Abstract. A graph G is perfect if for every induced subgraph H of G, the chromatic number of H is equal to the size of the largest clique of H.

Similar documents
Small Survey on Perfect Graphs

Vertex coloring, chromatic number

Vertex coloring, chromatic number

Lecture 6: Graph Properties

How many colors are needed to color a map?

Colouring graphs with no odd holes

Matching Theory. Figure 1: Is this graph bipartite?

Module 7. Independent sets, coverings. and matchings. Contents

The Structure of Bull-Free Perfect Graphs

Bar k-visibility Graphs

Matching Algorithms. Proof. If a bipartite graph has a perfect matching, then it is easy to see that the right hand side is a necessary condition.

Graphs and Discrete Structures

Bipartite Roots of Graphs

Mock Exam. Juanjo Rué Discrete Mathematics II, Winter Deadline: 14th January 2014 (Tuesday) by 10:00, at the end of the lecture.

Bar k-visibility Graphs: Bounds on the Number of Edges, Chromatic Number, and Thickness

List of Theorems. Mat 416, Introduction to Graph Theory. Theorem 1 The numbers R(p, q) exist and for p, q 2,

Theorem 3.1 (Berge) A matching M in G is maximum if and only if there is no M- augmenting path.

by conservation of flow, hence the cancelation. Similarly, we have

Topics on Computing and Mathematical Sciences I Graph Theory (13) Summary and Review

MATH 350 GRAPH THEORY & COMBINATORICS. Contents

Extremal Graph Theory. Ajit A. Diwan Department of Computer Science and Engineering, I. I. T. Bombay.

Monochromatic loose-cycle partitions in hypergraphs

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings

Math 776 Graph Theory Lecture Note 1 Basic concepts

COMP260 Spring 2014 Notes: February 4th

On the Rainbow Neighbourhood Number of Set-Graphs

Matchings. Examples. K n,m, K n, Petersen graph, Q k ; graphs without perfect matching. A maximal matching cannot be enlarged by adding another edge.

arxiv: v4 [math.co] 4 Apr 2011

Characterizations of graph classes by forbidden configurations

1 Minimal Examples and Extremal Problems

MAT 145: PROBLEM SET 6

AMS /672: Graph Theory Homework Problems - Week V. Problems to be handed in on Wednesday, March 2: 6, 8, 9, 11, 12.

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge.

Discrete mathematics , Fall Instructor: prof. János Pach

On Sequential Topogenic Graphs

HW Graph Theory SOLUTIONS (hbovik) - Q

Chapter 6 GRAPH COLORING

Algorithm design in Perfect Graphs N.S. Narayanaswamy IIT Madras

Math 778S Spectral Graph Theory Handout #2: Basic graph theory

Lecture 20 : Trees DRAFT

Diskrete Mathematik und Optimierung

Maximal Monochromatic Geodesics in an Antipodal Coloring of Hypercube

Weak Dynamic Coloring of Planar Graphs

Disjoint directed cycles

6. Lecture notes on matroid intersection

Discrete mathematics

Winning Positions in Simplicial Nim

Some Elementary Lower Bounds on the Matching Number of Bipartite Graphs

Claw-Free Graphs With Strongly Perfect Complements. Fractional and Integral Version.

Partitions and Packings of Complete Geometric Graphs with Plane Spanning Double Stars and Paths

An upper bound for the chromatic number of line graphs

The strong chromatic number of a graph

An Introduction to Chromatic Polynomials

2 The Fractional Chromatic Gap

ON VERTEX b-critical TREES. Mostafa Blidia, Noureddine Ikhlef Eschouf, and Frédéric Maffray

HW Graph Theory SOLUTIONS (hbovik)

A taste of perfect graphs (continued)

Vertex-Colouring Edge-Weightings

Some relations among term rank, clique number and list chromatic number of a graph

Coloring Subgraphs with Restricted Amounts of Hues

VIZING S THEOREM AND EDGE-CHROMATIC GRAPH THEORY. Contents

On Covering a Graph Optimally with Induced Subgraphs

1. Lecture notes on bipartite matching

5.1 Min-Max Theorem for General Matching

Extremal Graph Theory: Turán s Theorem

Treewidth and graph minors

1 Matchings in Graphs

K 4 C 5. Figure 4.5: Some well known family of graphs

Vertex Colorings without Rainbow or Monochromatic Subgraphs. 1 Introduction

Characterizing Graphs (3) Characterizing Graphs (1) Characterizing Graphs (2) Characterizing Graphs (4)

Vertex 3-colorability of claw-free graphs

arxiv: v2 [math.co] 25 May 2016

Coverings by few monochromatic pieces - a transition between two Ramsey problems

and Heinz-Jürgen Voss

Lecture 2 - Graph Theory Fundamentals - Reachability and Exploration 1

Embedded Width, A Variation of Treewidth for Planar Graphs

CMSC Honors Discrete Mathematics

1. The following graph is not Eulerian. Make it into an Eulerian graph by adding as few edges as possible.

Fundamental Properties of Graphs

Sources for this lecture. 3. Matching in bipartite and general graphs. Symmetric difference

HAMBURGER BEITRÄGE ZUR MATHEMATIK

Forced orientation of graphs

On Galvin s Theorem and Stable Matchings. Adam Blumenthal

Progress Towards the Total Domination Game 3 4 -Conjecture

2. Lecture notes on non-bipartite matching

Independence Number and Cut-Vertices

THE LEAFAGE OF A CHORDAL GRAPH

Two Characterizations of Hypercubes

Advanced Combinatorial Optimization September 17, Lecture 3. Sketch some results regarding ear-decompositions and factor-critical graphs.

A note on the saturation number of the family of k-connected graphs

Bipartite Coverings and the Chromatic Number

arxiv: v1 [math.co] 4 Apr 2011

Partitioning Complete Multipartite Graphs by Monochromatic Trees

Edge Colorings of Complete Multipartite Graphs Forbidding Rainbow Cycles

Rainbow paths and trees in properly-colored graphs

Preimages of Small Geometric Cycles

arxiv: v1 [math.co] 7 Dec 2018

Potential Bisections of Large Degree

Math 170- Graph Theory Notes

4. (a) Draw the Petersen graph. (b) Use Kuratowski s teorem to prove that the Petersen graph is non-planar.

Transcription:

Abstract We discuss a class of graphs called perfect graphs. After defining them and getting intuition with a few simple examples (and one less simple example), we present a proof of the Weak Perfect Graph Theorem. The presentation of the Weak Perfect Graph Theorem, especially the intuition for duplication, is based on Diestel s presentation [1]. Historical notes and basic graph terminology come from West s textbook [5]. 1 Perfect Graphs A graph G is perfect if for every induced subgraph H of G, the chromatic number of H is equal to the size of the largest clique of H. Let s fix some notation: χ(g) is the chromatic number of G, ω(g) is the size of the largest clique of G, and α(g) is the size of the largest independent set of G. In our new notation, a graph is perfect if for every induced subgraph H: χ(h) = ω(h). We use the notation N G (S) to mean the neighbors of a set of vertices S in the graph G. When G is clear from context we omit the subscript. The complement of G is another graph G on the same vertex set; for every pair of vertices {u, v}, (u, v) is an edge of G if and only if it is not an edge of G. Why are perfect graphs interesting? A clique of size k + 1 is an easy certificate that a graph is not k-colorable, thus these graphs are exactly the graphs such that, as we color, we will always have a certificate that our coloring is optimal for the portion of the graph we have colored so far. We will see in the next talk that these graphs also have a nice characterization in terms of polytopes. One could also view this class of graphs as an analog of bipartite graphs and Kőnig s Theorem. In general, the sizes maximum matchings and minimum vertex covers may differ, but Kőnig s Theorem says in bipartite graphs they coincide. By definition, perfect graphs are the graphs such that for every induced subgraph, the minimum number of colors in a proper coloring and the maximum size of a clique coincide. It turns out perfect graphs (and the weak perfect graph theorem) unify a lot of min-max results from early graph theory. There is a discussion of some of these results in one of Schrijver s textbooks [4]; we won t have time to discuss those results here. To get some intuition for this class of graphs, let s classify some of our favorite graphs by whether they are perfect or not. 1

1.1 Some Perfect Graphs Some classes of perfect graphs: 1. K n (every induced subgraph is a k-clique and k-colorable.) 2. bipartite graphs (somewhat trivially) 3. cobipartite graphs, i.e. graphs G such that G is bipartite. (Corollary of Lemma 2) Let s prove that last class of graphs is actually perfect. We need two tools to get there. The first is a simple relationship between colorings and cliques. Lemma 1. Let G be a graph, if G contains a clique of size k and a valid coloring using k colors, then ω(g) = χ(g) = k Proof. By finding a valid coloring and a clique of size k we have χ(g) k and ω(g) k but we always have ω(g) χ(g) (as we must use a new color for each vertex in the largest clique). Combining these inequalities gives k ω(g) χ(g) k. The second tool in showing cobipartite graphs are perfect is Hall s Condition for the existence of matchings in bipartite graphs. We say a matching saturates a set of vertices if every vertex in that set has an incident edge in the matching. Theorem 1 (Hall s Condition). Let G be a bipartite graph with partite sets S, T. There is a matching saturating S if and only if for all S S, N(S ) S. For a subset S S, we define the deficiency of S to be S N(S ). A set has positive deficiency if and only if it violates Hall s Condition. With our new definition and facts in hand we can move to proving that cobipartite graphs are perfect. Lemma 2. Every cobipartite graph G satisfies χ(g) = ω(g). Proof. Let S, T be a bipartition of G, where S T. We consider two cases: Case 1: There is a matching saturating T in G. In G, S forms a clique. Coloring G with S colors will complete the argument (by Lemma 1). Give a distinct color to every element of S, arbitrarily pick a matching of G saturating T, and give t T the color of its matched partner in S. By definition of complement, this is a valid coloring. 2

Figure 1: A sample G, with extremal T. The vertices of U are shown in red, and the matching of G used to create the coloring is in bold. Case 2: No matching saturates T in G. By Hall s Condition, there is a set T T such that N G (T ) is smaller than T. Choose T to have the maximum deficiency (in G) among all such subsets. Now consider U = (S\N G (T )) T. Note that U forms a clique in G (there are no edges in G among these edges by the bipartition and the fact that we removed N G (T )). See Figure 1. As before, it suffices to color G with U colors. Assign a distinct color to each element of U. We claim there is a matching in G between U S and T \T, saturating T \T ; if there were not, Hall s condition would give us another set T with positive deficiency, but then T T would violate the extremality of T. We color T \T the same as its partner in the matching. Similarly, we can find a matching in G between T and S\U saturating S\U. Indeed, if there were not such a matching then there would be a set S N G (T ) such that S > N G (S ). But now T \N G (S ) has neighborhood of size at least N G (T )\S, which would force T \N G (S ) to have a larger deficiency than T, a contradiction. It is easy to check our coloring is valid we use each color at most twice, and when we repeat a color it is assigned to a partner in a matching in G, thus no edge in G is monochromatic, and χ(g) = ω(g), as required. 3

1.2 Some Imperfect Graphs Not all graphs are perfect. Here are some Non-examples: 1. C 2k+1 (k 2) (which are not 2-colorable, but have no K 3 ). 2. C 2k+1 (k 2). (The complement of a clique is an independent set. The largest independent set in C 2k+1 is size k; the complement of a coloring is a partition into cliques, the only cliques in cycles are edges, so we require k + 1 colors.) 2 The Weak Perfect Graph Theorem You might have noticed a pattern: when a graph is perfect, so is its complement (and conversely). This is not a coincidence, in fact it s the Weak Perfect Graph Theorem. Theorem 2 (Weak Perfect Graph Theorem [3]). G is perfect if and only if G is perfect. The Weak Perfect Graph Theorem was first conjectured by Berge in 1960. By 1972, it was a well-known conjecture. In the same year that Lovasz resolved the conjecture in the affirmative, he produced a second proof, using different techniques that was simpler than the original [2]. Our first step is a strange-seeming Lemma about duplicating vertices. We say we duplicate a vertex x, by creating a new vertex x such that N(x ) = N(x) {x}. We will call x a copy of x. It turns out this operation preserves perfection: Lemma 3. If G is perfect and G arises from G by duplicating a vertex, then G is also perfect. Proof. We proceed by induction on the number of vertices in G. Our base case is trivial (a single vertex duplicates to an edge, both of which are complete graphs, and thus perfect). Now let G be a perfect graph and let G arise from G by duplicating a vertex x, adding the vertex x. We only need concern ourselves with whether χ(g ) = ω(g ) consider a proper induced subgraph H: if H contains at most one of x, x it is isomorphic to an induced subgraph of G and its perfection follows from that of G. On the other hand, if H contains both x, x but is a proper subgraph, it can be handled by the inductive hypothesis, so only G itself remains. If ω(g ) = ω(g) + 1, then we can take a coloring of G make x a new color and be done by Lemma 1. Thus suppose ω(g ) = ω(g). We again color G with ω(g ) colors. Fix an optimal coloring of G. In this coloring, let x be colored blue and let X be the class of blue nodes. By the equality ω(g ) = ω(g), we know that x does not participate in any maximum cliques (otherwise adding x to the clique would create one of size ω(g) + 1). 4

Now consider the graph H := G\(X x) i.e. G with all the blue nodes except x removed. Now any ω(g)-sized clique in G must contain a blue vertex (to be validly-colored), but this vertex cannot be x by our previous observation, thus ω(h) < ω(g). Now by perfection of G we have χ(h) = ω(h). Fix such a coloring. We now color G by taking this coloring of H and adding X {x } as a single (new) color class. This gives an ω(h) + 1 ω(g) = ω(g ) coloring of G, which completes our proof. We can now turn to the proof of the Weak Perfect Graph Theorem. Proof of Theorem 2. We again proceed by induction on the number of vertices in G. Our base case, K 1, is isomorphic to K 1, so both are perfect. Now consider a perfect graph G (with at least 2 vertices). Let K be the set of all vertex sets underlying cliques of G. Let A be the set of all maximum independent sets of G. Note the lack of symmetry in these definitions: K contains all cliques, A contains only the maximum independent sets. By IH, we need only consider whether χ(g) = ω(g). It suffices to prove χ(g) ω(g). Our approach is to find a set K K such that K A for all A A. In this situation, we observe that removing K from G reduces the clique number: Then we have: ω(g K) = α(g K) < α(g) = ω(g) χ(g) χ(g K) + 1 = ω(g K) + 1 ω(g) Where the first inequality follows from coloring G using the coloring for G K, the equality is from IH, and the second inequality is due to every maximum independent set of G (i.e. every maximum clique of G) intersecting K. Thus it suffices to prove that such a K exists in every perfect graph. Suppose it does not, that is for every K K there is an A K A such that K A K =. Our goal in deriving a contradiction will be to find a subgraph G whose chromatic number is larger than its clique number, but the only real way we have to lower-bound the chromatic number is by G /α( G) for the subgraph G we choose. In general this bound isn t very tight, but perhaps we can use some extra structure to tighten it. In particular, suppose that the A K we just defined were mutually disjoint. Indeed, if G is just G [ K K A K ] then in this case G = α(g) K (Every A K has size α(g), and we just assumed they are disjoint). We would also have χ( G) = K (we can color by giving each A K a distinct color, since the A K are maximum independent sets of G [and thus G], we can do no better). Thus if the A K are disjoint, our bound on χ( G) will be tight, and we might have hope. What do we do when they are not disjoint? Make them disjoint! Duplicate each repeated vertex so that a distinct copy appears in exactly one A K. As long as this duplication doesn t change K, A, or the perfection of G in the wrong way, we will be fine. Lemma 3 allows us to do exactly this. 5

Formally, for every vertex x G, replace x with a clique on {K K x A K } vertices. Let G be the resulting graph. Note that this process can be achieved via repeated duplication 1, so by Lemma 3, G is also perfect. Since every K K duplicated a vertex for every x A K, G has K α(g) vertices. By perfection of G we have χ(g ) = ω(g ). We calculate χ(g ), ω(g ) in the hope of deriving a contradiction. By construction, any maximal clique in G consists of all duplicated vertices arising from some X K. Now the size of this clique in G is exactly the number of times we duplicated each of the vertices in X, i.e. {(x, K) : K K, x X, x A K }. This expression is equal to K K X A K. X is a clique of G while each A K is an independent set of G, so they intersect in at most one vertex each. Moreover, X A X =, so we have that this set is of size at most K 1. Now let s try to bound χ(g ). The only good way we have to bound it is to use the fact that χ(g ) G /α(g ) (because every color class is an independent set). Let us try to bound the chromatic number this way. Again by definition of the graph G = {(x, K) : x V (G), K K, x A K } = K K A K = α(g) K We have α(g ) α(g) (a vertex and its copy cannot be in an independent set in G, on the other hand, we might have deleted a vertex when creating G ). Thus χ(g ) G α(g ) G α(g) = K Now we have χ(g ) K > K 1 ω(g ), which contradicts the perfection of G. Thus there is always a K K such that K intersects each A A, and our previous argument guarantees perfection of G. References [1] Reinhard Diestel. Graph theory, 2000. [2] László Lovász. A characterization of perfect graphs. Journal of Combinatorial Theory, Series B, 13(2):95 98, 1972. [3] László Lovász. Normal hypergraphs and the perfect graph conjecture. Discrete Mathematics, 2(3):253 267, 1972. [4] Alexander Schrijver. A course in combinatorial optimization. [5] Douglas Brent West. Introduction to graph theory, volume 2. Prentice hall Upper Saddle River, 2001. 1 One might be concerned that some vertex, v, might not appear in any A K. In this case, do not duplicate v, and then let G be the induced subgraph on the duplicated vertices, excluding any such v. This graph is still perfect, as it is an induced subgraph of a perfect graph. 6