CS 317/387. A Relation is a Table. Schemas. Towards SQL - Relational Algebra. name manf Winterbrew Pete s Bud Lite Anheuser-Busch Beers

Similar documents
Relational Algebra and SQL. Basic Operations Algebra of Bags

Relational Algebra. Algebra of Bags

Relational Algebra BASIC OPERATIONS DATABASE SYSTEMS AND CONCEPTS, CSCI 3030U, UOIT, COURSE INSTRUCTOR: JAREK SZLICHTA

Chapter 2 The relational Model of data. Relational algebra

Relational Query Languages

Databases-1 Lecture-01. Introduction, Relational Algebra

The Extended Algebra. Duplicate Elimination. Sorting. Example: Duplicate Elimination

1 Relational Data Model

EXTENDED RELATIONAL ALGEBRA OUTERJOINS, GROUPING/AGGREGATION INSERT/DELETE/UPDATE

More SQL. Extended Relational Algebra Outerjoins, Grouping/Aggregation Insert/Delete/Update

Subqueries. Must use a tuple-variable to name tuples of the result

Why SQL? SQL is a very-high-level language. Database management system figures out best way to execute query

Database Design and Programming

Introduction to SQL. Select-From-Where Statements Multirelation Queries Subqueries

Introduction to SQL. Select-From-Where Statements Multirelation Queries Subqueries. Slides are reused by the approval of Jeffrey Ullman s

CS411 Database Systems. 04: Relational Algebra Ch 2.4, 5.1

I Relational Database Modeling how to define

I Relational Database Modeling how to define

Introduction to SQL SELECT-FROM-WHERE STATEMENTS SUBQUERIES DATABASE SYSTEMS AND CONCEPTS, CSCI 3030U, UOIT, COURSE INSTRUCTOR: JAREK SZLICHTA

SQL Continued! Outerjoins, Aggregations, Grouping, Data Modification

Grouping Operator. Applying γ L (R) Recall: Outerjoin. Example: Grouping/Aggregation. γ A,B,AVG(C)->X (R) =??

Chapter 6 The database Language SQL as a tutorial

Introduction to SQL. Multirelation Queries Subqueries. Slides are reused by the approval of Jeffrey Ullman s

Chapter 6 The database Language SQL as a tutorial

Chapter 2 The relational Model of data. Relational model introduction

Relational Model, Relational Algebra, and SQL

CS145 Introduction. About CS145 Relational Model, Schemas, SQL Semistructured Model, XML

CSCI3030U Database Models

Entity-Relationship Model. Purpose of E/R Model

They like one or more beers and frequent one. Bars have unique names and addresses. They. serve one or more beers and are frequented

CS3DB3/SE4DB3/SE6DB3 TUTORIAL

The Relational Model

CSC 343 Winter SQL: Aggregation, Joins, and Triggers MICHAEL LIUT

SQL: Data Manipulation Language

Relational Query Languages: Relational Algebra. Juliana Freire

Relational Algebra. ICOM 5016 Database Systems. Roadmap. R.A. Operators. Selection. Example: Selection. Relational Algebra. Fundamental Property

What is an Algebra. Core Relational Algebra. What is Relational Algebra? Operação de Seleção. Álgebra Relacional: Resumo

Relational Algebra and SQL

Relational Algebra. Procedural language Six basic operators

CS54100: Database Systems

Relational Databases

SQL. The Basics Advanced Manipulation Constraints Authorization 1. 1

RELATIONAL DATA MODEL: Relational Algebra

e e Conceptual design begins with the collection of requirements and results needed from the database (ER Diag.)

5.2 E xtended Operators of R elational Algebra

A tuple is dangling if it doesn't join with any

SQL DATA DEFINITION LANGUAGE

Constraints. Local and Global Constraints Triggers

SQL: Data Definition Language

Databases 1. Defining Tables, Constraints

2.3 Algorithms Using Map-Reduce

CS54100: Database Systems

Chapter 6: Formal Relational Query Languages

Relational Model. Lecture #6 Autumn, Fall, 2001, LRX

Relational Model and Relational Algebra. Rose-Hulman Institute of Technology Curt Clifton

Relational Algebra. B term 2004: lecture 10, 11

From E/R Diagrams to Relations

Lecture Query evaluation. Combining operators. Logical query optimization. By Marina Barsky Winter 2016, University of Toronto

CS 4604: Introduc0on to Database Management Systems. B. Aditya Prakash Lecture #3: SQL and Rela2onal Algebra- - - Part 1

Entity-Relationship Model

SQL: csc343, Introduction to Databases Renée J. Miller and Fatemeh Nargesian and Sina Sina Meraji. Winter 2018

SQL: Data Manipulation Language. csc343, Introduction to Databases Diane Horton Winter 2017

SQL DATA DEFINITION LANGUAGE

Databases Relational algebra Lectures for mathematics students

SQL DATA DEFINITION LANGUAGE

Relational Database: The Relational Data Model; Operations on Database Relations

Introduction to Query Processing and Query Optimization Techniques. Copyright 2011 Ramez Elmasri and Shamkant Navathe

Algebraic laws extensions to relational algebra

Chapter 2: Intro to Relational Model

From Relational Algebra to the Structured Query Language. Rose-Hulman Institute of Technology Curt Clifton

Beersèname, manfè. Likesèdrinker, beerè. Sellsèbar, beer, priceè. Frequentsèdrinker, barè

RELATIONAL ALGEBRA II. CS121: Relational Databases Fall 2017 Lecture 3

L22: The Relational Model (continued) CS3200 Database design (sp18 s2) 4/5/2018

Structured Query Language Continued. Rose-Hulman Institute of Technology Curt Clifton

Object-Oriented Database Languages. Object Description Language Object Query Language

Chapter 2: Relational Model

ER Model. CSC 343 Winter 2018 MICHAEL LIUT

Relational Algebra. Relational Algebra. 7/4/2017 Md. Golam Moazzam, Dept. of CSE, JU

CS 582 Database Management Systems II

E/R Diagrams! Converting E/R Diagrams to Relations!

Relational Algebra Part I. CS 377: Database Systems

CS 464/564 Introduction to Database Management System Instructor: Abdullah Mueen

4/10/2018. Relational Algebra (RA) 1. Selection (σ) 2. Projection (Π) Note that RA Operators are Compositional! 3.

CS 377 Database Systems

Relational Model History. COSC 416 NoSQL Databases. Relational Model (Review) Relation Example. Relational Model Definitions. Relational Integrity

Transactions, Views, Indexes. Controlling Concurrent Behavior Virtual and Materialized Views Speeding Accesses to Data

Chapter 5 Relational Algebra. Nguyen Thi Ai Thao

Relational Model History. COSC 304 Introduction to Database Systems. Relational Model and Algebra. Relational Model Definitions.

Most database operations involve On- Line Transaction Processing (OTLP).

Ian Kenny. November 28, 2017

Textbook: Chapter 6! CS425 Fall 2013 Boris Glavic! Chapter 3: Formal Relational Query. Relational Algebra! Select Operation Example! Select Operation!

CMP-3440 Database Systems

Interpretation is not exactly ëmissing value." There could be many reasons why no value is

Informationslogistik Unit 4: The Relational Algebra

Database Usage (and Construction)

Today s topics. Null Values. Nulls and Views in SQL. Standard Boolean 2-valued logic 9/5/17. 2-valued logic does not work for nulls

Missing Information. We ve assumed every tuple has a value for every attribute. But sometimes information is missing. Two common scenarios:

Contains slides made by Naci Akkøk, Pål Halvorsen, Arthur M. Keller, Vera Goebel

The Relational Data Model. Functional Dependencies. Example. Functional Dependencies

ENTITY-RELATIONSHIP MODEL

Transcription:

CS 317/387 Towards SQL - Relational Algebra A Relation is a Table Attributes (column headers) Tuples (rows) name manf Winterbrew Pete s Bud Lite Anheuser-Busch Beers Schemas Relation schema = relation name and attribute list. Optionally: types of attributes. Example: Beers(name, manf) or Beers(name: string, manf: string) Database = collection of relations. Database schema = set of all relation schemas in the database. 1

Why Relations? Very simple model. Often matches how we think about data. Abstract model that underlies SQL, the most important database language today. From E/R Diagrams to Relations Entity set -> relation. Attributes -> attributes. Relationships -> relations whose attributes are only: The keys of the connected entity sets. Attributes of the relationship itself. Entity Set -> Relation name manf Beers Relation: Beers(name, manf) 2

Relationship -> Relation name addr name manf husband Drinkers Likes Beers Buddies Married wife Favorite Likes(drinker, beer) Favorite(drinker, beer) Buddies(name1, name2) Married(husband, wife) What is an Algebra Mathematical system consisting of: Operands --- variables or values from which new values can be constructed. Operators --- symbols denoting procedures that construct new values from given values. More on Algebras Arithmetic: operands are variables and constants, operators are +,,,, /, etc. Set algebra: operands are sets and operators are Union, Intersection Set Difference etc. An algebra allows us to construct expressions by combining operands and expression using operators. a2 + 2 a b + b2, (a + b)2. R (R-S), R S etc. 3

What is Relational Algebra? An algebra whose operands are relations or variables that represent relations. Operators are designed to do the most common things that we need to do with relations in a database. The result is an algebra that can be used as a basis for a query language for relations. Relational algebra is a notation for specifying queries about the contents of relations. Notation of relational algebra eases the task of reasoning about queries. Operations in relational algebra have counterparts in SQL. Roadmap There is a core relational algebra that has traditionally been thought of as the relational algebra. But there are several other operators we shall add to the core in order to model better the language SQL --- the principal language used in relational database systems. Core Relational Algebra Union, intersection, and difference. Usual set operations, but require both operands have the same relation schema. Selection: picking certain rows. Projection: picking certain columns. Both Selection and Projection remove certain parts of a relation! Products and joins: compositions of relations. Renaming of relations and attributes. 4

Union The union of two relations R and S is the set of tuples that are in R or in S or in both. R and S must have identical sets of attributes and the types of the attributes must be the same. The attributes of R must occur in the same order as the attributes in S. RA R S (SELECT * FROM R) UNION (SELECT * FROM S); Intersection The intersection of two relations R and S is the set of tuples that are in both R and S. Same conditions hold on R and S as for the union operator. RA R S (SELECT * FROM R) INTERSECT (SELECT * FROM S); Difference The difference of two relations R and S is the set of tuples that are in R but not in S. Same conditions hold on R and S as for the union operator. RA: R S (SELECT * FROM R) EXCEPT (SELECT * FROM S); R (R-S) =?? R S 5

Selection R1 := SELECT C (R2) C is a condition (as in if statements) that refers to attributes of R2. R1 is all those tuples of R2 that satisfy C. Basis of: SELECT * FROM R WHERE C; More on Selection Syntax of C: similar to conditionals in programming languages. Values compared are constants and attributes of the relations mentioned in the FROM clause. We may apply usual arithmetic operators to numeric values before comparing them. SQL Compare values using =, <, >, <=, >=. Example Relation Sells: bar beer price Joe s Bud 2.50 Joe s Miller 2.75 Sue s Bud 2.50 Sue s Miller 3.00 JoeMenu := SELECT bar= Joe s (Sells): bar beer price Joe s Bud 2.50 Joe s Miller 2.75 6

Projection R1 := PROJ L (R2) L is a list of attributes from the schema of R2. Same as selecting select columns from a table. R1 is constructed by looking at each tuple of R2, extracting the attributes on list L, in the order specified, and creating from those components a tuple for R1. Eliminate duplicate tuples, if any. SELECT A1, A2,..., An FROM R; Example Relation Sells: bar beer price Joe s Bud 2.50 Joe s Miller 2.75 Sue s Bud 2.50 Sue s Miller 3.00 Prices := PROJ beer,price (Sells): beer price Bud 2.50 Miller 2.75 Miller 3.00 Product R3 := R1 * R2 Pair each tuple t1 of R1 with each tuple t2 of R2. Concatenation t1t2 is a tuple of R3. Schema of R3 is the attributes of R1 and then R2, in order. But beware attribute A of the same name in R1 and R2: use R1.A and R2.A. SELECT * FROM R1, R2 7

Example: R3 := R1 * R2 R1( A, B ) 3 4 R2( B, C ) 5 6 7 8 9 10 R3( A, R1.B, R2.B, C ) 5 6 7 8 9 10 3 4 5 6 3 4 7 8 3 4 9 10 Theta-Join R3 := R1 JOIN C R2 Set of tuples in the Cartesian product that satisfies some condition C Computing it Take the product R1 * R2. Then apply SELECT C to the result. C can be any boolean-valued condition. Historic versions of this operator allowed only A θ B, where θ is =, <, etc.; hence the name theta-join. SELECT * from R1, R2 WHERE C Example Sells( bar, beer, price ) Bars( name, addr ) Joe s Bud 2.50 Joe s Maple St. Joe s Miller 2.75 Sue s River Rd. Sue s Bud 2.50 Sue s Coors 3.00 BarInfo := Sells JOIN Sells.bar = Bars.name Bars BarInfo( bar, beer, price, name, addr ) Joe s Bud 2.50 Joe s Maple St. Joe s Miller 2.75 Joe s Maple St. Sue s Bud 2.50 Sue s River Rd. Sue s Coors 3.00 Sue s River Rd. 8

Natural Join The natural join of two relations R and S is a set of pairs of tuples, one from R and one from S, that agree on whatever attributes are common to the schemas of R and S Connect two relations by: Equating attributes of the same name, and Projecting out one copy of each pair of equated attributes. The schema for the result contains the union of the attributes of R and S. Denoted R3 := R1 JOIN R2 Example Sells( bar, beer, price ) Bars( bar, addr ) Joe s Bud 2.50 Joe s Maple St. Joe s Miller 2.75 Sue s River Rd. Sue s Bud 2.50 Ben s Central Av Sue s Coors 3.00 BarInfo := Sells JOIN Bars Note: Bars.name has become Bars.bar to make the natural join work. BarInfo( bar, beer, price, addr ) Joe s Bud 2.50 Maple St. Joe s Milller 2.75 Maple St. Sue s Bud 2.50 River Rd. Sue s Coors 3.00 River Rd. More on Natural Join A dangling tuple is one that fails to pair with any tuple in the other relation. Ben s bar on Central Ave. in the previous example R(A,B, C) and S(B, C,D). SELECT R.A, R.B, R.C, S.D FROM R,S WHERE R.B = S.B AND R.C = S.C; 9

Renaming The RENAME operator gives a new schema to a relation. R1 := RENAME R1(A1,,An) (R2) makes R1 be a relation with attributes A1,,An and the same tuples as R2. Simplified notation: R1(A1,,An) := R2. Example Bars( name, addr ) Joe s Maple St. Sue s River Rd. Pubs(bar, addr) := Bars Pubs( bar, addr ) Joe s Maple St. Sue s River Rd. Building Complex Expressions Combine operators with parentheses and precedence rules. Three notations, just as in arithmetic: 1. Sequences of assignment statements. 2. Expressions with several operators. 3. Expression trees. 10

Sequences of Assignments Create temporary relation names. Renaming can be implied by giving relations a list of attributes. Example: R3 := R1 JOIN C R2 can be written: R4 := R1 * R2 R3 := SELECT C (R4) Expressions in a Single Assignment Example: the theta-join R3 := R1 JOIN C R2 can be written: R3 := SELECT C (R1 * R2) Precedence of relational operators: 1. [SELECT, PROJECT, RENAME] (highest). 2. [PRODUCT, JOIN]. 3. INTERSECTION. 4. [UNION, --] Expression Trees Leaves are operands --- either variables standing for relations or particular, constant relations. Interior nodes are operators, applied to their child or children. 11

Example Using the relations Bars(name, addr) and Sells(bar, beer, price), find the names of all the bars that are either on Maple St. or sell Budweiser for less than $3. As a Tree: UNION RENAME R(name) PROJECT name PROJECT bar SELECT addr = Maple St. SELECT price<3 AND beer= Bud Bars Sells Example Using Sells(bar, beer, price), find the bars that sell two different beers at the same price. Strategy: by renaming, define a copy of Sells, called S(bar, beer1, price). The natural join of Sells and S consists of quadruples (bar, beer, beer1, price) such that the bar sells both beers at this price. 12

The Tree PROJECT bar SELECT beer!= beer1 JOIN RENAME S(bar, beer1, price) Sells Sells Schemas for Results Union, intersection, and difference: the schemas of the two operands must be the same, so use that schema for the result. Selection: schema of the result is the same as the schema of the operand. Projection: list of attributes tells us the schema. Schemas for Results --- (2) Product: schema is the attributes of both relations. Use R.A, etc., to distinguish two attributes named A. Theta-join: same as product. Natural join: union of the attributes of the two relations. Renaming: the operator tells the schema. 13

Relational Algebra on Bags A bag (or multiset ) is like a set, but an element may appear more than once. Example: {1,2,1,3} is a bag. Example: {1,2,3} is also a bag that happens to be a set. Why Bags? SQL, the most important query language for relational databases, is actually a bag language. Some operations, like projection, are much more efficient on bags than sets. Operations on Bags Selection applies to each tuple, so its effect on bags is like its effect on sets. Projection also applies to each tuple, but as a bag operator, we do not eliminate duplicates. Products and joins are done on each pair of tuples, so duplicates in bags have no effect on how we operate. 14

Example: Bag Selection R( A, B ) 5 6 SELECT A+B<5 (R) = A B Example: Bag Projection R( A, B ) 5 6 PROJECT A (R) = A 1 5 1 Example: Bag Product R( A, B ) S( B, C ) 3 4 5 6 7 8 R * S = A R.B S.B C 3 4 7 8 5 6 3 4 5 6 7 8 3 4 7 8 15

Example: Bag Theta-Join R( A, B ) S( B, C ) 3 4 5 6 7 8 R JOIN R.B<S.B S = A R.B S.B C 3 4 7 8 5 6 7 8 3 4 7 8 Bag Union An element appears in the union of two bags the sum of the number of times it appears in each bag. {1,2,1} {1,1,2,3,1} = {1,1,1,1,1,2,2,3} Bag Intersection An element appears in the intersection of two bags the minimum of the number of times it appears in either. {1,2,1,1} {1,2,1,3} = {1,1,2}. 16

Bag Difference An element appears in the difference A B of bags as many times as it appears in A, minus the number of times it appears in B. But never less than 0 times. {1,2,1,1} {1,2,3} = {1,1}. Beware: Bag Laws!= Set Laws Some, but not all algebraic laws that hold for sets also hold for bags. Question: Does the commutative law for Union hold for bags? Answer: The commutative law for union (R S = S R ) does hold for bags. Since addition is commutative, adding the number of times x appears in R and S doesn t depend on the order of R and S. More on sets Vs bags Set union is idempotent, meaning that S S = S. Question: Is Bag union idempotent? Answer: If x appears n times in S, then it appears 2n times in S S. Thus S S!= S in general. 17

The Extended Algebra DELTA = eliminate duplicates from bags. TAU = sort tuples. Extended projection : arithmetic, duplication of columns. GAMMA = grouping and aggregation. Outerjoin : avoids dangling tuples = tuples that do not join with anything. Duplicate Elimination R1 := DELTA(R2). R1 consists of one copy of each tuple that appears in R2 one or more times. Example: Duplicate Elimination R = ( A B ) 3 4 DELTA(R) = A B 3 4 18

Sorting R1 := TAU L (R2). L is a list of some of the attributes of R2. R1 is the list of tuples of R2 sorted first on the value of the first attribute on L, then on the second attribute of L, and so on. Break ties arbitrarily. Example: Sorting R = ( A B ) 3 4 5 2 TAU B (R) = [(5,2), (1,2), (3,4)] Extended Projection Using the same PROJ L operator, we allow the list L to contain arbitrary expressions involving attributes, for example: 1. Arithmetic on attributes, e.g., A+B. 2. Duplicate occurrences of the same attribute. 19

Example: Extended Projection R = ( A B ) 3 4 PROJ A+B,A,A (R) = A+B A1 A2 3 1 1 7 3 3 Aggregation Operators Aggregation operators are not operators of relational algebra. Rather, they apply to entire columns of a table and produce a single result. The most important examples: SUM, AVG, COUNT, MIN, and MAX. Example: Aggregation R = ( A B ) 1 3 3 4 3 2 SUM(A) = 7 COUNT(A) = 3 MAX(B) = 4 AVG(B) = 3 20

Grouping Operator R1 := GAMMA L (R2) L is a list of elements that are either: 1. Individual (grouping ) attributes. 2. AGG(A ), where AGG is one of the aggregation operators and A is an attribute. Applying GAMMA L (R) Group R according to all the grouping attributes on list L. That is: form one group for each distinct list of values for those attributes in R. Within each group, compute AGG(A ) for each aggregation on list L. Result has one tuple for each group: 1. The grouping attributes and 2. Their group s aggregations. Example: Grouping/Aggregation R = ( A B C ) 3 4 5 6 5 GAMMA A,B,AVG(C) (R) =?? First, group R by A and B : A B C 3 5 4 5 6 Then, average C within groups: A B AVG(C) 4 4 5 6 21

Outerjoin Suppose we join R JOIN C S. A tuple of R that has no tuple of S with which it joins is said to be dangling. Similarly for a tuple of S. Outerjoin preserves dangling tuples by padding them with a special NULL symbol in the result. Example: Outerjoin R = ( A B ) S = ( B C ) 2 3 4 5 6 7 (1,2) joins with (2,3), but the other two tuples are dangling. R OUTERJOIN S = A B C 3 4 5 NULL NULL 6 7 22