Induced minors and well-quasi-ordering

Similar documents
Induced minors and well-quasi-ordering

BoxPlot++ Zeina Azmeh, Fady Hamoui, Marianne Huchard. To cite this version: HAL Id: lirmm

Every 3-connected, essentially 11-connected line graph is hamiltonian

The optimal routing of augmented cubes.

Traffic Grooming in Bidirectional WDM Ring Networks

Kernel perfect and critical kernel imperfect digraphs structure

Study on Feebly Open Set with Respect to an Ideal Topological Spaces

Representation of Finite Games as Network Congestion Games

The Proportional Colouring Problem: Optimizing Buffers in Radio Mesh Networks

Tacked Link List - An Improved Linked List for Advance Resource Reservation

Relabeling nodes according to the structure of the graph

DANCer: Dynamic Attributed Network with Community Structure Generator

Minor-monotone crossing number

The b-chromatic number of power graphs

Partitions and orientations of the Rado graph

NP versus PSPACE. Frank Vega. To cite this version: HAL Id: hal

Quasi-tilings. Dominique Rossin, Daniel Krob, Sebastien Desreux

Synthesis of fixed-point programs: the case of matrix multiplication

Acyclic Coloring of Graphs of Maximum Degree

Setup of epiphytic assistance systems with SEPIA

How to simulate a volume-controlled flooding with mathematical morphology operators?

An Efficient Numerical Inverse Scattering Algorithm for Generalized Zakharov-Shabat Equations with Two Potential Functions

YAM++ : A multi-strategy based approach for Ontology matching task

On the Zarankiewicz Problem for the Intersection Hypergraphs

Fault-Tolerant Storage Servers for the Databases of Redundant Web Servers in a Computing Grid

THE COVERING OF ANCHORED RECTANGLES UP TO FIVE POINTS

Service Reconfiguration in the DANAH Assistive System

CONTRACTIONS OF PLANAR GRAPHS

Teaching Encapsulation and Modularity in Object-Oriented Languages with Access Graphs

Computing and maximizing the exact reliability of wireless backhaul networks

The Connectivity Order of Links

Efficient implementation of interval matrix multiplication

Topological Model for 3D Image Representation: Definition and Incremental Extraction Algorithm

Vertex 3-colorability of claw-free graphs

Comparison of spatial indexes

A Voronoi-Based Hybrid Meshing Method

An Experimental Assessment of the 2D Visibility Complex

Branch-and-price algorithms for the Bi-Objective Vehicle Routing Problem with Time Windows

LaHC at CLEF 2015 SBS Lab

Moveability and Collision Analysis for Fully-Parallel Manipulators

Zigbee Wireless Sensor Network Nodes Deployment Strategy for Digital Agricultural Data Acquisition

On a,b-edge-weightings of bipartite graphs with odd a,b

Multimedia CTI Services for Telecommunication Systems

The k-in-a-path problem for claw-free graphs

Natural Language Based User Interface for On-Demand Service Composition

Blind Browsing on Hand-Held Devices: Touching the Web... to Understand it Better

Malware models for network and service management

Comparison of radiosity and ray-tracing methods for coupled rooms

The Voronoi diagram of three arbitrary lines in R3

Real-Time Collision Detection for Dynamic Virtual Environments

X-Kaapi C programming interface

SDLS: a Matlab package for solving conic least-squares problems

KeyGlasses : Semi-transparent keys to optimize text input on virtual keyboard

Real-Time and Resilient Intrusion Detection: A Flow-Based Approach

Prototype Selection Methods for On-line HWR

Symmetric bipartite graphs and graphs with loops

Formal modelling of ontologies within Event-B

Complexity and approximation results for the connected vertex cover problem in graphs and hypergraphs

Implementing an Automatic Functional Test Pattern Generation for Mixed-Signal Boards in a Maintenance Context

Catalogue of architectural patterns characterized by constraint components, Version 1.0

Treewidth and graph minors

A Resource Discovery Algorithm in Mobile Grid Computing based on IP-paging Scheme

Primitive roots of bi-periodic infinite pictures

Real-time FEM based control of soft surgical robots

Math 443/543 Graph Theory Notes 11: Graph minors and Kuratowski s Theorem

Mokka, main guidelines and future

Efficient Gradient Method for Locally Optimizing the Periodic/Aperiodic Ambiguity Function

Workspace and joint space analysis of the 3-RPS parallel robot

QuickRanking: Fast Algorithm For Sorting And Ranking Data

Linux: Understanding Process-Level Power Consumption

Scan chain encryption in Test Standards

Interval Graphs. Joyce C. Yang. Nicholas Pippenger, Advisor. Arthur T. Benjamin, Reader. Department of Mathematics

Scalewelis: a Scalable Query-based Faceted Search System on Top of SPARQL Endpoints

lambda-min Decoding Algorithm of Regular and Irregular LDPC Codes

An FCA Framework for Knowledge Discovery in SPARQL Query Answers

Simulations of VANET Scenarios with OPNET and SUMO

Reverse-engineering of UML 2.0 Sequence Diagrams from Execution Traces

The 3/5-conjecture for weakly S(K_1, 3)-free forests

Open Source Software Developer and Project Networks

FIT IoT-LAB: The Largest IoT Open Experimental Testbed

Quality of Service Enhancement by Using an Integer Bloom Filter Based Data Deduplication Mechanism in the Cloud Storage Environment

Well-Quasi-Ordering versus Clique-Width: New Results on Bigenic Classes

Taking Benefit from the User Density in Large Cities for Delivering SMS

XBenchMatch: a Benchmark for XML Schema Matching Tools

Estimation of Parallel Complexity with Rewriting Techniques

Good edge-labelling of graphs

Change Detection System for the Maintenance of Automated Testing

Delaunay Triangulations of Points on Circles

HySCaS: Hybrid Stereoscopic Calibration Software

Application of RMAN Backup Technology in the Agricultural Products Wholesale Market System

Open Digital Forms. Hiep Le, Thomas Rebele, Fabian Suchanek. HAL Id: hal

Linked data from your pocket: The Android RDFContentProvider

Combinatorial Maps for 2D and 3D Image Segmentation

Fuzzy sensor for the perception of colour

Very Tight Coupling between LTE and WiFi: a Practical Analysis

A Practical Evaluation Method of Network Traffic Load for Capacity Planning

Mapping classifications and linking related classes through SciGator, a DDC-based browsing library interface

QAKiS: an Open Domain QA System based on Relational Patterns

Regularization parameter estimation for non-negative hyperspectral image deconvolution:supplementary material

YANG-Based Configuration Modeling - The SecSIP IPS Case Study

Transcription:

Induced minors and well-quasi-ordering Jaroslaw Blasiok, Marcin Kamiński, Jean-Florent Raymond, Théophile Trunck To cite this version: Jaroslaw Blasiok, Marcin Kamiński, Jean-Florent Raymond, Théophile Trunck. Induced minors and well-quasi-ordering. Electronic Notes in Discrete Mathematics, Elsevier, 2015, 49, pp.197-201. <10.1016/j.endm.2015.06.029>. <lirmm-01349277> HAL Id: lirmm-01349277 https://hal-lirmm.ccsd.cnrs.fr/lirmm-01349277 Submitted on 27 Jul 2016 HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Available online at www.sciencedirect.com www.elsevier.com/locate/endm Induced minors and well-quasi-ordering Jaros law B lasiok 1,2 School of Engineering and Applied Sciences, Harvard University, United States Marcin Kamiński 2 Institute of Computer Science, University of Warsaw, Poland Jean-Florent Raymond 2 Institute of Computer Science, University of Warsaw, Poland, and LIRMM, University of Montpellier, France Théophile Trunck 2 LIP, ÉNS de Lyon, France Abstract AgraphH is an induced minor of a graph G if it can be obtained from an induced subgraph of G by contracting edges. Otherwise, G is said to be H-induced minorfree. Robin Thomas showed in [Graphs without K 4 and well-quasi-ordering, Journal of Combinatorial Theory, Series B, 38(3):240 247, 1985] that K 4 -induced minorfree graphs are well-quasi ordered by induced minors. We provide a dichotomy theorem for H-induced minor-free graphs and show that the class of H-induced minor-free graphs is well-quasi-ordered by the induced minor relation if and only if H is an induced minor of the gem (the path on 4 vertices plus a dominating vertex) or of the graph obtained by adding a vertex of degree 2 to the complete graph on 4 vertices.

Similar dichotomy results were previously given by Guoli Ding in [Subgraphs and well-quasi-ordering, Journal of Graph Theory, 16(5):489 502, 1992] for subgraphs and Peter Damaschke in [Induced subgraphs and well-quasi-ordering, Journal of Graph Theory, 14(4):427 435, 1990] for induced subgraphs. Keywords: Well-quasi-ordering, induced minors, combinatorial dichotomies. 1 Introduction A well-quasi-order (wqo for short) is a quasi-order which contains no infinite decreasing sequence, nor an infinite collection of pairwise incomparable elements (called an antichain). One of the most important results in this field is arguably the theorem by Robertson and Seymour which states that graphs are well-quasi-ordered by the minor relation [14]. Other natural containment relations are not so generous; they usually do not wqo all graphs. In the last decades, much attention has been brought to the following question: given a partial order (S, ), what subclasses of S are well-quasi-ordered by? For instance, Fellows et al. proved in [7] that graphs with bounded feedback-vertexset are well-quasi-ordered by topological minors. Other papers considering this question include [1, 3 6, 8, 9, 13, 15]. One way to approach this problem is to consider graph classes defined by excluded substructures. In this direction, Damaschke proved in [4] thataclass of graphs defined by one forbidden induced subgraph H is wqo by the induced subgraph relation iff H is the path on four vertices. Similarly, a bit later Ding proved in [5] an analogous result for the subgraph relation. Other authors also considered this problem (see for instance [2,10,11]). In this paper, we provide the answer to the same question for the induced minor relation, which we denote im. Before stating our main result, let us introduce two graphs which play a major role in this paper: ˆK4 is obtained by adding a vertex of degree two to K 4 and the gem by adding a dominating vertex to P 4. (cf. Figure 1). 1 This work was done while the author was a student at Institute of Computer Science, University of Warsaw, Poland. 2 The research was partially supported by the Foundation for Polish Science (Jaros law B lasiok and Marcin Kamiński), the (Polish) National Science Centre grant SONATA UMO-2012/07/D/ST6/02432 (Marcin Kamiński and Jean-Florent Raymond), and by the Warsaw Center of Mathematics and Computer Science (Jean-Florent Raymond and Théophile Trunck). Emails: jblasiok@g.harvard.edu, mjk@mimuw.edu.pl, jean-florent.raymond@mimuw.edu.pl, andtheophile.trunck@ens-lyon.org.

Fig. 1. The graph ˆK 4 (on the left) and the gem (on the right). 2 Induced minors and well-quasi-ordering Our main result is the following. Theorem 2.1 (Dichotomy Theorem) Let H be a graph. The class of H- induced minor-free graphs is wqo by im iff H im ˆK4 or H im gem. Our proof naturally has two parts: for different values of H, we need to show wqo of H-induced minor-free graphs or exhibit an H-induced minor-free infinite antichain. Due to space limitations, we only present the main ideas of the proof of the dichotomy theorem. 2.1 Classes that are wqo The following two theorems describe the structure of graphs with H forbidden as an induced minor, when H is ˆK 4 and the gem, respectively. Theorem 2.2 (Decomposition of ˆK 4 -induced minor-free graphs) Let G be a 2-connected graph of Excl im ( ˆK 4 ). Then: either G im K 4 ; or G is a subdivision of a graph on at most 9 vertices; or V(G) has a partition (C, M) such that G[C] is an induced cycle, G[M] is a complete multipartite graph and every vertex of C is either adjacent in G to all vertices of M, or to none of them. Theorem 2.3 (Decomposition of gem-induced minor-free graph) Let G be a 2-connected gem-induced minor-free graph. Then G has a subset X V(G) of at most six vertices such that every connected component of G \ X is either a cograph, or a path whose internal vertices are of degree two in G. Using these structural results, we are able to show the wqo of the two classes with respect to induced minors.

2.2 Classes that are not wqo For classes not covered by previous subsection, that is for any graph H which is not an induced minor of one of ˆK4 and gem, we need to show that the H-induced minor-free graphs are not wqo by im. The idea is to consider an infinite antichain for induced minors, and to show that infinitely many of its elements are H-induced minor-free. Let G denote the complement of any graph G. Using the infinite antichain {C n } n 6, we are able to prove the following lemma. Lemma 2.4 If the class of H-induced minor-free graphs is wqo by im, then H is disjoint union of paths. Using Lemma 2.4 and two antichains introduced in [6] and in [12], we can deduce the following properties of H. (Let cc(g) denote the number of connected components of a graph G.) Lemma 2.5 If H-induced minor-free graphs are wqo by im, then (a) H has at most 4 connected components; (b) the largest connected component of H has at most 4 vertices; (c) if cc(h) =3then V(H) 5; and (d) if cc(h) =4 then V(H) 4. Table 1 enumerates all the possible cases for H, where each line corresponds to a fixed number of vertices and each column to a fixed value of cc(h). A gray cell means that either that no such graph exists, or that the cell corresponds to cases where H-induced minor-free graphs are not wqo by im (according to Lemma 2.5). The complement of any of the twelve remaining graphs can easily be shown to be induced minor of ˆK 4 or gem. V(H) \cc(h) 1 2 3 4 5 1 K 1 (a) 2 K 2 2 K 1 (a) 3 P 3 K 2 + K 1 3 K 1 (a) 4 P 4 P 3 + K 1 K 2 +2 K 1 4 K 1 (a) 5 (b) P 4 + K 1 P 3 +2 K 1 (d) (a) 6 (b) (b) (c) (d) (a) Table 1 If H-induced minors-free graphs are wqo by im,thenh belongs to this table.

References [1] Aistis Atminas and Vadim V. Lozin. Labelled induced subgraphs and wellquasi-ordering. Order, pages 1 16, 2014. [2] Gregory Cherlin. Forbidden substructures and combinatorial dichotomies: Wqo and universality. Discrete Mathematics, 311(15):1543 1584, August 2011. [3] Jean Daligault, Michael Rao, and Stéphan Thomassé. Well-quasi-order of relabel functions. Order, 27(3):301 315, 2010. [4] Peter Damaschke. Induced subgraphs and well-quasi-ordering. Journal of Graph Theory, 14(4):427 435, 1990. [5] Guoli Ding. Subgraphs and well-quasi-ordering. Journal of Graph Theory, 16(5):489 502, November 1992. [6] Guoli Ding. Chordal graphs, interval graphs, and wqo. Journal of Graph Theory, 28(2):105 114, 1998. [7] Michael R Fellows, Danny Hermelin, and Frances A Rosamond. Well-quasiordering bounded treewidth graphs. In Proceedings of IWPEC, 2009. [8] Chun Hung Liu. Graph Structures and Well-Quasi-Ordering. PhD thesis, Georgia Tech, 2014. [9] M. Kamiński, J.-F. Raymond, and T. Trunck. Multigraphs without large bonds are well-quasi-ordered by contraction. ArXiv e-prints, December 2014. [10] Nicholas Korpelainen and Vadim Lozin. Two forbidden induced subgraphs and well-quasi-ordering. Discrete Mathematics, 311(16):1813 1822, 2011. [11] Nicholas Korpelainen and Vadim V. Lozin. Bipartite induced subgraphs and well-quasi-ordering. Journal of Graph Theory, 67(3):235 249, 2011. [12] Jiří Matoušek, Jaroslav Nešetřil, and Robin Thomas. On polynomial time decidability of induced-minor-closed classes. Commentationes Mathematicae Universitatis Carolinae, 29(4):703 710, 1988. [13] Marko Petkovšek. Letter graphs and well-quasi-order by induced subgraphs. Discrete Mathematics, 244(1 3):375 388, 2002. Algebraic and Topological Methods in Graph Theory. [14] Neil Robertson and Paul D. Seymour. Graph Minors. XX. Wagner s conjecture. Journal of Combinatorial Theory, Series B, 92(2):325 357, 2004. [15] Robin Thomas. Graphs without K 4 and well-quasi-ordering. Journal of Combinatorial Theory, Series B, 38(3):240 247, 1985.