Development of Wireless Surgical Knife Attachment with Proximity Indicators Using ArUco Marker

Similar documents
Depth Camera Calibration and Knife Tip Position Estimation for Liver Surgery Support System

Experimental Results of 2D Depth-Depth Matching Algorithm Based on Depth Camera Kinect v1

Image Overlay Support with 3DCG Organ Model for Robot-Assisted Laparoscopic Partial Nephrectomy

Stable Grasp and Manipulation in 3D Space with 2-Soft-Fingered Robot Hand

Jurnal Teknologi PARAMETER IDENTIFICATION OF DEPTH-DEPTH- MATCHING ALGORITHM FOR LIVER FOLLOWING. Full Paper

Occlusion Detection of Real Objects using Contour Based Stereo Matching

3D Ultrasound System Using a Magneto-optic Hybrid Tracker for Augmented Reality Visualization in Laparoscopic Liver Surgery

Navigation System for ACL Reconstruction Using Registration between Multi-Viewpoint X-ray Images and CT Images

Modern Robotics Inc. Sensor Documentation

Task analysis based on observing hands and objects by vision

Absolute Scale Structure from Motion Using a Refractive Plate

Data Fusion Virtual Surgery Medical Virtual Reality Team. Endo-Robot. Database Functional. Database

Robust and Accurate Detection of Object Orientation and ID without Color Segmentation

Advanced Visual Medicine: Techniques for Visual Exploration & Analysis

Cooperative Conveyance of an Object with Tethers by Two Mobile Robots

Extraction and recognition of the thoracic organs based on 3D CT images and its application

Computed tomography (Item No.: P )

Video-Rate Hair Tracking System Using Kinect

Image Thickness Correction for Navigation with 3D Intra-cardiac Ultrasound Catheter

Towards webcam-based tracking for interventional navigation

A Study of Medical Image Analysis System

Measurements using three-dimensional product imaging

EE368 Project: Visual Code Marker Detection

A Low Cost and Easy to Use Setup for Foot Scanning

Wide area tracking method for augmented reality supporting nuclear power plant maintenance work

INTRODUCTION TO MEDICAL IMAGING- 3D LOCALIZATION LAB MANUAL 1. Modifications for P551 Fall 2013 Medical Physics Laboratory

Sensor-aided Milling with a Surgical Robot System

Pattern Feature Detection for Camera Calibration Using Circular Sample

DESIGN AND IMPLEMENTATION OF THE REMOTE CONTROL OF THE MANIPULATOR

A 100Hz Real-time Sensing System of Textured Range Images

A sliding walk method for humanoid robots using ZMP feedback control

SIMULATION AND VISUALIZATION IN THE EDUCATION OF COHERENT OPTICS

Construction Progress Management and Interior Work Analysis Using Kinect 3D Image Sensors

A deformable model driven method for handling clothes

Using surface markings to enhance accuracy and stability of object perception in graphic displays

Computed tomography of simple objects. Related topics. Principle. Equipment TEP Beam hardening, artefacts, and algorithms

Development of Wall Mobile Robot for Household Use

Compact Forceps Manipulator Using Friction Wheel Mechanism and Gimbals Mechanism for Laparoscopic Surgery

Automatic Vascular Tree Formation Using the Mahalanobis Distance

CHAPTER 2: THREE DIMENSIONAL TOPOGRAPHICAL MAPPING SYSTEM. Target Object

Table of Contents & Introduction 2 Product features & Function. 3. Calibration RS232C Serial communication...6 Specifications

Study on Gear Chamfering Method based on Vision Measurement

Vehicle Ego-localization by Matching In-vehicle Camera Images to an Aerial Image

3D Scanning. Qixing Huang Feb. 9 th Slide Credit: Yasutaka Furukawa

Improved Navigated Spine Surgery Utilizing Augmented Reality Visualization

12 Feb 19. Images and text courtesy of John Bean, University of Virginia

Discover the new world of handheld digital microscopy

Control Pad and Touch Unit Installation Guide

2D-3D Registration using Gradient-based MI for Image Guided Surgery Systems

Efficient SLAM Scheme Based ICP Matching Algorithm Using Image and Laser Scan Information

Towards Projector-based Visualization for Computer-assisted CABG at the Open Heart

3D Environment Measurement Using Binocular Stereo and Motion Stereo by Mobile Robot with Omnidirectional Stereo Camera

Computed Photography - Final Project Endoscope Exploration on Knee Surface

A High Speed Face Measurement System

Prototyping an Intuitive Circuit Simulator Manipulated by Hand Gestures for Elementary Physics Education

Ch 22 Inspection Technologies

810 nm. 980 nm FOX nm 12 W VERSATILE FOX 810/980/ 1064/1470 nm IDEAL FOR: DENTAL ENT DERMATOLOGY GYNECOLOGY SURGERY / VET.

Projector Calibration for Pattern Projection Systems

Rectification of distorted elemental image array using four markers in three-dimensional integral imaging

Development of 3D Positioning Scheme by Integration of Multiple Wiimote IR Cameras

Project 1 : Dead Reckoning and Tracking

(a) (b) (c) Fig. 1. Omnidirectional camera: (a) principle; (b) physical construction; (c) captured. of a local vision system is more challenging than

Detection of Narrow Gaps Using Hessian Eigenvalues for Shape Segmentation of a CT Volume of Assembled Parts

Intramedullary Nail Distal Hole Axis Estimation using Blob Analysis and Hough Transform

Time-to-Contact from Image Intensity

Physiological Motion Compensation in Minimally Invasive Robotic Surgery Part I

Discover the new world of handheld digital microscopy

Mobile Phone Operations using Human Eyes Only and its Applications

WIRELESS VEHICLE WITH ANIMATRONIC ROBOTIC ARM

Imaging protocols for navigated procedures

Relative Posture Estimation Using High Frequency Markers

A Supporting System for Beginners of Billiards Based on Predicting the Path of the Balls by Detecting the Cue Stick

PERFECTO MEDICAL HEADLIGHTS & LOUPES CATALOGUE

Section 7.2 Volume: The Disk Method

Adaptive Zoom Distance Measuring System of Camera Based on the Ranging of Binocular Vision

Medical Images Analysis and Processing

3D Gaze Estimation from 2D Pupil Positions on Monocular Head-Mounted Eye Trackers

Creating a distortion characterisation dataset for visual band cameras using fiducial markers.

The Motion C5/F5 Docking Station provides a. Simple, smooth design for ease of cleaning; use; 38 - pen use.

Development of Newly Designed Ultra-Light Core Structures

The Application Research of 3D Simulation Modeling Technology in the Sports Teaching YANG Jun-wa 1, a

RIEGL SYSTEM CONFIGURATION 3D TERRESTRIAL SCANNER LMS-Z620

Modeling and preoperative planning for kidney surgery

Automated Lesion Detection Methods for 2D and 3D Chest X-Ray Images

Available online at ScienceDirect. Procedia Computer Science 22 (2013 )

Data-driven Approaches to Simulation (Motion Capture)

POINT CLOUD ANALYSIS FOR ROAD PAVEMENTS IN BAD CONDITIONS INTRODUCTION

X-ray Target Reconstruction for Cyber Knife Radiosurgery Assignment for CISC/CMPE 330

Computer-Aided Diagnosis in Abdominal and Cardiac Radiology Using Neural Networks

Linear, and segmented over up to 1000 points Squareness calibration Matrix compensation over up to 30 x 30 points

Discover the new world of handheld digital microscopy

6. Bicycle Experiment

Chapter 48 3D video reconstructions of normal and abnormal human vocal folds

MR-Guided Mixed Reality for Breast Conserving Surgical Planning

RIEGL SYSTEM CONFIGURATION 3D TERRESTRIAL SCANNER LMS-Z420i

Digital Image Correlation Compared to Strain Gauge

Click Install View Touch. Installation starts. Click Next. Click Finish.

FEATURES A low current consumption possible based on Panasonic s proprietary design. (Note: Product lineup includes: 1 A, 2 A, and 6 A sensors.

FOX DIODE LASER. Power Calibration at Fiber Distal Tip Green Aiming Beam Video Touch Screen Intuitive Handling Rapid Amortization

Thanks for buying our product. Specialty of IM-2DT

Transcription:

Development of Wireless Surgical Knife Attachment with Proximity Indicators Using ArUco Marker Masanao KOEDA 1, Daiki YANO 1, Naoki SHINTAKU 1, Katsuhiko ONISHI 1 and Hiroshi NOBORIO 1 1 Osaka Electro-Communication University, Kiyotaki 1130-70 Shijonawate, Osaka, Japan koeda@osakac.ac.jp Abstract. We have been developing a liver surgical support system. By matching the depth images of the real liver and the 3D liver model during surgery, the position of the liver, invisible blood vessels and tumors is estimated. The tip position of the surgical knife is measured by single point measurements camera using specific markers. By merging all information, the distance between the knife tip and the target parts such as vessels or tumors is calculated and the proximity of the knife to the target parts is determined. To indicate the proximity, we have been developing a surgical knife attachment with light emitting diodes (LEDs). When the knife approaches to the target parts, the LEDs on the attachment gradually turn on the light. The newly developed attachment becomes compact and lightweight than the previous one. It uses a wireless controller and ArUco markers which can be tracked by an inexpensive USB camera. We conducted experiments to check the performance of ArUco markers and the navigation of the operator using the new attachment. The results showed the new attachment had comparable navigation accuracy to the previous one. Keywords: Laparotomy, Liver, Knife Attachment, Proximity, ArUco marker 1 Introduction The liver has several blood vessels such as arteries, veins, portals, etc. and these are not externally visible. By using X-ray imaging, computed tomography (CT) or magnetic resonance imaging (MRI) etc., the position of these vessels in the liver is checked preoperatively. During surgery, surgeons touch the incision part of the liver using their fingers, feel for a pulse-beat, and perceive the proximity of the vessels. However, this method is dangerous and can injury to the blood vessels and result in bleeding. Surgical support systems for orthopedic, dental, or brain surgery are developed [1-3]. These systems determine the position of the surgical tools, synchronize with the tomographic images and navigate the tool to the target position. The target body parts of these support systems are rigid and exhibit negligible deformation during surgery. However, the liver is soft and changes it shape during operation and the existing support systems cannot be applied to the liver surgery. Research targeted on the surgical

support systems for soft organs has been limited, and no effective system have been developed yet. We have been developing a liver surgery support system. In this paper, the detail of our liver surgery support system and newly developed wireless knife attachment are described. It can alert the proximity of the target parts by lighting LEDs. 2 Our liver surgical support system The detail of our liver surgical support system was described in [4]. It uses two depth cameras with different characteristics. The first camera is lower precision, but a wide measurement range used for determining the shape of the liver during surgery. Kinect for Windows v2 developed by Microsoft is currently used. Three-dimensional (3D) polyhedron model is generated from tomographic images preoperatively. The 3D model contains the shape of the liver, inner blood vessels, and tumors. By matching the depth images from the depth camera and Z-buffer of the 3D polyhedron model during surgery, the positions of the liver is determined using simulated annealing algorithm and the location of the inner blood vessels and the tumors are estimated [5-8]. The second camera is higher precision and performs single point measurements using single markers [9] to determine the tip position of the surgical knife. MicronTraker3 (type H3-60) by ClaroNav is currently used. By merging all information, the distance between the knife tip and the vessels or tumors is calculated [10] and the proximity of the knife to the target parts is determined. To indicate the proximity, the LEDs on our surgical knife attachment are gradually illuminated (Fig. 1). Fig. 1. Overview of our liver surgical support system

3 Conventional surgical knife attachment The conventional surgical knife attachment was presented in [4]. The size and weight of the attachment are approximately 70 70 70 mm and 261 grams respectively. The size of marker for MicronTracker3 is 30 40 mm. An LED bar module (OSX10201- GYR1) [11] and a piezoelectric speaker are mounted in the attachment and a microcomputer (Arduino Nano) controls them. The LED module has 10 LEDs (five greens, three yellows and two reds). The attachment has no internal power source. The electric power and control commands are externally supplied from the main PC through USB cable (Fig. 2). Specification details are listed in Table 1. Table 1. Specification of conventional surgical knife attachment Size Weight Marker Size Camera System Microcomputer LED Speaker Power Source 70 70 70 mm 261 grams 30 40 mm MicronTracker3 Arduino Nano OSX10201-GYR1 Piezoelectric speaker DC 5V, externally supplied. Fig. 2. Conventional surgical knife attachment

4 Wireless surgical knife attachment with proximity indicators using ArUco marker In the new attachment, the case was made smaller and lighter, and a microcomputer with a Wi-Fi module and a rechargeable battery were built in the case and controlled wirelessly (Fig. 3). We confirmed that this battery drive for more than 6 hours. For the knife position measurement system, ArUco [12] was used. ArUco is a marker recognition library for AR which can estimate postures of cameras and markers. ArUco is built in the OpenCV library, it can be easily used with an inexpensive USB camera. ArUco uses black and white square markers (ArUco marker, Fig. 4). Specification details are listed in Table 2. The circuit diagram of the attachment is illustrated in Fig. 5. Table 2. Specification of new surgical knife attachment Size Weight Marker Size Camera System Microcomputer LED Speaker Power Source 49 32 35 mm 46 grams 30 30 mm, ArUco marker Any camera usable on OpenCV ESPr Developer (ESP-WROOM-02) OSX10201-GYR1 Not included Lithium-ion rechargeable battery CR123A, 3.7 V, 1000 mah (a) Outer appearance Fig. 3. Tool for navigation experiment (b) Inner structure Fig. 4. Sample of ArUco marker (DICT_4X4, ID0)

Fig. 5. Circuit diagram 5 Knife tip position calibration To measure the relative vector from the marker on the attachment to the knife tip, the calibration procedure described in [4] was basically used. Camera and knife coordinate systems are defined as c and k respectively. The knife attached marker and the table fixed marker are represented as M knife and M table respectively. To acquire a relative vector from M knife to the knife tip, the knife tip is placed at the c origin point p table of M table, and the position and orientation of each marker are measured in c coordinates (Fig. 6). The position and orientation of M knife measured in c c c c coordinates are defined P knife and R knife respectively. The relative vector P rel is calculated by the following equation.p rel k c c c P rel = P table P knife c To convert P rel in k coordinates, the following is used. P k c rel = (R knife ) 1 c P rel c Finally, the knife tip position P tip in c coordinates is estimated as follows. c c P tip = R knife P k c rel + P knife Note that the OpenCV returns the orientation of the ArUco marker as 3 1 rotation vector with reference to the marker coordinate system. In this rotation vector, the direction of the vector shows the rotation axis and the norm of the vector shows the rotation angle. To convert the rotation vector into a rotation matrix in the camera coordinate system, the Rodrigues' rotation formula was used.

Fig. 6. Knife tip position calibration 6 Preliminary experiments 6.1 Positional precision in distance between camera and marker We verify the difference in position measurement of the ArUco marker depending on the distance between the ArUco marker and the camera. Since it is quite difficult to verify the absolute accuracy of the distance, we will examine the repetitive accuracy. The experimental procedure is as follows. 30 x 30 mm sized ArUco marker (ID 0 of DICT_4x4) was set on the horizontal table. A USB camera (Logicool C615, resolution 1600 x 896 pixels) was attached to a tripod and placed above the marker. By capturing ArUco marker from the camera, the position of the marker was measured. The distance between the marker and the camera was set to about 500, 600, 700 mm (Fig. 7), and the position of the marker was measured 100 times respectively. The measurement result of the marker position is shown in Fig. 8. The positive direction of the x, y and z coordinate axis is the right, the downward and the backward direction with the camera position as the origin respectively. You can see that the measurement distance is almost correct from the graph. The standard deviation of the measurement distance of each axis is shown in Fig. 9. The standard deviation in the z direction is larger than in the x and y directions in all measurement distances. However, all standard deviations are less than 1 mm. From this result, it was found that the ArUco has a high repetitive accuracy of distance and the accuracy is not much different with the distance of the camera under 700 mm.

(a) Approx. 500mm above (b) Approx. 600mm above (c) Approx. 700mm above Fig. 7. Captured camera images of ArUco marker set on the flat table (a) 500 mm approx (b) 600 mm approx. (c) 700 mm approx. Fig. 8. Measurement result of ArUco marker position for 100 times in the distance between the marker and camera of 500, 600 and 700 mm approx. Fig. 9. Standard deviation of marker position in x, y and z axis

6.2 Positional precision in changing angle of marker We verify changes in marker positional precision due to camera and marker angle. As the method in the previous section, the position of the ArUco marker was measured by the camera above the ArUco marker. The marker was tilted to 0, 15, 30, 45, 60 and 75 deg around x axis (Fig. 10), and 100 times of the marker position were measured for each. The measurement result of the marker position is shown in Fig. 11. You can see that the measurement distance is almost correct from the graph. The standard deviation of the measurement distance of each axis is shown in Fig. 12. As the marker angle increased, the standard deviation of the Z axis tends to decrease. On the other hand, the marker detection rate tends to decrease as the marker angle increased (Fig. 13). Summarize these results, it is better to use ArUco markers at around 60 deg. (a) 0 deg (b) 15 deg (c) 30 deg (d) 45 deg (e) 60 deg (f) 75 deg Fig. 10. Captured camera images of the angled ArUco marker

(a) 0 deg (b) 15 deg (c) 30 deg (d) 45 deg (e) 60 deg (f) 75 deg Fig. 11. Captured ArUco maker images Fig. 12. Standard deviation of angled ArUco marker position in x, y and z axis Fig. 13. Marker detection ratio

7 Navigation experiment We conducted experiments to validate operator navigation using the new attachment. The task is to trace an invisible target circle with the knife tip based on the LED information. The target circle is set on a flat horizontal table in front of the subject. The diameter of the circle is 80 mm. The attachment cube was fixed to a hard steel rod with 130 mm in length, 6 mm in diameter. With (x tip, y tip ) as the knife tip position, (x c, y c ) as the center of the circle, and r as the radius of the circle, a distance L between the knife tip and the circle is calculated from the following equation. L = r (x c x tip ) 2 + (y c y tip ) 2 The LED array contains 10 LEDs. However, the microcomputer of new attachment has only 9 digital I/O. For this reason, the LEDs are gradually illuminated between 1 L 9 mm and can navigate over a range in ±9 mm of the circle. The five subjects (A to E) are undergraduate students from the Osaka Electro-Communication University, not surgeons. The experimental results of the trajectory of the tip position are shown in Fig. 14. The green circle is the target circle and the purple dots show the trajectory. The LEDs turn on within the range between the blue and yellow circles. The maximum and averaged navigation errors for each subject are shown in Fig. 15. The results show that it was possible to navigate with the maximum error of 9.3 mm only with the output of the LED array. This is nearly within the navigable range by the LED array, and the usefulness of the new device was shown. 8 Conclusion We developed a compact, lightweight, inexpensive wireless surgical knife attachment which can display proximity by gradually illuminating LEDs using ArUco markers and a microcomputer with Wi-Fi module. To investigate the characteristics of the positioning of the ArUco marker, we measured the repetitive accuracy of the position of the marker by changing statically in the position and posture of the marker, and clarified the marker has a suitable angle for stable and robust use. We also conducted a navigation experiment to five subjects. The subject held the knife with the attachment in hand and traced the knife tip to the invisible circle by watching the illuminated LEDs on the attachment. The LEDs are gradually illuminated according to the distance between the knife tip and the circle. As a result, it was shown that navigation is possible within the presentable range and the new attachment has comparable navigation accuracy to the previous one. In the future, we will consider the use of high resolution USB camera, examination of marker size, use of multiple cameras for more precision, robustness and stabilization.

(a) Subject A (b) Subject B (c) Subject C (d) Subject D (e) Subject E Fig. 14. Experimental results of trajectory of each subject

(a) Maximum error (b) Averaged error Fig. 15. Navigation error of each subject Acknowledgement This research was supported by Grants-in-Aid for Scientific Research (No. 26289069) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

References 1. Knee Navigation Application - Brainlab: https://www.brainlab.com/en/surgery-products/orthopedic-surgery-products/knee-navigation/ 2. ClaroNav - Dental and ENT Navigation Solutions: http://www.claronav.com/ 3. Surgical Theater - Surgical Navigation Advanced Platform (SNAP): http://www.surgicaltheater.net/site/products-services/surgical-navigation-advanced-platform-snap 4. D. Yano, M. Koeda, K. Onishi, and H. Noborio: "Development of a Surgical Knife Attachment with Proximity Indicators", Springer International Publishing, Design, User Experience, and Usability: Designing Pleasurable Experiences, Part II, Lecture Notes in Computer Science 10289, pp. 608-618, 2017. 5. H. Noborio, K. Onishi, M. Koeda, K. Mizushino, T. Kunii, M. Kaibori, M. Kon and Y. Chen: "A Fast Surgical Algorithm Operating Polyhedrons Using Z-Buffer in GPU", In Proceedings of the 9th Asian Conference on Computer Aided Surgery (ACCAS2013), pp. 110-111, 2013. 6. H. Noborio, K. Watanabe, M. Yagi, Y. Ida, S. Nankaku, K. Onishi, M. Koeda, M. Kon, K. Matsui and M. Kaibori: "Experimental Results of 2D Depth-Depth Matching Algorithm Based on Depth Camera Kinect v1", In Proceedings of the International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS2015), Track 3: Bioinformatics, Medical Imaging and Neuroscience, pp. 284-289, 2015. 7. K. Onishi, H. Noborio, M. Koeda, K. Watanabe, K. Mizushino, T. Kunii, M. Kaibori, K. Matsui and M. Kon: "Virtual Liver Surgical Simulator by Using Z-Buffer for Object Deformation", Universal Access in Human-Computer Interaction. Access to Learning, Health and Well-Being, Springer, ISBN978-3-319-20684-4, pp. 345-351, 2015. 8. K. Watanabe, S. Yoshida, D. Yano, M. Koeda, and H. Noborio: "A New Organ-Following Algorithm Based on Depth-Depth Matching and Simulated Annealing, and Its Experimental Evaluation", Springer International Publishing, Design, User Experience, and Usability: Designing Pleasurable Experiences, Part II, Lecture Notes in Computer Science 10289, pp. 594-607, 2017. 9. MicronTracker - ClaroNav: http://www.claronav.com/microntracker/ 10. H. Noborio, T. Kunii and K. Mizushino: "GPU-Based Shortest Distance Algorithm For Liver Surgery Navigation", In Proceedings of the 10th Anniversary Asian Conference on Computer Aided Surgery, pp. 42-43, 2014. 11. OSX10201-GYR1 - AKIZUKI DENSHI TSUSHO CO.,LTD. : http://akizukidenshi.com/download/ds/optosupply/osx10201-xxxx.pdf 12. S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J. Marín-Jiménez: Automatic generation and detection of highly reliable fiducial markers under occlusion, Pattern Recognition, Volume 47, Issue 6, pp. 2280-2292, 2014.