HW1 due Monday by 9:30am Assignment online, submission details to come

Similar documents
CS61C : Machine Structures

More C Pointer Dangers

CS61C : Machine Structures

Review! * follows a pointer to its value! & gets the address of a variable! Pearce, Summer 2010 UCB! ! int x = 1000; Pearce, Summer 2010 UCB!

CS61C : Machine Structures

CS61C Machine Structures. Lecture 4 C Pointers and Arrays. 1/25/2006 John Wawrzynek. www-inst.eecs.berkeley.edu/~cs61c/

Number Review. Lecture #3 More C intro, C Strings, Arrays, & Malloc Variables. Clarification about counting down

Agenda. Peer Instruction Question 1. Peer Instruction Answer 1. Peer Instruction Question 2 6/22/2011

CS61C : Machine Structures

Has there been an update to ANSI C? Lecture #3 C Pointers Yes! It s called the C99 or C9x std

ECE 15B COMPUTER ORGANIZATION

Reference slides! C Strings! A string in C is just an array of characters.!!!char string[] = "abc";! How do you tell how long a string is?!

CS61C : Machine Structures

Reference slides! Garcia, Fall 2011 UCB! CS61C L04 Introduction to C (pt 2) (1)!

IT 252 Computer Organization and Architecture Introduction to the C Programming Language

Review: C Strings. A string in C is just an array of characters. Lecture #4 C Strings, Arrays, & Malloc

CS 61C: Great Ideas in Computer Architecture. C Arrays, Strings, More Pointers

CS 61C: Great Ideas in Computer Architecture C Pointers. Instructors: Vladimir Stojanovic & Nicholas Weaver

CS 61c: Great Ideas in Computer Architecture

Lecture 4: Outline. Arrays. I. Pointers II. III. Pointer arithmetic IV. Strings

Instructor: Randy H. Katz hbp://inst.eecs.berkeley.edu/~cs61c/fa13. Fall Lecture #4. Agenda

Agenda. Address vs. Value Consider memory to be a single huge array. Review. Pointer Syntax. Pointers 9/9/12

How about them A s!! Go Oaktown!! CS61C - Machine Structures. Lecture 4 C Structures Memory Management Dan Garcia.

CS61C : Machine Structures

CS61C Machine Structures. Lecture 3 Introduction to the C Programming Language. 1/23/2006 John Wawrzynek. www-inst.eecs.berkeley.

CS61C : Machine Structures

CS61C Machine Structures. Lecture 5 C Structs & Memory Mangement. 1/27/2006 John Wawrzynek. www-inst.eecs.berkeley.edu/~cs61c/

CS61C : Machine Structures

Two s Complement Review. Two s Complement Review. Agenda. Agenda 6/21/2011

C Arrays, Strings, More Pointers Instructor: Steven Ho

CS61C : Machine Structures

CS61C : Machine Structures

CS61C Machine Structures. Lecture 4 C Structs & Memory Management. 9/5/2007 John Wawrzynek. www-inst.eecs.berkeley.edu/~cs61c/

Number review... Lecture 3 Introduction to the C Programming Language (pt 1) Has there been an update to ANSI C?

Intro to C: Pointers and Arrays

CS61C : Machine Structures

CS 61C: Great Ideas in Computer Architecture Introduc)on to C, Part II

CS 61C: Great Ideas in Computer Architecture Introduc)on to C, Part II. Control. Consider memory to be a single huge array

Agenda. Components of a Computer. Computer Memory Type Name Addr Value. Pointer Type. Pointers. CS 61C: Great Ideas in Computer Architecture

CS 61C: Great Ideas in Computer Architecture. Lecture 3: Pointers. Krste Asanović & Randy Katz

CS 61C: Great Ideas in Computer Architecture. Lecture 3: Pointers. Bernhard Boser & Randy Katz

Lecture 2: C Programm

Topics Introduction to Microprocessors

Arrays and Memory Management

Processor. Lecture #2 Number Rep & Intro to C classic components of all computers Control Datapath Memory Input Output

Pointers, Arrays, Memory: AKA the cause of those Segfaults

Lecture 8: Pointer Arithmetic (review) Endianness Functions and pointers

THE GOOD, BAD AND UGLY ABOUT POINTERS. Problem Solving with Computers-I

Processor. Lecture #2 Number Rep & Intro to C classic components of all computers Control Datapath Memory Input Output }

CS61C : Machine Structures

CS 61c: Great Ideas in Computer Architecture

C++ for Java Programmers

CS 31: Intro to Systems Pointers and Memory. Kevin Webb Swarthmore College October 2, 2018

Arrays and Pointers in C. Alan L. Cox

C: Introduction, Pointers Instructors: Steven Ho, Nick Riasanovsky

Chapter 16. Pointers and Arrays. Address vs. Value. Another Need for Addresses

review Pointers and arrays are virtually same C knows how to increment pointers C is an efficient language, with little protection

Pointer Basics. Lecture 13 COP 3014 Spring March 28, 2018

QUIZ How do we implement run-time constants and. compile-time constants inside classes?

C'Programming' data'separate'from'methods/functions' Low'memory'overhead'compared'to'Java'

CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 13, SPRING 2013

CS 31: Intro to Systems Pointers and Memory. Martin Gagne Swarthmore College February 16, 2016

10/20/2015. Midterm Topic Review. Pointer Basics. C Language III. CMSC 313 Sections 01, 02. Adapted from Richard Chang, CMSC 313 Spring 2013

Lectures 13 & 14. memory management

CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 13, FALL 2012

Kurt Schmidt. October 30, 2018

Numbers: positional notation. CS61C Machine Structures. Faux Midterm Review Jaein Jeong Cheng Tien Ee. www-inst.eecs.berkeley.

C++ ARRAYS POINTERS POINTER ARITHMETIC. Problem Solving with Computers-I

CS 102 Computer Architecture. Lecture 2: Introduction to C, Part I. Instructor: Sören Schwertfeger.

Array Initialization

Class Information ANNOUCEMENTS

3/22/2016. Pointer Basics. What is a pointer? C Language III. CMSC 313 Sections 01, 02. pointer = memory address + type

C Review. MaxMSP Developers Workshop Summer 2009 CNMAT

CSCI-1200 Data Structures Spring 2017 Lecture 5 Pointers, Arrays, Pointer Arithmetic

Homework #3 CS2255 Fall 2012

CS61, Fall 2012 Section 2 Notes

Lecture 04 Introduction to pointers

Intermediate Programming, Spring 2017*

First of all, it is a variable, just like other variables you studied

So far, system calls have had easy syntax. Integer, character string, and structure arguments.

Pointers (part 1) What are pointers? EECS We have seen pointers before. scanf( %f, &inches );! 25 September 2017

Lectures 5-6: Introduction to C

Arrays and Pointers. CSE 2031 Fall November 11, 2013

Lecture 5: Outline. I. Multi- dimensional arrays II. Multi- level arrays III. Structures IV. Data alignment V. Linked Lists

Pointers in C/C++ 1 Memory Addresses 2

CS61C : Machine Structures

A brief introduction to C programming for Java programmers

ELEC 377 C Programming Tutorial. ELEC Operating Systems

CS 220: Introduction to Parallel Computing. Arrays. Lecture 4

Arrays and Pointers. Arrays. Arrays: Example. Arrays: Definition and Access. Arrays Stored in Memory. Initialization. EECS 2031 Fall 2014.

Administrivia. Introduction to Computer Systems. Pointers, cont. Pointer example, again POINTERS. Project 2 posted, due October 6

cs3157: another C lecture (mon-21-feb-2005) C pre-processor (3).

QUIZ. What is wrong with this code that uses default arguments?

Outline. Computer programming. Debugging. What is it. Debugging. Hints. Debugging

Lecture Topics. Administrivia

Memory, Data, & Addressing II

377 Student Guide to C++

Physics 2660: Fundamentals of Scientific Computing. Lecture 3 Instructor: Prof. Chris Neu

CS 449 Lecture 3. Variables in memory. Dr. Jack Lange. int x = 4;

CS 220: Introduction to Parallel Computing. Beginning C. Lecture 2

Transcription:

inst.eecs.berkeley.edu/~cs61c CS61CL : Machine Structures Lecture #2 - C Pointers and Arrays Administrivia Buggy Start Lab schedule, lab machines, HW0 due tomorrow in lab 2009-06-24 HW1 due Monday by 9:30am Assignment online, submission details to come Note Taking Service Slide Handouts Room Change (hopefully) Final Exam: 8/13 9:30-12:30 (3hrs) Jeremy Huddleston CS61CL L01 Introduction (1) Introduction to C CS61CL L01 Introduction (2) Has there been an update to ANSI C? Yes! It s called the C99 standard You need gcc -std=c99 to compile References http://en.wikipedia.org/wiki/c99 http://home.tiscalinet.ch/t_wolf/tw/c/c9x_changes.html Highlights Declarations anywhere, like Java (#15) Java-like // comments (to end of line) (#10) Variable-length non-global arrays (#33) <inttypes.h>: explicit integer types (#38) <stdbool.h> for boolean logic def s (#35) restrict and inline keywords for optimization (#30-32) CS61CL L01 Introduction (3) CS61CL L01 Introduction (4) Compilation : Overview C Syntax: main C compilers turn C code into architecture specific assembly code. An assembler turns this into machine code (string of 1s and 0s). To get the main function to accept arguments, use this: GCC does both Unlike Java which converts to architecture independent bytecode. Unlike most Scheme, Python, Ruby environments which interpret the code. These differ mainly in when your program is converted to machine instructions. CS61CL L01 Introduction (5) int main (int argc, char *argv[]) What does this mean? argc will contain the number of strings on the command line (the executable counts as one, plus one for each argument). Here argc is 2: $ sort myfile argv is a pointer to an array containing the arguments as strings (more on pointers later). CS61CL L01 Introduction (6)

C Syntax: Variable Declarations Very similar to Java, but with an important differences A variable may be initialized in its declaration; if not, it holds garbage! Examples of declarations: correct: int a = 0, b = 10; Incorrect: int i; while(i < 10) i++; Address vs. Value Consider memory to be a single huge array: Each cell of the array has an address associated with it. Each cell also stores some value. Don t confuse the address referring to a memory location with the value stored in that location. 101 102 103 104 105 23 42 CS61CL L01 Introduction (7) CS61CL L01 Introduction (8) Pointers An address refers to a particular memory location. In other words, it points to a memory location. Pointer: A variable that contains the address of a variable. Location (address) name 101 102 103 104 105 23 42 104 y p x Pointers How to create a pointer: & operator: get address of a variable int *p, x; p? x? x = 3; p? x 3 Note the * gets used 2 different ways in this example. In the declaration to indicate that p is going to be a pointer, and in the printf to get the value pointed to by p. p =&x; p x 3 How get a value pointed to? * dereference operator : get value pointed to printf( p points to %d\n,*p); CS61CL L01 Introduction (9) CS61CL L01 Introduction (10) Pointers How to change a variable pointed to? Use dereference * operator on left of = p x 3 Pointers and Parameter Passing (1/4) C passes parameters by value procedure/function/method gets a copy of the parameter, so changing the copy cannot change the original What gets printed? *p = 5; p x 5 void AddOne(int x) x = x + 1; y = 5 int y = 5; AddOne( y); printf( y = %d\n, y); CS61CL L01 Introduction (11) CS61CL L01 Introduction (12)

Pointers and Parameter Passing (2/4) Solved by passing in a pointer to our subroutine. Now what gets printed? Pointers and Parameter Passing (3/4) But what if what you want changed is a pointer? What gets printed? void AddOne(int *p) *p = *p + 1; y = 6 void IncrementPtr(int *p) p = p + 1; A q *q = 50 int y = 5; AddOne(&y); printf( y = %d\n, y); int A[3] = 50, 60, 70; int *q = A; IncrementPtr( q); printf( *q = %d\n, *q); 50 60 70 CS61CL L01 Introduction (13) CS61CL L01 Introduction (14) Pointers and Parameter Passing (4/4) Solution! Pass a pointer to a pointer, declared as **h Now what gets printed? void IncrementPtr(int **h) *h = *h + 1; int A[3] = 50, 60, 70; int *q = A; IncrementPtr(&q); printf( *q = %d\n, *q); *q = 60 A q q 50 60 70 Pointers Pointers are used to point to any data type (int, char, a struct, etc.). Normally a pointer can only point to one type (int, char, a struct, etc.). void * is a type that can point to anything (generic pointer) Use sparingly to help avoid program bugs and security issues and a lot of other bad things! CS61CL L01 Introduction (15) CS61CL L01 Introduction (16) C Pointer Dangers Arrays (1/5) Declaring a pointer just allocates space to hold the pointer it does not allocate something to be pointed to! Local variables in C are not initialized, they may contain anything. What does the following code do? CS61CL L01 Introduction (17) void f() int *ptr; *ptr = 5; Declaration: int ar[2]; declares a 2-element integer array. An array is really just a chunk of memory. int ar[] = 795, 635; declares and fills a 2-elt integer array. Accessing elements: ar[num] returns the num th element. CS61CL L01 Introduction (18)

Arrays (2/5) Arrays are (almost) identical to pointers char *string and char string[] are nearly identical declarations They differ in very subtle ways: incrementing, declaration of filled arrays Key Concept: An array variable is a pointer to the first element. Arrays (3/5) Consequences: ar is an array variable but looks like a pointer in many respects (though not all) ar[0] is the same as *ar ar[2] is the same as *(ar+2) We can use pointer arithmetic to access arrays more conveniently. Declared arrays are only allocated while the scope is valid char *foo() char string[32]; ; return string; is incorrect CS61CL L01 Introduction (19) CS61CL L01 Introduction (20) Arrays (4/5) Arrays (5/5) Array size n; want to access from 0 to n-1, so you should use counter AND utilize a constant for declaration & incr Wrong int i, ar[10]; for(i = 0; i < 10; i++) Right #define ARRAY_SIZE 10 int i, a[array_size]; for(i = 0; i < ARRAY_SIZE; i++) Why? SINGLE SOURCE OF TRUTH You re utilizing indirection and avoiding maintaining two copies of the number 10 Pitfall: An array in C does not know its own length, & bounds not checked! Consequence: We can accidentally access off the end of an array. Consequence: We must pass the array and its size to a procedure which is going to traverse it. Segmentation faults and bus errors: These are VERY difficult to find; be careful! (You ll learn how to debug these in lab ) CS61CL L01 Introduction (21) CS61CL L01 Introduction (22) Pointer Arithmetic (1/2) Pointer Arithmetic (2/2) Since a pointer is just a mem address, we can add to it to traverse an array. p+1 returns a ptr to the next array elt. *p++ vs (*p)++? x = *p++! x = *p ; p = p + 1; x = (*p)++! x = *p ; *p = *p + 1; What if we have an array of large structs (objects)? C takes care of it: In reality, p+1 doesn t add 1 to the memory address, it adds the size of the array element. C knows the size of the thing a pointer points to every addition or subtraction moves that many bytes. 1 byte for a char, 4 bytes for an int, etc. So the following are equivalent: int get(int array[], int n) return (array[n]); // OR return *(array + n); CS61CL L01 Introduction (23) CS61CL L01 Introduction (24)

Pointers in C Why use pointers? If we want to pass a huge struct or array, it s easier to pass a pointer than the whole thing. In general, pointers allow cleaner, more compact code. So what are the drawbacks? Pointers are probably the single largest source of bugs in software, so be careful anytime you deal with them. Dangling reference (premature free) Memory leaks (tardy free) CS61CL L01 Introduction (25) C Strings A string in C is just an array of characters. char string[] = "abc"; How do you tell how long a string is? Last character is followed by a 0 byte (null terminator) int strlen(char s[]) int n = 0; while (s[n]!= 0) n++; return n; CS61CL L01 Introduction (26) And in Conclusion A pointer is a C version of the address. * follows a pointer to its value & gets the address of a variable Pointers and arrays are virtually same C knows how to increment pointers C is an efficient language, with little protection Array bounds not checked Variables not automatically initialized (Beware) The cost of efficiency is more overhead for the programmer. C gives you a lot of extra rope but be careful not to hang yourself with it! CS61CL L01 Introduction (27) CS61CL L01 Introduction (28) Reference slides You ARE responsible for the material on these slides (they re just taken from the reading anyway) ; we ve moved them to the end and off-stage to give more breathing room to lecture! Corrections Errors from last lecture The average course GPA was listed in one place as 2.9 and the other as B- (2.7). The correct average is B- (2.7) The midterm will be a 1 hour exam which you have 1.5 hours to take. Administrivia Finish reading K&R by the next lecture There is a language called D! www.digitalmars.com/d/ Homework expectations Readers don t have time to fix your programs which have to run on lab machines. Code that doesn t compile or fails all of the autograder tests! 0 CS61CL L01 Introduction (29) CS61CL L01 Introduction (30)

Administrivia Slip days You get 3 slip days to use for any homework assignment or project They are used at 1-day increments. Thus 1 minute late = 1 slip day used. They re recorded automatically (by checking submission time) so you don t need to tell us when you re using them Once you ve used all of your slip days, when a project/hw is late, it s 0 points. If you submit twice, we ALWAYS grade the latter, and deduct slip days appropriately You no longer need to tell anyone how your dog ate your computer. You should really save for a rainy day we all get sick and/or have family emergencies! Pointers & Allocation (1/2) After declaring a pointer: int *ptr; ptr doesn t actually point to anything yet (it actually points somewhere - but don t know where!). We can either: make it point to something that already exists, or allocate room in memory for something new that it will point to (next time) CS61CL L01 Introduction (31) CS61CL L01 Introduction (32) Pointers & Allocation (2/2) Pointing to something that already exists: int *ptr, var1, var2; var1 = 5; ptr = &var1; var2 = *ptr; var1 and var2 have room implicitly allocated for them. ptr? var1? 5 var2? 5 Arrays (one elt past array must be valid) Array size n; want to access from 0 to n-1, but test for exit by comparing to address one element past the array int ar[10], *p, *q, sum = 0; p = &ar[0]; q = &ar[10]; while (p!= q) /* sum = sum + *p; p = p + 1; */ sum += *p++; Is this legal? C defines that one element past end of array must be a valid address, i.e., not cause an bus error or address error CS61CL L01 Introduction (33) CS61CL L01 Introduction (34) Pointer Arithmetic So what s valid pointer arithmetic? Add an integer to a pointer. Subtract 2 pointers (in the same array). Compare pointers (<, <=, ==,!=, >, >=) Compare pointer to NULL (indicates that the pointer points to nothing). Everything else is illegal since it makes no sense: adding two pointers multiplying pointers subtract pointer from integer Pointer Arithmetic to Copy memory We can use pointer arithmetic to walk through memory: void copy(int *from, int *to, int n) int i; for (i=0; i<n; i++) *to++ = *from++; Note we had to pass size (n) to copy CS61CL L01 Introduction (35) CS61CL L01 Introduction (36)

Arrays vs. Pointers An array name is a read-only pointer to the 0 th element of the array. An array parameter can be declared as an array or a pointer; an array argument can be passed as a pointer. int strlen(char s[]) int n = 0; while (s[n]!= 0) n++; return n; Could be written: while (s[n]) CS61CL L01 Introduction (37) int strlen(char *s) int n = 0; while (s[n]!= 0) n++; return n; Pointer Arithmetic Summary x = *(p+1)?! x = *(p+1) ; x = *p+1?! x = (*p) + 1 ; x = (*p)++?! x = *p ; *p = *p + 1; x = *p++? (*p++)? *(p)++? *(p++)?! x = *p ; p = p + 1; x = *++p?! p = p + 1 ; x = *p ; Lesson? Using anything but the standard *p++, (*p)++ causes more problems than it solves! CS61CL L01 Introduction (38) Segmentation Fault vs Bus Error? http://www.hyperdictionary.com/ Bus Error A fatal failure in the execution of a machine language instruction resulting from the processor detecting an anomalous condition on its bus. Such conditions include invalid address alignment (accessing a multi-byte number at an odd address), accessing a physical address that does not correspond to any device, or some other device-specific hardware error. A bus error triggers a processor-level exception which Unix translates into a SIGBUS signal which, if not caught, will terminate the current process. Segmentation Fault An error in which a running Unix program attempts to access memory not allocated to it and terminates with a segmentation violation error and usually a core dump. CS61CL L01 Introduction (39) More C Pointer Dangers Unlike Java, C lets you cast a value of any type to any other type without performing any checking. int x = 1000; int *p = x; /* invalid */ int *q = (int *) x; /* valid */ The first pointer declaration is invalid since the types do not match. The second declaration is valid C but is almost certainly wrong Is it ever correct? CS61CL L01 Introduction (40) C Strings Headaches One common mistake is to forget to allocate an extra byte for the null terminator. More generally, C requires the programmer to manage memory manually (unlike Java or C++). When creating a long string by concatenating several smaller strings, the programmer must insure there is enough space to store the full string! What if you don t know ahead of time how big your string will be? Buffer overrun security holes! Common C Error There is a difference between assignment and equality a = b a == b is assignment is an equality test This is one of the most common errors for beginning C programmers! One solution (when comparing with constant) is to put the var on the right! If you happen to use =, it won t compile. if (3 == a) CS61CL L01 Introduction (41) CS61CL L01 Introduction (42)

C String Standard Functions int strlen(char *string); compute the length of string int strcmp(char *str1, char *str2); return 0 if str1 and str2 are identical (how is this different from str1 == str2?) char *strcpy(char *dst, char *src); copy the contents of string src to the memory at dst. The caller must ensure that dst has enough memory to hold the data to be copied. CS61CL L01 Introduction (43)