-sight path between the transmitter and receiver. H. T. Friis presented the following equation to calculate the received signal power in free space at distance d from the transmitter. P R = P T G T G R (λ/4π d) 2 Where P T is the transmitted signal power G T and G R are the antenna gains of the transmitter and the receiver respectively. λ is the wavelength. 4.2 Two Ray Ground Propagation Model One more popular path loss model is the two-ray model or the two-path model. The free space model described above assumes that there is only one single path from the transmitter to the receiver. But in reality the signal reaches the receiver through multiple paths (because of reflection, refraction and scattering). The two-path model tries to capture this phenomenon [14]. The model assumes that the signal reaches the receiver through two paths, one a line-of-sight path, and the other the path through which the reflected wave is received. According to the two-path model, the received power is given by: P R = P T G T G R (ht.hr /d 2 ) 2 Where P T is the transmitted power, G T and G R are the transmitter and receiver antenna gains, respectively, in the direction from the transmitter and receiver, d is the distance between the transmitter and receiver, and ht and hr are the heights of the transmitter and receiver, respectively. 4.3 Shadowing Propagation Model Fading refers to the fluctuations in signal strength when received at the receiver. Fading can be classified into two types: fast fading and slow fading. Fast fading refers to the rapid fluctuations in the amplitude, phase, or multipath delays of the received signal, due to the interference between multiple versions of the same transmitted signal arriving at the receiver at slightly different times. Slow fading occurs when objects that partially the transmissions lie between the transmitter and receiver. Slow fading may occur when the receiver is inside a building and the radio wave must pass through the walls of a building, or when the receiver is temporarily shielded from the transmitter by a building. Slow fading is also referred to as shadow fading (shadowing) since the objects that cause the fade, which may be large buildings or other structures, block the direct transmission path from the transmitter to the receiver. 5. RESULT ANALYSIS Simulation environment consists of 20 wireless nodes forming an ad hoc network, moving about over a 800 m X 800 m flat space for 120 seconds of simulated time, the output is taken with the help of the nam animator with.nam file as the input file. NAM animation tool is used for viewing network simulation traces and real world packet trace data. Figure 2 shows ad hoc network with Two Ray ground propagation, Figure 3 shows ad hoc network with Free Space propagation and Figure 4 shows ad hoc network with Shadowing propagation. Simulation parameters are shown in the table below: Parameter Simulation Time Environment Size Packet Size Traffic Type Mobility model Propagation Model Table 1 Simulation Parameters No of nodes 20 CBR Sources 1 120 seconds Volume 2, Issue 2, February 2013 Page 218 Value 800 meter x 800 meter 512 bytes CBR (Constant Bit Rate) Random Way Point 1) Two Ray Ground 2) Free Space 3) Shadowing

Figure 2 Simulation environment consisting 20 wireless nodes forming an ad hoc network with two ray ground propagation model Figure 3 Simulation environment consisting 20 wireless nodes forming an ad hoc network with free space propagation model Figure 4 Simulation environment consisting 20 wireless nodes forming an ad hoc network with shadowing propagation model In figures 5, 6, 7 we have observed the behaviour of AODV with various propagation models, Two Ray Ground propagation model, Free Space propagation model and Shadowing propagation model Figure 5 shows the comparison of no. of packets received in AODV with two ray ground, free space and shadowing propagation models. These three propagation models are shown by different coloured lines in the graph, the pink line represents two ray ground, blue line represents free space and yellow line represents shadowing propagation model. It has been observed that for free space and two ray ground propagation model there is no packet flow till time t=1.0209.at the same time, for shadowing propagation model there is no packet flow till t=2.81974.it is cleared by analyzing the graph that no. of packets received are highest for free space propagation model throughout the simulation time. When we consider two ray ground and shadowing propagation model, it is observed that from t=1.0209 to t=3.39715 no. of packets received are more for two ray ground as compared to shadowing propagation model. After t=3.39715 the no. of packets received increased rapidly for shadowing propagation model. Hence, no. of packets received are more for shadowing propagation model as compared to two ray ground propagation model. We can arrange these propagation models in a following order from highest packets received rate to lowest packet received rate: Free Space Propagation > Shadowing Propagation > Two Ray Ground Propagation Volume 2, Issue 2, February 2013 Page 219

When we consider packet lost for these three propagation models which is shown in figure 6. We have observed that there is no packet flow from t=0 to t=2.13938 for two ray ground. For shadowing propagation model no packet flows for time interval (0, 2.78541).For free space propagation model there is no packet loss throughout the simulation time. After t=2.13938 packet loss slowly increases for two ray ground propagation model and after t=2.49073 it became constant. For shadowing propagation model no. of packets lost increases very rapidly from t=2.78541 to t=3.90179, after this time interval it becomes constant. By observing the behavior of AODV for various propagation models, we can state that if we consider no. of packets lost then the free space is best among these three propagation models, two ray ground is performing average and shadowing propagation model is worst. Figure 5 Packets received comparison in AODV with different propagation models. Figure 6 Packets lost comparison in AODV with different propagation models. Figure7 Throughput comparison in AODV with different propagation models Figure 7 shows the comparison of throughput, it is observed that up to t=1.0033 throughput remains zero for these three propagation models. After this time throughput increases with simulation time for two ray ground as well as free space propagation model, but we can state that throughput is more for free space as compared to two ray ground. When we consider shadowing propagation model throughput remains zero till t=2.79674 and then starts improving. When we consider throughput analysis of these three propagation models together we can state that free space is much better than two ray ground as well as shadowing propagation models. 6. CONCLUSIONS The paper is an explorative study of the reactive routing protocol AODV with various propagation models. From figures 5 to 7, we can conclude that no. of packet received and throughput is highest in case of Free Space propagation and lowest in case of Shadowing Propagation. On the other hand no. of packets lost is lowest in Free Space propagation Volume 2, Issue 2, February 2013 Page 220

and highest in Shadowing propagation. The above investigated behavior is because the free space propagation model assumes the ideal propagation condition that there is only one clear line -of-sight path between the transmitter and receiver. From this study, we conclude that free space propagation model performs better in most of the situations as compared to other propagation model. Further we can also extend our study for additional performance metrics for the same network. REFERENCES [1] Elizabeth M. Royer & Santa Barbara Chai-Keong Toh, A Review of Current Routing Protocols for Ad Hoc Mobile Wireless Networks, IEEE personal communications ISBN-1070-9916/99, 1999. [2] S.K. Sarkar, T.G. Basawaraju & C Puttamadappa, Ad hoc Mobile Wireless Networks: Principles, Protocols and Applications, Auerbach Publications, pp.1, 2008. [3] K. Brown & S. Singh, M-TCP: TCP for Mobile cellular Networks, Proc. of ACM SIGCOMM Computer Communication Review, pp. 19 43, 1997. [4] C. E. Perkins & E. M. Royer, Ad-hoc On-Demand Distance Vector Routing, Proc. 2nd IEEE Wksp. Mobile Comp. Sys. and Apps., pp. 90 100,1999. [5] K.Vanaja, Dr. R. Umarani, A Simulated Behavioural Study of Prominent Reactive Routing Protocol AODV of MANET Using NS-2, International Journal of Advanced Research in Computer and Communication Engineering Vol. 1, No. 3, 2012. [6] Ivan Stojmenovic and John Wiley, Handbook of Wireless Networks and Mobile Computing, John Wiley & Sons, Inc. ISBNs: 0-471-41902-8 (Paper), 0-471-22456-1 (Electronic), 2002. [7] Asis Nasipuri, Robert Castarieda, Samir R. Das, Performance of Multipath Routing for On- Demand Protocols in Mobile Ad Hoc Networks, Mobile Networks and Applications 6, 339 349, 2001. [8] G. Almes, S. Kalidindi & M. Zekauskas, A One-way Packet Loss Metric for IPPM, RFC 2680, 1999. [9] R. Koodli & R. Ravikanth, (2002) One-way Loss Pattern Sample Metrics, RFC 3357, August, 2002. [10] Network Simulator- NS-2. Available at: http://www.isi.edu/nsnam/ns/. [11] Eitan Altman and Tania Jimenez, NS Simulator for beginners, Available at: http://citeseer.ist.psu.edu/altman03ns.html. [12] Marc Gries Tutorial, Available at: http://www.isi.edu/nsnam/ns/tutorial/ [13] Kevin Fall & Kannan Varadhan, ns notes and documentation, The VINT Project, UC Berkeley, LBL, USC/ISI and Xerox PARC,2007, Available at: http://www.isi.edu/nsnam/ns/ns-documentation.html. [14] Rhattoy & A. Zatni, (2012) The Impact of Propagation Environment and Traffic Load on the Performance of Routing Protocols In Ad Hoc Networks, International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.1. AUTHORS Dr. C. S. Lamba, He has completed his PhD in Computer Science and is currently working as Professor in Rajasthan College of Engineering for Women, Jaipur, India. He has more than 14 years of experience and holding diversified knowledge in the field of information technology. He has published many number of research papers as well as participated in many conferences and seminars globally. Neeraj Choudhary, She is currently working as Assistant Professor in Govt. Engineering College, Bikaner, India. She has completed her M.tech from Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, India in 2009. She has aut hored a number of research papers in national, international conferences and reputed journals. Her area of interest includes Wireless Sensor Networks. Gurinder Jeet Kaur, She has completed her B.E from University of Rajasthan, Jaiur, India in 2009. She is pursuing her M.Tech. from Rajasthan Technical University,Kota, India. Her area of interest is Wireless Communication. Praveen Sharma, He has completed his bachelor of engineering in Computer Science & Engineering from University of Rajasthan and pursuing master of technology in computer science & engineering from Gyan Vihar University.He has aut hored a number of research papers in national, international conferences and reputed journals. His areas of interest are Wireless Networks & Image Processing. Volume 2, Issue 2, February 2013 Page 221