Simplify Fiber Optic Cabling Migrations with a Multi-Path System

Similar documents
Don t Get Left Behind: Cabling Designs You Can Trust to Support Speeds of 32G to 400G

ARISTA 7500R/7500E/7300X Connectivity Guide CABLExpress 1. ARISTA 7500R/7500E/7300X Connectivity Guide

Conflicts in Data Center Fiber Structured Cabling Standards

The Impact of Emerging Data Rates on Layer One Fiber Cabling Infrastructures. Rick Dallmann Senior Data Center Infrastructure Architect CABLExpress

DATA CENTER SYMPOSIUM

Are Conflicts in Data Center Fiber Optic Structured Cabling Standards Putting Your Organization at Risk?

HIGH DENSITY DATA CENTER CABLING GUIDE. Optics DACs Cables Cable Management Fiber TAPs Media Converters

Solutions FOR DATA CENTERS AND STORAGE AREA NETWORKS

Base 8 Plug & Play. Fiber Solutions

Understanding Fiber Polarity

Connectivity Solutions Utilizing Base-8 Structured Cabling

DATA CENTER GUIDE BROCADE CABLING SOLUTION GUIDE

Choosing MPO Connectors for the Data Center. Ken Hall, RCDD, NTS Data Center Architect CommScope

The migration path from 10G to 40G and beyond for InstaPATCH 360, InstaPATCH Plus and ReadyPATCH installations

Cabling Solutions for Nexus 9000 Switches With Dual-Rate 40/100G BiDi Transceiver and Panduit Connectivity

PARALLEL OPTICS CLEANING AND TESTING JANUARY 2018 FOR PROFESSIONALS MANAGING THE CABLE AND WIRELESS SYSTEMS THAT ENABLE CRITICAL COMMUNICATIONS DESIGN

Structured Cabling Design for Large IT/Service Provider Data Centres. Liang Dong Yuan, Technical Sales manager, CDCE

Table of Contents. CABLExpress began by offering used replacement parts for mainframes, and we ve continued to expand our expertise

Corning Distance and Link-Loss Budgets for the Cisco 40GbE BiDi Transceiver

24-Fiber MPO System 10/40/100 GbE Migration Solution HIGH DENSITY EQUIPMENT PANEL (HDEP) ORDERING GUIDE

The Arista Universal transceiver is the first of its kind 40G transceiver that aims at addressing several challenges faced by today s data centers.

Fiber Backbone Cabling in Buildings

Integrate 10 Gb, 40 Gb and 100 Gb Equipment More Efficiently While Future-Proofing Your Fiber and Copper Network Infrastructure

PREPARING FOR FUTURE STRUCTURED CABLING REQUIREMENTS IN THE DATA CENTER: 40/100 GIGABIT ETHERNET AND BEYOND

FAS-NET MPO Solution. Benefits of FAS-NET MPO Fiber Optic Solution:

Port Mapping the Cisco Nexus 9K Switch

Applications Engineering Notes. The US Conec MTP Multifiber Connector

Plug & Play Universal Low-Loss Systems A LANscape Pretium Solutions Product

Overcoming the Testing Challenges of 40G and Beyond. Eric Farst Channel Sales Manager

Insuring 40/100G Performance Multimode Fiber Bandwidth Testing & Array Solutions. Kevin Paschal Sr. Product Manager Enterprise Fiber Solutions

Testing Parallel Optics

Fiber in Data Centers What s Next? Srinivasan B, RCDD

Wideband Multimode Fiber What is it and why does it make sense?

Trends in Testing Data Center Infrastructure. Ed Gastle VIAVI Solutions

24-Fiber MPO System. 10/40/100 GbE Migration Solution High Density Equipment Panel (HDEP) Ordering Guide

DATA CENTER SOLUTIONS TM. Fiber Flex

Adrian Young Leviton Network Solutions

Fiber Optic Cabling Systems for High Performance Applications

Choosing the Correct Harness for your Switch

High Speed Migration: Choosing the right multimode multi-fiber push on (MPO) system for your data center

FTTE Revisited for New Technologies

The Drivers Behind High-Density Systems

MTP/MPO SOLUTIONS FIBERTRONICS. General Applications & Loss Specifications

Solutions. Solutions FOR DATA CENTERS AND STORAGE AREA NETWORKS

Trends in Data Centre

Our Philosophy. CABLExpress makes your network work. Call us anytime to find out the difference having an expert in your corner can make for you.

HI-DEX is an ultra high-performance, pre-terminated and modular optical fibre cabling system based on MT ferrule connector technology.

Cabling Best Practices Using Fast Channel TM Switch Connect. Marc Dunham, Methode - Data Solutions

HUBER+SUHNER DCCT Training

Applications Guide P3LinkXtreme.com

Siemon PON Fiber Cabling Solutions

Pretium EDGE HD Solutions A LANscape Pretium Solutions Product

Structured Cabling Design for Large IT/Service Provider Data Centers

Ultra High Density Fiber Enclosure

Fiber backbone cabling in buildings

The following pages contain a guide for the installation

PreCONNECT OCTO PRODUCT INFORMATION

Pre-Terminated. FiberExpress

Optical Trends in the Data Center

Optical Fiber Networks: Industry. and New Options for Networks

DC Center Copper Cabling up to 40Gbase-T. Halim Senjaya

Opt-X Enterprise Fiber Trunk Cables

How to Decide on Optical Fibre Termination Options. Thomas Ko, RCDD Product Manager Tyco Electronics / AMP NetConnect

Navigating the Pros and Cons of Structured Cabling vs. Top of Rack in the Data Center

Plug & Play Universal Systems

Data Center: First-Time Right Acceptance Testing Steps for Certification and Troubleshooting - Intra & Inter-connect. Nicholas Gagnon EXFO

40G and 100G Products

NGBASE-T Cabling Requirements

HARTING econ 3000 Introduction and features

Enabling Rapid Multitenant Data Centre (MTDC) Connections

24-Fiber MPO System. 10/40/100 GbE Migration Solution RMG Series Ordering Guide. First Edition

How You Can Optimize Passive Optical LAN Through Structured Cabling

Outstanding MTP cabling efficiency for your data center PreCONNECT OCTO: Less fibers, more performance. OPTICAL SOLUTIONS & INFRASTRUCTURE

Arista 400G Transceivers and Cables: Q&A

FMT4S. High Density Connectivity Solution

Uniprise Structured Cabling Solutions Guide

Data Center & Cloud Computing Infrastructure Solutions DATASHEET. MTP/MPO-LC/SC Cassette High-density Pre-terminated Modular Cassette System

Roadmap to 400 Gigabit Ethernet over Multimode Fiber WHITEPAPER

PRE-TERMINATED SOLUTION GUIDE

Tim Takala RCDD. Vice President Field Application Engineer APAC. Mobility is Driving Changing Network Architectures & Transceiver Evolutions

Ethernet and PoE Operation Over Single Pair Twisted-Pair Copper Cabling (SPE) Chris DiMinico AEM Technical Sales Test and Measurement

Connector and Cable Specifications

Anticipating Cat 8 Agenda. Cat 8 Overview Cat 8 Customer Design Considerations Testing Procedures and Standards

Plug & Play Universal Harness, SMF-28 Ultra Single-mode (OS2)

2016 Enterprise Networks EMEA CORE PRODUCTS. for Data Centre Networks

Gigabit Ethernet Interconnect Technology

A Fork in the Road OM5 vs. Single-Mode in the Data Center. Gary Bernstein, Sr. Director, Product Management, Network Solutions

InstaPATCH Cu Cabling Solutions for Data Centers

Standards Update. by Paul Kish NORDX/CDT

2 visit

High-Density Connectivity Solutions. Network Cabling Products

Pretium EDGE FX Solutions

Cables and Connectors

9/27/04 cci Cablecom Inc. 1

Polymer Coated Fiber Cable (PCF)

CELL SITE INFRASTRUCTURE SOLUTIONS. Creative Solutions for the Mobile Evolution

Are you Ready for 40G and 100G?

MTP Cabling Overview. MTP Cabling System

LC-QuickRelease Faster, lighter, more compact

Arista AgilePorts INTRODUCTION

Transcription:

Simplify Fiber Optic Cabling Migrations with a Multi-Path System By Dave Fredricks, Data Center Infrastructure Architect, CABLExpress and Rick Dallmann, Sr. Data Center Infrastructure Architect, CABLExpress Over the past decade, speeds have increased dramatically from megabits per second (Mbit/s) to gigabits per second (Gbit/s) in the data center space. This has created challenges for data center managers designing fiber cabling topologies to handle these higher speeds. One challenge in particular has been polarity, also known as light path. Polarity is the position of the fiber strands in the channel to ensure transmitted data is properly received. The Telecommunications Industry Association (TIA) has approved three polarity methods as standards in the document named ANSI/TIA-568.3-D. These three polarity methods are titled Method A, Method B and Method C. The methods show light path (transmit to receive) using two fibers as duplex and twelve fibers as parallel connections. One challenge in particular has been polarity, also known as light path. Polarity is the position of the fiber strands in the channel to ensure transmitted data is properly received. They show connectors as male (pinned) or female (non-pinned), and with Key Up or Key Down orientation when mating in an coupler. To better explore the three polarity methods, understanding the components in each link is essential. Duplex Link A duplex link has a duplex patch cord (LC to LC) on each end of the link. The duplex patch cord plugs into an /LC cassette module on each end of the link. Between the cassette modules is the to trunk. The connector has a key to ensure fiber position when mating. The coupler that mates the connectors can be Key Up to Key Down, Key Down to Key Down or Key Up to Key Up. Figure 1 shows an example of a duplex link. Figure 1 LC to LC Patch Cord /LC to /LC LC to LC Patch Cord 1.800.913.9465 info@cablexpress.com www.cablexpress.com Pg. 1

Parallel Link A parallel link has a parallel patch cord (12-fiber to ) on each end of the link. The parallel patch cord plugs into an coupler panel on each end of the link then into the optic. Between the coupler panel is the fiber trunk. The coupler that mates the connectors can be Key Up to Key Down or Key Up to Key Up. Figure 2 shows an example of a parallel link. Figure 2 Mixing and matching these separate components can create confusion and nonfunctioning connections for end users. to Patch Cord Coupler Panel to Coupler Panel to Patch Cord In both duplex and parallel links, there are polarity options for the LC to LC patch cords, the to patch cords, and the couplers due to key orientation being up or down in the cassette module and the trunks. Therefore, mixing and matching these separate components can create confusion and nonfunctioning connections for end users. Understanding the basic differences in each of the three polarity methods can help determine which method to deploy. Method A Method A was the first to gain acceptance in the data center cabling marketplace. It is easy to install Method A because all the fibers are run as straight polarity. The couplers are Key Up to Key Down for both duplex and parallel connections. The cross (transmit to receive) for duplex occurs with an A-to-B patch cord on one side of the link. The other side of the link uses an A-to-A patch cord as straight polarity. The same idea occurs with the 12-fiber to patch cord. The flip (fiber 1 to fiber 12) corrects the light path for transmit to receive. One side of the link has a flipped patch cord while the other side has a straight patch cord. Method A requires the end user to manage two separate duplex jumpers as A-to-B and A-to-A. For parallel links the end user needs to manage 12-fiber patch cords as straight and flipped. Many polarity issues in the data center arise from these patch cord options. Method A requires the need to stock four different polarity patch cords and understand on which side of the link they are used. Method B Method B gained popularity when the data center space began supporting optics that use 12- or 24-fiber connectors. These optics run 40GE or 100GE speeds. 1.800.913.9465 info@cablexpress.com www.cablexpress.com Pg. 2

The philosophy behind Method B is that the end user can easily transition from duplex connections (ST, SC or LC) to parallel connections (12- or 24-fiber ). The data center operator can unplug a cassette module from the backbone or horizontal trunk and insert an coupler panel. This would switch the patch cord from duplex to parallel. However, the challenge with Method B is that three different couplers can be used in the duplex and parallel link types. These are Key Up to Key Down, Key Down to Key Down and Key Up to Key Up. Another difficulty with this mix of coupler types occurs when the end user wants to install singlemode angled s into the cabling plant. This scenario requires specific, proprietary product. With Method B, there are two different cassette module types in a link. This creates the need to stock two different cassette module part numbers, which can be another challenge. But the duplex or parallel patch cords are the same for each side of the link an improvement over Method A. Each method has its own unique set of advantages and challenges. But one solution for both duplex and parallel transceiver types simply does not exist in the current set of standards. The ability to connect newer 12- and 24-fiber optics is a benefit as well. As the speeds in the data center move from 40GE to 400GE, these parallel optics will become more common in the data center space. Method C Method C is a modification of Method A aimed at duplex connections. This method works well with storage applications running 8GFC, 16GFC, and 32GFC Fibre Channel that utilize duplex SC and LC connectors. It also works well with duplex connectivity for Ethernet that can support speeds up to 40GE for use with bi-directional optics. A benefit of this method is that it allows the use of standard A-to-B patch cords on both ends of the link. All the couplers are Key Up to Key Down. The cross of transmit to receive takes place in the trunk. Both side cassette modules in the link are the same as straight polarity. The downside of this method is that converting from duplex to parallel links requires costly conversion modules in place of the cassette modules. Figure 3 summarizes the different components needed for the three different polarity methods. Figure 3 A-to-A Duplex A-to-B Duplex Straight Flipped Crossed Same on Both Ends Two Types Straight Flipped Crossed Method A ü ü ü ü ü ü Method B ü ü ü ü Method C ü ü ü ü ü 1.800.913.9465 info@cablexpress.com www.cablexpress.com Pg. 3

Limitations of Methods A, B and C All three standard methods can support duplex links effectively, however each method has several limitations. Method A utilizes straight-through modules and trunks, but it requires two different types of patch cords. If two of the same polarity patch cords are used, the link will not work properly. Method B requires two different coupler combinations which can prove cumbersome in some instances. These two coupler combinations result in two different cassette modules on each end of the link. Also, using angled singlemode connectors can be challenging to ensure proper alignment mating of the angled ferrule. While Methods A and B can support parallel links, Method C typically uses a conversion module which can add significant cost to the link. Conversion modules are not a standardsbased product. In addition, none of the methods properly address the next generation of optics that will run 200GE and 400GE. Those speeds will be run on parallel optics as 24 fibers on multimode glass at 100 meters, and as 12 fibers on singlemode glass at 500 meters. The goal of a multi-path system is to simplify the cabling migration process and reduce the need for multiple transition components. Each method has its own unique set of advantages and challenges. But one solution for both duplex and parallel transceiver types simply does not exist in the current set of standards. Requires Two Different s Requires Two Different Modules Method A Method B Method C ü Figure 4 ü Conversion Modules ü Requires Proprietary Singlemode Connectors ü Requires male-to-female jumpers ü ü ü Multi-Path Solution This dilemma has led cabling solution providers like CABLExpress to seek new ways to deliver a simple, effective system that can effectively handle multiple paths with very little disruption or added cost. The goal of a multi-path system is to simplify the cabling migration process and reduce the need for multiple transition components. The first advantage of a multi-path solution is that it uses only standard A-to-B duplex jumpers. Also, the 12-fiber flipped /female to /female parallel jumpers plug into 1.800.913.9465 info@cablexpress.com www.cablexpress.com Pg. 4

optic connections and work properly, running transmit to receive. The end user only needs to stock one type of jumper for each kind of optic. This simplifies the cabling process and eliminates the confusion that arises from gender and polarity types. The couplers in a multi-path system are all the same: Key Up to Key Down. The back of the cassette modules feature /female ports. This makes the migration from duplex to parallel links seamless, because of the identical Key Up to Key Down couplers with female gender. Data center managers can simply remove the cassette module and install an coupler panel without requiring a non-standard (male to female) jumper. The trunk in a multi-path system is built as flipped light path similar to Method B but always as /male to /male. This allows the use of 12-fiber flipped /female to /female parallel jumpers on the ends. Having a flipped light path backbone or horizontal trunk will work for the next generation of optics running 200GE and 400GE. Figure 5 summarizes the different components needed for the three different polarity Methods A, B and C and adds multi-path. Figure 5 Having a flipped light path backbone or horizontal trunk will work for the next generation of optics running 200GE and 400GE. A-to-A Duplex A-to-B Duplex Straight Flipped Crossed Same on Both Ends Two Types Straight Method A ü ü ü ü ü ü Flipped Method B ü ü ü ü Method C ü ü ü ü ü Multi-path ü ü ü ü Crossed Figure 6 shows how a multi-path solution uses the same A-to-B duplex jumper on each end. It also uses the same /female cassette module at each end. The trunk in this instance will be /male to /male. Figure 6 Core/Spine Switch A to B LC /Female to LC /Male to Male /Female to LC Core/Spine Switch A to B LC 1.800.913.9465 info@cablexpress.com www.cablexpress.com Pg. 5

Figure 7 shows how a multi-path system uses the same 12-fiber flipped /female to / female jumpers on each end. It uses the same industry-standard Key Up to Key Down couplers on each end. The trunk in this instance will also be /male to /male. Figure 7 Core/Spine Switch /Female to /Female Coupler Panel /Male to Male Coupler Panel Server/Leaf Switch /Female to /Female To have links capable of breaking out optical signals such as 40GE to (4x) 10GE, 100GE to (4x) 25GE, and 128GFCp to (4x) 32GFC, one end of the link would use a cassette module or / female to LC harness. Figure 8 shows a breakout with a cassette module. Figure 8 Core/Spine Switch /Female to /Female Coupler Panel /Male to Male Server/Leaf Switch /Female to LC Figure 9 shows a breakout with an /female to LC harness. This is an additional option for migration between parallel and duplex connections. 1.800.913.9465 info@cablexpress.com www.cablexpress.com Pg. 6

Figure 9 Core/Spine Switch /Female to /Female Coupler Panel /Male to Male Coupler Panel Server/Leaf Switch /Female to LC Harness The Advantages of Multi-Path Multi-path features several of the advantages of Methods A, B and C. Multi-path features several of the advantages of Methods A, B and C. It uses flipped trunks to best serve parallel optic connections. Most large cabling vendors in the data center market recommend flipped polarity backbone or horizontal trunking. It uses the same duplex and parallel jumpers on both ends of the link, and the cassette modules are also the same on both ends of the link. In addition, it removes several of the disadvantages of the other three methods. It eliminates the need for two different jumper types for duplex and parallel connections. It also eliminates the coupler positions of Key Down to Key Down and Key Up to Key Up, and it eliminates the need for expensive conversion modules. Next-generation optics will run 200GE and 400GE on 24-fiber s on multimode glass. A multi-path system can easily support these connections (as shown in Figure 7). It simply uses a 24-fiber /female into the optic and breaks out into two 12-fiber /female harnesses into the trunk. Recently there has been more movement to singlemode structured cabling designs. Most large equipment vendors now offer a 100GE 12-fiber singlemode optic that will go up to 500 meters. This optic would work exactly as shown in Figure 7. The price of singlemode optics has dropped considerably in the past few years which has resulted in more widespread usage. These efficiencies of higher transport speeds and lower optic costs have been driven in part by large cloud computing companies and their usage of these products. CABLExpress believes that as data centers move toward 400GE and beyond they will deploy more singlemode fiber structured cabling systems. This makes simplicity in your migration between parallel and duplex connections that much more important. A multi-path system greatly contributes to this simplicity. Port Replication Port replication is a great way to increase efficiency and reduce errors in your data center cabling infrastructure. In short, port replication is the act of mirroring the ports of active fiber optic hardware in a passive component (fiber patch panel). This creates a direct, one-to-one 1.800.913.9465 info@cablexpress.com www.cablexpress.com Pg. 7

relationship between the active hardware ports and the passive structured cabling environment. Using port replication in a multi-path system allows for easy user interface as well as simpler migration. Port replication allows switches to be cabled once and then replicated in a Main Distribution Area (MDA), Zone Distribution Area (ZDA), Middle of Row (MoR) cabinet, End of Row (EoR) cabinet or an individual cabinet. This simplifies the cabling process because all of the port numbers on the switches directly correspond to the port numbers on the patch panel. When replicating LC ports with to LC cassette modules, options come in increments of 8 and 12. This means we have cassettes that have 6, 8, 12, 16, 18, 24, 32, 48 and 64 ports. These nine different options help to replicate all types of vendor switch line cards and blades. This can be accomplished in large, complete switch replication enclosures or smaller 1U solutions. When replicating ports with coupler panels, options come in 6-, 8-, 12-, 16- and 18- port panels. As an example, a 32-port QSFP line card is replicated in a 1U enclosure with two 16-port coupler panels. One panel is numbered from #1 to #16 and the second panel #17 to #32. The ports on the coupler panel directly mirror the 32-port QSFP line card. See two Arista line cards replicated in Figure 10. Using port replication in a multi-path system allows for easy user interface as well as simpler migration Replicating (32) LC Ports as 10G or 25G Figure 10 LC and Line Card Port Replication 32 port QSFP Line Card DCS-7300X-32Q-LC Replicating (32) Ports as 40G or 100G Replicating (48) LC Ports as 10G or 25G 36 port QSFP Line Card 7500R-36CQ-LC Replicating (36) Ports 40G or 100G Conclusion As the optics in the data center market increase in speed and diversity, the multi-path solution will provide logical components to connect the links. The need to migrate between duplex and parallel transmission while maintaining a well-managed structured cabling infrastructure is critical. Combining a multi-path structured cabling system with port replication hardware provides a simple migration path from 10Mb to 400GE and beyond. It supports both current and nextgeneration optics. Learn even more about the data center structured cabling industry at... www.cablexpress.com/whitepapers. 1.800.913.9465 info@cablexpress.com www.cablexpress.com Pg. 8