SHALLOW SPHERICAL LATTICE TYPE SHELL SUBJECTED TO NORMAL POINT LOAD FUNDAMENTAL SOLUTION

Similar documents
ON CERTAIN INEQUALITIES IN THE LINEAR SHELL PROBLEMS

JOINT-STOCK COMPANY GIDROPRIVOD. RADIAL PISTON PUMPS OF VARIABLE DISPLACEMENT type 50 НРР

uninsta un in sta 9 weights & italics 5 numeral variations Full Cyrillic alphabet

Myriad Pro Light. Lining proportional. Latin capitals. Alphabetic. Oldstyle tabular. Oldstyle proportional. Superscript ⁰ ¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹,.

Infusion Pump CODAN ARGUS 717 / 718 V - Release Notes. Firmware V

Operating Manual version 1.2

«, 68, 55, 23. (, -, ).,,.,,. (workcamps).,. :.. 2

KbdKaz 500 layout tables

4WCE * 5 * : GEO. Air Products and Chemicals, Inc., 2009

OFFER VALID FROM R. 15 COLORS TEXT DISPLAYS SERIES RGB12-K SERIES RGB16-K SERIES RGB20-K SERIES RGB25-K SERIES RGB30-K

THE MATHEMATICAL MODEL OF AN OPERATOR IN A HUMAN MACHINE SYSTEMS. PROBLEMS AND SOLUTIONS

OFFER VALID FROM R. TEXT DISPLAYS SERIES A SERIES D SERIES K SERIES M

National Women Commission

ц э ц эр е э вс свэ эч эр э эвэ эч цэ е рээ рэмц э ч чс э э е е е э е ц е р э л в э э у эр це э в эр э е р э э э в э ес у ч р Б эш сэ э в р э ешшв р э

, «Ruby»..,

UCA Chart Help. Primary difference. Secondary Difference. Tertiary difference. Quarternary difference or no difference

NON-PROFIT ORGANIZATION CHARITY FUND

А. Љто нќша кђшка That s our cat

-. (Mr R. Bellin),.: MW224r

Title of your Paper AUTHOR NAME. 1 Introduction. 2 Main Settings

THE EQUATIONS OF THE SECOND ORDER LINEAR MODEL OF SURFACE GRIDS

INDEPENDENT AUDITORIS REPORT. in the procedures

R E N E W A B L E E N E R G Y D E V E L O P M E N T I N K A Z A K H S T A N MINISTRY OF ENERGY OF THE REPUBLIC OF KAZAKHSTAN

Romanization rules for the Lemko (Ruthenian or Rusyn) language in Poland

MANAGEMENT LETTER. Implemented by. Prepared by: (igdem KAHVECi Treasury Controller

Ц пл йъ п К л л я с д д ь с лп с И Ц щ пй л И й л мц Ц л ё чý и ф Ч иь Ерс ч и шь Ц ф с Й Г х Ч й М п д м цв фн пп йл ч йй м

AUDIT OF THE FINANCIAL STATEMENT OF THE "EMERGENCY NATIONAL POVERTY TARGETING PROGRAM (PROJECT)" ENPTP

Usage guidelines. About Google Book Search

THE COCHINEAL FONT PACKAGE

MEGAFLASHROM SCC+ SD

TEX Gyre: The New Font Project. Marrakech, November 9th 11th, Bogusław Jackowski, Janusz M. Nowacki, Jerzy B. Ludwichowski

Module I. Unit 5. д е far ед е - near д м - next to. - е у ед е? railway station

OCCASION DISCLAIMER FAIR USE POLICY CONTACT. Please contact for further information concerning UNIDO publications.

Р у к о в о д и т е л ь О О П д -р б и о л. н а у к Д. С. В о р о б ь е в 2017 г. А Г И С Т Е Р С К А Я Д И С С Е Р Т А Ц И Я

Town Development Fund

MIVOICE OFFICE 400 MITEL 6863 SIP / MITEL 6865 SIP

IRRIGATION SYSTEM ENHANCEMENT PROJECT IBRD LOAN 8267-AM IMPLEMENTED BY WATER SECTOR PROJECTS IMPLEMENTATION UNIT STATE INSTITUTION

А А п р р Э у Э А Ш К Р В А чк Ар шб

September 13, 1963 Letter from the worker of Donetsk metallurgy plant Nikolai Bychkov to Ukrainian Republican Committee of Peace Protection, Donetsk

MIVOICE OFFICE 400 MITEL 6873 SIP USER GUIDE

The XCharter Font Package

Public Disclosure Authorized. Public Disclosure Authorized

УВАЖАЕМЫЕ ВЛАДЕЛЬЦЫ АВТОМОБИЛЯ VOLVO!

tion Centre REDDnipie 16b banflea, f N ZGI3l-. #&Irf~t~ 4 tphne: Public Disclosure Authorized

Ы Ш Илт :. у /Ph.D/,Х И, у лт л д д л. лдул /Ph.D/, Х И, к л өтөл ө л

Public Disclosure Authorized. Public Disclosure Authorized

КАТАЛОГ ЭЛЕКТИВТІ ПӘНДЕР КАТАЛОГЫ ПЕДАГОГИКА ЖӘНЕ ПСИХОЛОГИЯ ИНСТИТУТЫ

OPERATING RULES FOR CLEARING OF INTERNATIONAL PAYMENTS

SBOX-Max Operating Manual

Czechoslovak Mathematical Journal

M a t h e m a t i c a B a l k a n i c a. The New National Standard for the Romanization of Bulgarian 1

= f (a, b) + (hf x + kf y ) (a,b) +

P07303 Series Customer Display User Manual

MIVOICE OFFICE 400 MITEL 6867 SIP / MITEL 6869 SIP

Using GR8BIT Language Pack and PS/2 Keyboard

29th IYPT 2016: Inspector s Report

LG-Nortel GDC-400 User manual

User Manual. Revision v1.2 November 2009 EVO-RD1-VFD

б Е Е Ё Е Е Еа о о в Т огап оп О пег ес ог р Мапро в

Registration and Assessment of Load Cycles in Pipelines. Регистрация и оценка циклов нагружения в трубопроводах

RELIABILITY OF THE FEM CALCULATIONS OF THE FRACTURE MECHANICS PARAMETERS

User Manual. June 2008 Revision 1.7. P07303 Series Customer Display

User Manual September 2009 Revision 1.9. P07303 Series Customer Display

Czechoslovak Mathematical Journal

Khmer Collation Development

Mongolian to Japanese machine translation using ChaSen

Czechoslovak Mathematical Journal

INTERNATIONAL BANK FOR RECONSTRUCTION AND DEVELOPMENT AUDIT REPORT AUDIT OF THE INTERNATIONAL BANK GRANT RECIPIENT

2 і К К Ч... 5 Т 6 1. Ч Т КТ Т Т і і і і і і Т я я і і і і 27 К ЄКТ Т Т К 'є і і я і і.

Quasilinear First-Order PDEs

Extended user documentation

Robustness of Non-Exact Multi-Channel Equalization in Reverberant Environments

Investigation of the behaviour of single span reinforced concrete historic bridges by using the finite element method

Modified model of a plate based on the Winkler foundation

Obtaining Personal Figure Mannequin Using Two Photographs for Three-Dimensional Corsetry Design

Extended user documentation

TVT Television Technologies. TVT Television Technologies.: (812)

%,1 - J? I ' " X 4* >tt<b * 4 1 «?pt 5 '»-»!»!«<, t *"N^ ^ f s \ f V-* 1Г 1 rt, * ^ ^

Version 1.0 March 2014 OCD 300

MIVOICE OFFICE 400 MITEL 6930 SIP USER GUIDE

THE EFFECT OF THE FREE SURFACE ON THE SINGULAR STRESS FIELD AT THE FATIGUE CRACK FRONT

SPACECRAFT ONBOARD INTERFACE SERVICES RFID TAG ENCODING SPECIFICATION

Logo & Identity. Usage Guidelines. designed by sanja.at for transform! europe. sanja.at 2016

Revised Sheet Metal Simulation, J.E. Akin, Rice University

CITY AND GUILDS 9210 UNIT 135 MECHANICS OF SOLIDS Level 6 TUTORIAL 15 - FINITE ELEMENT ANALYSIS - PART 1

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА БАКАЛАВРА

Isogeometric Analysis Application to Car Crash Simulation

Example Lecture 12: The Stiffness Method Prismatic Beams. Consider again the two span beam previously discussed and determine

Programming the Microchip Pic 16f84a Microcontroller As a Signal Generator Frequencies in Railway Automation

THE BOOK. Intermediate/Advanced Method. Allen Vizzutti. [dlfred

CABLE I.D. PRINTER. User s Guide Copyright 2015 PARTEX MARKING SYSTEMS ALL RIGHTS RESERVED.

. Tutorial Class V 3-10/10/2012 First Order Partial Derivatives;...

A new 8-node quadrilateral spline finite element

1. Carlos A. Felippa, Introduction to Finite Element Methods,

к ри т и к у, о б ја в љу је у пе ри о д и ц и. у Но в ом С а д у. Ис т о р и ч а р к а је у ме т нос т и, ш колов ал а с е у Б еог р ад у и

Wall-bounded laminar sink flows

1. INTRODUCTION. A shell may be defined as the solid material enclosed. between two closely spaced curved surfaces (1), the distance

EXACT BUCKLING SOLUTION OF COMPOSITE WEB/FLANGE ASSEMBLY

Ибрагимов Линард Халитович ТЕХНОЛОГИИ ИНТЕРНЕТ-КОММУНИКАЦИИ КАК ИНСТРУМЕНТ ДЕСТАБИЛИЗАЦИИ ПОЛИТИЧЕСКИХ РЕЖИМОВ. «П ч к у ы, р ы х г»

MODELING MIXED BOUNDARY PROBLEMS WITH THE COMPLEX VARIABLE BOUNDARY ELEMENT METHOD (CVBEM) USING MATLAB AND MATHEMATICA

Transcription:

MECHANIKA TEORETYCZNA 1 STOSOWANA /3, 1 (1983) SHALLOW SPHERICAL LATTICE TYPE SHELL SUBJECTED TO NORMAL POINT LOAD FUNDAMENTAL SOLUTION T. LEWIŃ SKI Politechnika Warszawska 1. Introduction Theoretical problems occuring in designing of the shell structures subjected to concentrated forces require special methods, which make it possible to examine stress concentrations around the loads. In particular, it is worth to consider specific problems of the lattice shells response, i.e. grid, perforated, or ribbed surface structures. In the present paper there will be presented: an approximate model of a lattice shell behaviour and its application to the special case of a spherical lattice type elastic shell with an isotropic and centrosymmetric structure, being subjected to concentrated normal force. The proposed model is based on the lattice surface structure theory developed by C. Woź niak, [1]. Thus, the engineering problem considered here can be reduced to the analysis of one of the fundamental solutions of the theory. Before examining this solution an approximate set of governing equations is derived on the basis of the following assumptions often used when effect of local loads in the classical shell theory is considered, cf []: the boundary conditions have a neglecting effect on the local response of the shell, the deformations coresponding to the concentrated force vanish rapidly, hence the consideration can be confined to the small (comparing with the size of the shell) area around the point load. The last assumption makes it possible to carry out the simplifications analogous to those used in Vlasov's shallow shell theory.. Fundamental equations and basic assumptions Consider a point P and a vector л normal at this point to the mid surface of the shell, referred to the coordinate system.v\ y. 1,. The plane normal to the vector л containing P is denoted by zip. A plane coordinate system x a (obtained via parallel projection of x a in the direction и on л >) is assumed to be i one to one correspondence with the parametric lines x a. The metric tensors in plane and surface coordinate systems will be denoted by g al) and g^. respectively. In the course of the procedure the coordinate system x a is assumed to be orthogonal.

190 Т. LEWIŃ SK An actual configuration of the shell is determined by functions: и ", u,tp,v, stand for the tangent and normal displacements and rotations, respectively. which The state of strain is described by the tensors of plane and antiplane deformation У *р Hop, i.e. by the stretching and bending strain tensors: y a denotes antiplane transverse deformations while x a plane bending deformations. The state of stress is determined by the membrane stress measures p ajl, the bending (antiplane) moment tensor m a p, the transverse (antiplane) stresses p a and the in plane bending moment tensor (polar moments) in a. The mentioned quantities here satisfy the known system of equations due to Wozniak's lattice type shell theory, [1]. The constitutive relations of the isotropic shell considered herein are assumed as follows ( 1) P a f i =? '' Z i PY a + f l tymb+ ' x i' JWJJ '»«= С»" *«. т а р = A P gap x". a + /л + a x im, p a = C p y a. Moduli /.,. fii, a,, Ci characterize elastic properties related to the plane (/' = t) and antiplane (/ = p) deformations. Inserting the relationships (.1) into the equations of equilibrium and utilizing the strain displacement relations, the governing set pf equations is obtained. Taking into account the spherical shape of the shell and introducing all simplifications yielding from the approximation g a p ~ gapi we have [(/л, + a,)v K C P ] u a + (Д, + fi, hi,) c9 a 8 p u p + a, e v1 dpb Ke a pvp к [(/ <( + ;.,)+c p ]^»+fe a = o, (.) Щ Щ ф и р * [C ( V 4a, 4A (/х +a ]v + К [C t + (fi p +?. р )]с ^ л + 1, = 0, C p Ke a pu p К [(fi p + A,) + C p ] 8 a v + [(// p + a,) V C K C,]v* + + {pl + Xp <x P ) 8* 8pv p + C p e a p 8pU \ h a = 0, A' ^(//. r/j rcpkaka rc^ = 0, where a, ['i, a = 1,, p = 8\ + 8\, e aft Ricci tensor, K=\/R, R the radius of curvature. The components b a,b t ha,h denote resultants due to the effective external forces and couples measured per unit area of the middle surface, tangent and normal to it, respectively. In the course of the derivation we shall confine ourselves to such shells, whose elastic properties and response under local load satisfy the conditions ( jv i. C, ^ d C p < 8*% ii. д /R < I iii. L/R < 1 where у a parameter characterizing a geometry of "microstructure" of the lattice. [fi] = in, L the wave length of the deformation pattern. It can be proved, that the assumptions (.3) allowus to neglect the underlined terms in (.), dependent on the second powers of the radius of curvature. The underlined terms in the first two equations result from an influence of transverse stresses p a. The neglected quantities in the fourth and the fifth equations result from the effect of polar moments in a.

SPHERICAL LATTICE TYPE SHELL 191 The assumed simplifications are weaker than those of Vlasov's applied in the shallowshell theory., 3. Normal point load fundamental solution The fundamental solution will be found by Fourier transform technique. After carrying out the double Fourier transformation of the equations (.) with the right hand sides 6 a = h a = h = 0, b P <Ч л л ) <H Y ) a n d t n e n expressing the inverse transforms in the polar coordinates г, Щ х 1 = rcosd,x = rsin#) and finally carrying out the?? integration, we obtain 0 0 \u \ In jsintfj 'J M(y) ran H PC > 1 s i m?! f r [ ( /i'+w+^( ^+ ^ + ^)]J 1 (y 1 r)dy l * ' K) 7Г I cos??) J M(y) v = 0, 00 = Л Г " yigfe mo i t >+«>) ' У л J 4 + Р, + W у К С р] S 0 (yr)dy Af(y) M(y) = (/*, + A,) 0«р + at p ) С у ь + К {ц р + <x p ) [4//, (Я,+ /О С А (4^,+4А, + С )]у 4 +4К м, (/и, + Я,)С, у (3.) 4А : 4 С i/it+ц, where J, are the Bessel functions of the first kind of order v. Let us introduce the dimensionless variables r = r// 0, у = у / 0 where (3.3) / 0 = [((/г ( + A,)G" + 0)/(4K 4 C,, (//, + /,))]' The quantity / 0 exists, provided the elastic moduli satisfy the inequalities: ц,+ Х, > 0, ц <> 0, fi p > 0, x p > 0, C p > 0, resulting from the positive definiteness of the elastic potential of the shell. Equations (3.1) take the form К 1 P / 0 [С а, + Л ) + C p ] К cos#) r y. (y + c ). r)d y \u \ In C p (fi t + t. t ) *lsin??jj H'(y) (3 4) M _ P " / o J ~* Ы ( % f y 4 f e o Й ) J i(y U J я 0и р Ь а р ) J cos??i J *Г (у) GO = Я Г (у 4 +rf у + i/ 0 )iy Jo(y r)dy л С р J TO

19 Т. LEWIŃ SK where (3.5) W(y) = w(y ), «i(z) щ z 3 +a 4 Z +e*z l, C P (;/, +A,) [^+Л +С р ] ' (^>~а л ) "(^;+'Д, + С р) " 0 ((i, + Л,) «_ AT [4^, + A,) C p (4// t +4A f + C p )] / 0 С р / = 4 л : /$ (>,+A,) g = (^ + А,) С а Р +а р ) ' 0 (/г, +А,) 0 Р +а р ) ' The series expansions of the integrals (3.4) with respect to the variable r depend on the roots of the polynomial w. In view of the obvious fact, that one of the real roots is positive, the polynomial a> can be written in the form Let us consider the three ">0) = (z «) ( +c r + c 0 ), c 0 > 0. cases u 1. The polynomial p(z) = z + c z+c 0 has no real roots, so that the following inequality hold true i3 (3.7). \±a ~5l) + (fl e* + 3) ~alj " Thus the polynomial W can be written in the form W(y) = (y a ) (y + sy + q) (y s y+q), S,qeR. The polynomial p(z) has positive real roots. W{y) takes the form W(y) = (y a ) Cy b ) (y c ), b, с > 0. 3. The polynomial p(z) has negative real roots. Hence, we have Щ у }= (у ч ) (у + Ь ) (у + с ), b,c>0. To carry out a complete analysis of the behaviour of functions W,и, ", the cases 1 3 will be considered separately. Ad. 1. Decomposing the integrands in (3.4) into a sum of simple fractions and using the definitions (1, ) of special functions examined in the Appendix, we find It i I I cos i)\ (3.8) M i (r, p\ = ^( gl (r, a); h\«\(r: s. q); h\^(r; sjq)) ; j, К 1 ч sin# \ v (F,») l ^ f c f, «): Щ (r; s, q); b\ s h(r ;s,q))l ^ fl j, n(r, Ą = &Ы Г > «); W ; v, 4); ftjssfc s, </)), г (г, 0) = 0. The expression!ј(/,;...;/ ) means the linear combination of the functions /,....,/ Ad. Proceeding similarly as in the first case, the equations ' The case of double roots is omitted.

SPHERICAL LATTICE TYPE SHIIL 193 ("i 1 ч cos# I 1 if, 0)) = ftttf &)i ś.o 1. с )) j s j n ^ j, ( 3 9 ) 1^1 1 ч sin 01 j C ('.*)}= #Ы г,а 81(г );,Ь ); 81 С г,с )) j are obtained. Ad 3. In this case, we have H(?; 0) = x(g 0 (r, o)s go(r,ft(r, с )), f>(?i = o. u, 1 fcos# (3.10) h (r, 0)} = &{g x ę, a);j\(r, byj^r, с )) {~^. u(r, 0). ^(g 0 (r, a);f 0 (r, b);/ D (F, с )). ó(r, 0) = 0. Strains and stresses can be found with the aid of the straindisplacement and constitutive equations. The results obtained in the Appendix enable us to prove, that in each of the cases considered above functions u a, u, v* in the vicinity of point P can be approximated by tua [Ł/,cos0 iva K,sin#l (3.11) I }~ [т lnr, { 1~J v rim u ~ U In r. Hence, the following singularities of the components of the state of stress can be found (3.1) Pa.* ~ Pay. In/' Pi "У Р *1Г Т, P 1 = P ] = p = 0, t map ~ М а /г Inr. m ~ M r lnr, rfij = 0. 4. Grid shell The results obtained at Sees. and 3 can be applied to the analysis of a grid shell of isotropic structure. The considerations will be confined to the so called geodesic lattice domes constructed by three families of bars, formed on the basis of icosahedron by means of the known methods, due to Fuller [3] or Tarnai [4], cf. [5]. The desired properties, namely the isotropy and centrosymmetry are satisfied with the sufficient accuracy for the engineering practice. Effective elastic moduli of such structures have been given in [1]; it is worth mentioning, that the relations = /<; x t, i = p, 1, hold true. In the case of slender bars, conditions (.3), are satisfied. Furthermore it can be proved, that for all real grid shells of this structure the inequality (3.7) is valid; thus displacements and rotations of nodes are approximated by means of the formulae (3.8). Л quantitative analysis of the response of geodesic grid shell subjected to normal point load will be presented in a separate paper.

194 Т. LEWIŃ SKI 5. Concluding remarks la the paper one version of simplifications of the governing system of equations Wozniak's lattice type shell theory has been proposed. The aim of the model is to describe special type of deformations occuring in shells subjected to local loads. An analysis of the response of the spherical lattice shell to the normal point load confirmed, that the model is useful to both quantitative and qualitative considerations. In particular, it is possible to prove, that in the case considered, the singularities of the displacements and stresses are of the same order as those in the classical Reissner*s type theory of shells, cf (3.11 3.1) and []. Nevertheless, the proposed model can not be used when boundary value problems of shallow lattice shells are considered since there the governing set of equations does not satisfy the strong ellipticity condition. 6. References 1. Cz. WOŻ NIAK, Lattice type surface structures, PWN, Warsaw 1970. ST. LUKASIEWICZ, Local loads in plates and shells, PWN, Warszawa 1976 3. R. В. FULLER, Geodesic Tent. United States Patent Office, patent 914, 074, Nov. 4/1959 4. T. TARNAI, Spherical Grids of Triangular Network, Acta Technica Aeademiae Scientarum Hungaiicae, Tomus 76, 3 4, 1974, pp 307 336 5. Manual for Metallic Structures Designing, ed. W. Bogucki, vol., Arkady, Warsaw 198 6. F. OBERHETTINGER, Tables of Bessel Transforms, Springer Verlag, Berlin 197 7. M. ABRAMOVITZ, 1. A. STEGUN, Handbook of mathematical functions, National Bureau of Standards, Applied Mathematics series 55, 1964 8. J. G. SIMMONDS, M. R. BRADLEY, The fundamental solution for a shallow shell with an arbitrary quadratic midsurface, J. of Appl. Mech., Trans, of the ASME, 1976, June, 86 90 Evaluate the improper integrals Appendix 00 00 ' "V (I) f,(y,a) = ), *Cy,«) = J хг _ а г 0 Г SAx y)x»dx v, fi = 0, \, a,q,r e R >>,,Xy;r, q) = ) x + r + q,' 4q + r < 0, q > 0. 0 In the paper the following functions are also used ( ) Щ (у ; r,ą ) = KJy;r,ą)+K l (yi r,q),. О У ; r, q) = KJy; r, q) h,jy; r,q). I. Integrals f r, g According to the tables [6], we have

SPHERICAL LATTICE TYPE SHELL 195 (3) fo(y, a) = K 0 (a y), g 0 (y, a) = ^ Y 0 (a y), fi(y,u) = J К i (a yą, gi (у, a) = У [ У, (a, y) + fl;y where Y 0, Y 1 ; K 0,K t are Bessel functions and modified Bessel functions of order zero and one, [6, 7]. Expansions of/., g v in the vicinity of у = 0, take the form (4) fo > go lny, ~ у lny.. The integrals h Vilt The author has not fiund expansions of the integrals h Vifl in the available monographs on the special functions. A method of evaluating of the integrals based on the Poisson's integral representation of Bessel functions is presented briefly. Some ideas of the procedure has been taken from the paper of Simmonds and Bradley, [8], where the integral has been examined. Starting from the identity (5) x" (x + r x+q) 1 where: + 00 +00 Г Г txp{ i(z x+i3 y))dxd[3 J J (x + f3 ) + i(a + kf3 ) ' 00 00 Ы f J V L_\ +^./_J L_) ' h one obtains r fi = Q, 1, % x = a+bi, f = а Ы, a = ~, b=\q r T (6) *J>? ' Ф = Ь 7 (Н У Н <?,) + Т <>, (Н $ + Н <? >), u (А ) _ Г 0 0 J v( X >')^ Recalling the integral representation of Bessel functions J, (7) Jv(x у ) m ~ \ t ^ ^v oosvadw, Л» 6,1, 1 n J and interchanging of orders of integrations, we find (8) JJl 00 Щ I f cos,, F (<p)d<p, Fż (y,v) / C X P ( i ^, 7

196 Т. LEWIŃ SKI where o>(<p) = у cosc.. The function F' t can be expressed by means of the complex exponential integral (9) V) е ^я Ь д ( w с л )+ (1 +sgn(re ; :;.)) (sgn^ + sgncim^))}. For the sake of brevity the proof is omitted. Expanding ZT, into power series, inserting (9) to (8), and carrying out the rp integration with the aid of the equations (10) n л cos4xdx = k l.l, n = A+1, к = 0, 1, О Д ) т с cos"* lnlcosxjdx = J k ~ k (k)l (k+j)\ (k j)\ n = k where: (1) л 0 /i = A H, к == 0. I,... In fc = 0 (_!/+ \k\ A. = ±1, т г / Sgfl( COSJC) cob"xdx = 0 0 n = A, 1 " 'k (l', 1 ) ti»1 А И the expansions of the complex functions Hjfy and real functions h VJl are found. Finally, we obtain >. 00 00 (13) h 0, 0 (y;r,q) = i In г J>\ : /^(0) y "+ ~ ^ ' i>n+1 'fs^(^) y " *' + i 00 + < 'Щ (0) 5.Я ", 0 00 00 0 0 aji; 00. + У ^ ^ ) s n + y n + \

SPHBRICEAL LATTICE TYPE SHELL 197 с ho, O': г., 9) = lny ("fc 'fflty^fflw ' < Г + 00 00 (13) [cont.] + у У (I <; n+ i у " 4 1 + ^ Л Г, ^.V ", 0 0 л... >; г, q)= in V (? /i:>w+yc: o (^) v, + у п + 1 00 00 + У, ( i t ' W z ^ w k. У + " + >,И + ' where у = у Q, = q*', cos& = x/lfq, sin& > 0. The functions Д ">(#). i = S, C,j = s, с are the coefficients in the series expansions (14) C sin(x cos,?n _ у Л :Ч *)1 n Sh(x sin#) cos(x cosh] " Z ' W W! * ' sin(xcos#)i v i ^ W x l, ^ s i n ^ {cos(x.cosw = ( / W ) K' In order to save space, the complex definitions of the coefficients Л "^ will not be given here. In the neighbourhood of point у = 0 the series expansions (13) with the first few terms written out explicitly have the form,, ч sin#.,, n 1 К л К У,г,q) ~. y \ny+ y, 4o sin# «sin.9 <j h,.o(y,r,q) ~ i In г v+ ~ [ctg# (7r *V) + (ln r / ;!)] ^ ' " ^ r, e (,5 ) ViO'i'%</) ny+, S ' f A ' J' In j' г cos#, 4 sin,9 Vitv;',</) ~ cos# j lnv+ 5 + s^ [(^ ^) cos/ż + (ln y Ł. 0,5)sin^4V where y s 0.577 Euler's constant. Hence, for г = 0 /'o,o = (.T #)/(o sin#), /;,, = 0. Л,, = 0,5. The function /.,, has a logarithmic singularity at point у = 0. 6 Mech. Teorct i Stos. 3/83

198 Т. LEWIŃ SKI Р е з ю ме Д Е Й С Т В Е И С О С Р Е Д О Т О Ч Е НЙ Н НО О Р М А Л Ь НЙ О С И ЛЫ Н А П О Л О Г У, Ю С Ф Е Р И Ч Е С Ю К У С Е Т Ч А ТЮ У О Б О Л О Ч К У Ф У Н Д А М Е Н Т АЕ Л ЬР НЕ ОШ Е Н Е И В р а б е т п р и в д ия т с т а т и ч е сй к аи н а л з и п е р е д аи ч н р м а л ьй н с с р е д т ч ей н сн и лы н а с ф е р и ч е сю к ус е т ч а ю т у б л чу к и з т р пй н и ц е н т р с и м м е т р ий ч ес ст кр у к т у. р Пе р и м е н е н т е р ю и с е т ч а тх ы б л к ч ев д а м е н т а л ьх н ры е ш з н я к. ап р е д с т а в а л еп нр б л еа мп р и в д ия т к с а н а л иу з д н г и з ф у н е нй и э т й т е р и. и В п е р в й ч а с и т п л у ч еы н п р и б л и ж п р е д п л ж в ал т е р ю и п л г и х ех н и тя н с и т е л ьс нл а б ш х и д т и х, п ри п м Ф у н д а м е н т а ле ь рн еш, д н р д х н ы б л ч. е к е не н уы р а в н е я н ир а в н в ея с и(в с м е щ е н и) яб ах з и ря у н а щи к т р х ы В. 3. В л а св с ф р м у л и р е не и н а й д е н с п м щ ю ь и н т е г р а л й ь н тр а н с ф р м и а цфи у р ь. еп р а н а л и р и з в ас ни н г у р я р ни сп те р е м е щ е н, ид йе ф р м ай ц и н а п р я ж е н. и й Streszczenie DZIAŁANIE NORMALNEJ SIŁY SKUPIONEJ NA MAŁO WYNIOSŁĄ SIATKOWĄ KULISTĄ ROZWIĄ ZANIE PODSTAWOWE POWŁOKĘ Przedmiotem pracy jest analiza statyczna niewielkiego obszaru sferycznej powłoki siatkowej o strukturze izotropowej i centrosymetrycznej wokół punktu przyłoż enia normalnej siły skupionej. Wykorzystano teorię powłok siatkowych Woż niaka. Postawiony problem sprowadza się do analizy jednego z rozwią zań podstawowych tej teorii. W pierwszej czę śi c pracy wyprowadzono równania przemieszczeniowe mało wyniosłej, sferycznej powłoki siatkowej. Przyję to założ enia relatywnie słabsze od uproszczeń W. Z. Własowa bę dą cyc h podstawą teorii jednorodnych powłok pologich. Rozwią zanie podstawowe znaleziono za pomocą całkowej transformacji Fouriera. Zbadano rzę dy osobliwoś ci składowych stanu przemieszczenia, odkształcenia i napię cia. Praca została złoż ona w Redakcji dnia 6 stycznia 1983 roku