Overview. Factorial Revisited. Iteration via Tail Recursion in Racket. An itera*ve approach to factorial. What is itera*on?

Similar documents
Overview. Iteration via Tail Recursion in Racket. Factorial Revisited. An itera*ve approach to factorial. What is itera*on?

Overview. Iteration via Tail Recursion in Racket SOLUTIONS. Factorial Revisited. An itera*ve approach to factorial

Func+on applica+ons (calls, invoca+ons)

CS251 Programming Languages Spring 2016, Lyn Turbak Department of Computer Science Wellesley College

Racket Values. cons Glues Two Values into a Pair. The Pros of cons: Programming with Pairs and Lists. Box-and-pointer diagrams for cons trees

Recursive List Func.ons in Racket

61A LECTURE 22 TAIL CALLS, ITERATORS. Steven Tang and Eric Tzeng July 30, 2013

Algorithm Design and Recursion. Search and Sort Algorithms

Admin. How's the project coming? After these slides, read chapter 13 in your book. Quizzes will return

Fruitful Recursion (recursion that returns a value)

CS116 - Module 5 - Accumulative Recursion

CS251 Programming Languages Spring 2016, Lyn Turbak Department of Computer Science Wellesley College

Principles of Programming Languages

Functional Programming - 2. Higher Order Functions

Introduc)on To Standard ML

ITERATORS AND STREAMS 9

PostFix. PostFix command semanccs (except exec) PostFix Syntax. A PostFix Interpreter in Racket. CS251 Programming Languages Spring 2018, Lyn Turbak

Recursion(int day){return Recursion(day += 1);} Comp Sci 1575 Data Structures. Recursive design. Convert loops to recursion

Summer 2017 Discussion 10: July 25, Introduction. 2 Primitives and Define

RACKET BASICS, ORDER OF EVALUATION, RECURSION 1

PostFix. PostFix command semanccs (except exec) PostFix Syntax. A PostFix Interpreter in Racket. CS251 Programming Languages Fall 2017, Lyn Turbak

Interpreters and Tail Calls Fall 2017 Discussion 8: November 1, 2017 Solutions. 1 Calculator. calc> (+ 2 2) 4

A Func'onal Introduc'on. COS 326 David Walker Princeton University

CS 340 Spring 2019 Midterm Exam

Introduction to Functional Programming

Module 10: Imperative Programming, Modularization, and The Future

Ways to implement a language

Tail Recursion and Accumulators

Functions. CS10001: Programming & Data Structures. Sudeshna Sarkar Professor, Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur

Delayed Expressions Fall 2017 Discussion 9: November 8, Iterables and Iterators. For Loops. Other Iterable Uses

SCHEME 10 COMPUTER SCIENCE 61A. July 26, Warm Up: Conditional Expressions. 1. What does Scheme print? scm> (if (or #t (/ 1 0)) 1 (/ 1 0))

Recursion CS GMU

LISP: LISt Processing

TAIL RECURSION, SCOPE, AND PROJECT 4 11

A brief tour of history

Racket Values. cons Glues Two Values into a Pair. The Pros of cons: Pairs and Lists in Racket. Box-and-pointer diagrams for cons trees

What is an algorithm?

Fall 2017 Discussion 7: October 25, 2017 Solutions. 1 Introduction. 2 Primitives

Tail Recursion. ;; a recursive program for factorial (define fact (lambda (m) ;; m is non-negative (if (= m 0) 1 (* m (fact (- m 1))))))

TAIL CALLS, ITERATORS, AND GENERATORS 11

Lecture #24: Programming Languages and Programs

Macros & Streams Spring 2018 Discussion 9: April 11, Macros

Spring 2018 Discussion 7: March 21, Introduction. 2 Primitives

INTERPRETERS 8. 1 Calculator COMPUTER SCIENCE 61A. November 3, 2016

Generative and accumulative recursion. What is generative recursion? Example revisited: GCD. Readings: Sections 25, 26, 27, 30, 31

Iteration Part 1. Motivation for iteration. How does a for loop work? Execution model of a for loop. What is Iteration?

BBM 101 Introduc/on to Programming I Fall 2014, Lecture 7. Aykut Erdem, Erkut Erdem, Fuat Akal

CS1 Recitation. Week 2

Scheme as implemented by Racket

Functions and Recursion. Dr. Philip Cannata 1

CS 209 Functional Programming

SCHEME 8. 1 Introduction. 2 Primitives COMPUTER SCIENCE 61A. March 23, 2017

COMP 202 Recursion. CONTENTS: Recursion. COMP Recursion 1

What is recursion? Recursion. How can a function call itself? Recursive message() modified. Week 10. contains a reference to itself.

Lecture 5: Lazy Evaluation and Infinite Data Structures

First-Class Synchronization Barriers. Franklyn Turbak Wellesley College

CSCE 314 Programming Languages

Design and Debug: Essen.al Concepts Numerical Conversions CS 16: Solving Problems with Computers Lecture #7

301AA - Advanced Programming

CSCC24 Functional Programming Scheme Part 2

The Haskell HOP: Higher-order Programming

Shell CSCE 314 TAMU. Higher Order Functions

RECURSION, RECURSION, (TREE) RECURSION! 3

List Processing in SML

Module 05: Types of recursion

6.001 Notes: Section 4.1

CS 206 Introduction to Computer Science II

Comp215: More Recursion

Recursion. Genome 559: Introduction to Statistical and Computational Genomics Elhanan Borenstein

RECURSION 7. 1 Recursion COMPUTER SCIENCE 61A. October 15, 2012

Computer Science 210 Data Structures Siena College Fall Topic Notes: Recursive Methods

Chapter 1. Fundamentals of Higher Order Programming

INTERPRETERS AND TAIL CALLS 9

List Processing in SML

CSE 341 : Programming Languages Midterm, Spring 2015

CSC 533: Programming Languages. Spring 2015

INTRODUCTION TO HASKELL

CS 61A Interpreters, Tail Calls, Macros, Streams, Iterators. Spring 2019 Guerrilla Section 5: April 20, Interpreters.

(Func&onal (Programming (in (Scheme)))) Jianguo Lu

Programming Languages. Streams Wrapup, Memoization, Type Systems, and Some Monty Python

Booleans (aka Truth Values) Programming Languages and Compilers (CS 421) Booleans and Short-Circuit Evaluation. Tuples as Values.

Types of recursion. Structural vs. general recursion. Pure structural recursion. Readings: none. In this module: learn to use accumulative recursion

Recursive Definitions

Functional Programming in Haskell for A level teachers

ITERATION AND RECURSION 3

Data structure and algorithm in Python

Quick announcement. Midterm date is Wednesday Oct 24, 11-12pm.

Week - 03 Lecture - 18 Recursion. For the last lecture of this week, we will look at recursive functions. (Refer Slide Time: 00:05)

Teach A level Compu/ng: Algorithms and Data Structures

CS450 - Structure of Higher Level Languages

Design and Debug: Essen.al Concepts CS 16: Solving Problems with Computers I Lecture #8

Homework 5. Notes. Turn-In Instructions. Reading. Problems. Handout 19 CSCI 334: Spring (Required) Read Mitchell, Chapters 6 and 7.

Continuation Passing Style. Continuation Passing Style

# true;; - : bool = true. # false;; - : bool = false 9/10/ // = {s (5, "hi", 3.2), c 4, a 1, b 5} 9/10/2017 4

Structure and Interpretation of Computer Programs Spring 2014 Final (with corrections)

Introduction to Functional Programming in Racket. CS 550 Programming Languages Jeremy Johnson

Use recursion to write a function that duplicates the following function: (def (f L) (map (lambda (x) (+ (sqr x) x)) L))

Types of recursion. Readings: none. In this module: a glimpse of non-structural recursion. CS 135 Winter : Types of recursion 1

STUDENT LESSON A9 Recursion

RECURSION, RECURSION, (TREE) RECURSION! 2

Transcription:

Iteration via Tail Recursion in Racket CS251 Programming Languages Spring 2019, Lyn Turbak What is itera*on? Overview Racket has no loops, and yet can express itera*on. How can that be? - Tail recursion! Tail recursive list processing via foldl Other useful abstrac*ons - General itera*on via iterate and iterate-apply - General itera*on via genlist and genlist-apply Department of Computer Science Wellesley College 2 Factorial Revisited Invoca'on Tree An itera*ve approach to factorial (define (fact-rec n) (fact-rec 4): 24 (if (= n 0) 1 pending multiplication is nontrivial glue step -1 * (* n (fact-rec (- n 1))))) (fact-rec 3): 6 Small-Step Seman'cs ({fact-rec} 4) {(λ_fact-rec 4)} * (* 4 {(λ_fact-rec 3)}) * (* 4 (* 3 {(λ_fact-rec 2)})) * (* 4 (* 3 (* 2 {(λ_fact-rec 1)}))) * (* 4 (* 3 (* 2 (* 1 {(λ_fact-rec 0)})))) * (* 4 (* 3 (* 2 {(* 1 1)}))) (* 4 (* 3 {(* 2 1)})) (* 4 {(* 3 2)}) {(* 4 6)} 24 divide -1 (fact-rec 2): 2-1 (fact-rec 1): 1-1 (fact-rec 0): 1 * * * glue 3 divide Idea: multiply on way down 4 1-1 * 3 4-1 * 2 12-1 * 1 24-1 * 0 24 State Variables: num is the current number being processed. prod is the product of all numbers already processed. Itera'on Table: step num prod 1 4 1 2 3 4 3 2 12 4 1 24 5 0 24 Itera'on Rules: next num is previous num minus 1. next prod is previous num 'mes previous prod. 4

Itera*ve factorial: tail recursive version in Racket stopping condition State Variables: num is the current number being processed. prod is the product of all numbers already processed. (define (fact-tail num prod ) (if (= num 0) prod (fact-tail (- num 1) (* num prod)))) tail call (no pending operations) expresses iteration rules Itera'on Rules: next num is previous num minus 1. next prod is previous num 'mes previous prod. ;; Here, and in many tail recursions, need a wrapper ;; function to initialize first row of iteration ;; table. E.g., invoke (fact-iter 4) to calculate 4! (define (fact-iter n) (fact-tail n 1)) 5 Tail-recursive factorial: Dynamic execu*on (define (fact-iter n) (fact-tail n 1)) (define (fact-tail num prod) (if (= num 0) prod (fact-tail (- num 1) (* num prod)))) Small-Step Seman'cs ({fact-iter} 4) {(λ_fact-iter 4)} {(λ_fact-tail 4 1)} * {(λ_fact-tail 3 4)} * {(λ_fact-tail 2 12)} * {(λ_fact-tail 1 24)} * {(λ_fact-tail 0 24)} * 24 Itera'on Table divide step num prod 1 4 1 2 3 4 3 2 12 4 1 24 5 0 24 Invoca'on Tree (fact-iter 4) (fact-tail 4 1) (fact-tail 3 4) (fact-tail 2 12) (fact-tail 1 24) (fact-tail 0 24) no glue! 6 The essence of itera*on in Racket A process is itera*ve if it can be expressed as a sequence of steps that is repeated un*l some stopping condi*on is reached. In divide/conquer/glue methodology, an itera*ve process is a recursive process with a single subproblem and no glue step. Each recursive method call is a tail call -- i.e., a method call with no pending opera*ons aser the call. When all recursive calls of a method are tail calls, it is said to be tail recursive. A tail recursive method is one way to specify an itera*ve process. Itera*on is so common that most programming languages provide special constructs for specifying it, known as loops. inc-rec in Racket ; Extremely silly and inefficient recursive incrementing ; function for testing Racket stack memory limits (define (inc-rec n) (if (= n 0) 1 (+ 1 (inc-rec (- n 1))))) > (inc-rec 1000000) ; 10^6 1000001 > (inc-rec 10000000) ; 10^7 Eventually run out of stack space 7 8

inc_rec in Python inc-iter/inc-tail in Racket def inc_rec (n): if n == 0: return 1 else: return 1 + inc_rec(n - 1) In [16]: inc_rec(100) Out[16]: 101 In [17]: inc_rec(1000) in inc_rec(n) 9 return 1 10 else: ---> 11 return 1 + inc_rec(n 1) RuntimeError: maximum recursion depth exceeded Very small maximum recursion depth (implementation dependent) (define (inc-iter n) (inc-tail n 1)) (define (inc-tail num resultsofar) (if (= num 0) resultsofar (inc-tail (- num 1) (+ resultsofar 1)))) > (inc-iter 10000000) ; 10^7 10000001 > (inc-iter 100000000) ; 10^8 100000001 Will inc-iter ever run out of memory? 9 10 inc_iter/int_tail in Python def inc_iter (n): # Not really iterative! return inc_tail(n, 1) def inc_tail(num, resultsofar): if num == 0: return resultsofar else: return inc_tail(num - 1, resultsofar + 1) In [19]: inc_iter(100) Out[19]: 101 In [19]: inc_iter(1000) RuntimeError: maximum recursion depth exceeded Although tail recursion expresses iteration in Racket (and SML), it does *not* express iteration in Python (or JavaScript, C, Java, etc.) 11 it(2,2) Why the Difference? it(1,3) it(2,2) it(0,4) it(1,3) it(2,2) it(0,4): 4 it(1,3) it(2,2) it(1,3): 4 it(2,2) it(2,2): 4 : 4 Python pushes a stack frame for every call to iter_tail. When iter_tail(0,4) returns the answer 4, the stacked frames must be popped even though no other work remains to be done coming out of the recursion. it(2,2) it(1,3) it(0,4) it(0,4): 4 Racket s tail-call op*miza*on replaces the current stack frame with a new stack frame when a tail call (func*on call not in a subexpression posi*on) is made. When iter-tail(0,4) returns 4, no unnecessarily stacked frames need to be popped! 12

Origins of Tail Recursion What to do in Python (and most other languages)? In Python, must re-express the tail recursion as a loop! One of the most important but least appreciated CS papers of all *me Treat a func*on call as a GOTO that passes arguments Func*on calls should not push stack; subexpression evalua*on should! Guy Lewis Steele a.k.a. ``The Great Quux Looping constructs are unnecessary; tail recursive calls are a more general and elegant way to express itera*on. def inc_loop (n): resultsofar = 0 while n > 0: n = n - 1 resultsofar = resultsofar + 1 return resultsofar In [23]: inc_loop(1000) # 10^3 Out[23]: 1001 In [24]: inc_loop(10000000) # 10^8 Out[24]: 10000001 But Racket doesn t need loop constructs because tail recursion suffices for expressing itera*on! 13 14 Itera*ve factorial: Python while loop version while loop factorial: Execu*on Land Itera*on Rules: next num is previous num minus 1. next prod is previous num *mes previous prod. def fact_while(n): num = n prod = 1 while (num > 0): prod = num * prod num = num - 1 return prod Declare/ini'alize local state variables Calculate product and decrement num Dont forget to return answer! Execu'on frame for fact_while(4) num = n prod = 1 while (num > 0): prod = num * prod num = num - 1 return prod n 4 num prod 4 1 3 4 2 12 1 24 0 24 step num prod 1 4 1 2 3 4 3 2 12 4 1 24 5 0 24 15 16

Gotcha! Order of assignments in loop body What s wrong with the following loop version of factorial? def fact_while(n): num = n prod = 1 while (num > 0): num = num - 1 prod = num * prod return prod In [23]: fact_while(4) Out[23]: 6 Rela*ng Tail Recursion and while loops (define (fact-iter n) (fact-tail n 1)) Ini'alize variables (define (fact-tail num prod) (if (= num 0) prod (fact-tail (- num 1) (* num prod)))) Moral: must think carefully about order of assignments in loop body! Note: tail recursion doesn t have this gotcha! (define (fact-tail num prod ) (if (= num 0) ans (fact-tail (- num 1) (* num prod)))) When done, return ans def fact_while(n): num = n prod = 1 while (num > 0): prod = num * prod num = num 1 return prod While not done, update variables 17 18 Recursive Fibonacci Itera*on leads to a more efficient Fib (define (fib-rec n) ; returns rabbit pairs at month n (if (< n 2) ; assume n >= 0 n (+ (fib-rec (- n 1)) ; pairs alive last month (fib-rec (- n 2)) ; newborn pairs ))) The Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, Itera*on table for calcula*ng the 8th Fibonacci number: n i fibi fibi+1 8 0 0 1 8 1 1 1 fib(4) : 3 + 8 2 1 2 8 3 2 3 fib(3) : 2 + fib(2) : 1 + 8 4 3 5 8 5 5 8 fib(2) : 1 + fib(1) : 1 fib(1) : 1 fib(0) : 0 8 6 8 13 8 7 13 21 fib(1) : 1 fib(0) : 0 8 8 21 34 19 20

Itera*ve Fibonacci in Racket Gotcha! Assignment order and temporary variables Flesh out the missing parts (define (fib-iter n) (fib-tail n 0 0 1) ) (define (fib-tail n i fibi fibi+1) (if (= i n) fibi (fib-tail n (+ i 1) fibi+1 (+ fibi fibi+1))) ) 21 What s wrong with the following looping versions of Fibonacci? def fib_for1(n): fib_i= 0 fib_i_plus_1 = 1 for i in range(n): fib_i = fib_i_plus_1 fib_i_plus_1 = fib_i + fib_i_plus_1 return fib_i def fib_for2(n): fib_i= 0 fib_i_plus_1 = 1 for i in range(n): fib_i_plus_1 = fib_i + fib_i_plus_1 fib_i = fib_i_plus_1 return fib_i Moral: some*mes no order of assignments to state variables in a loop is correct and it is necessary to introduce one or more temporary variables to save the previous value of a variable for use in the right-hand side of a later assignment. Or can use simultaneous assignment in languages that have it (like Python!) 22 Fixing Gotcha Local fib-tail func*on in fib-iter 1. Use a temporary variable (in general, might need n-1 such vars for n state variables Can define fib-tail locally within fib-iter. def fib_for_fixed1(n): fib_i= 0 fib_i_plus_1 = 1 for i in range(n): fib_i_prev = fib_i fib_i = fib_i_plus_1 fib_i_plus_1 = fib_i_prev + fib_i_plus_1 return fib_i 2. Use simultaneous assignment: def fib_for_fixed2(n): fib_i= 0 fib_i_plus_1 = 1 for i in range(n): (fib_i, fib_i_plus_1) =\ (fib_i_plus_1, fib_i + fib_i_plus_1) return fib_i Since n remains constant, don t need it as an argument to local fib-tail. (define (fib-iter n) (define (fib-tail i fibi fibi+1) (if (= i n) fibi (fib-tail (+ i 1) fibi+1 (+ fibi fibi+1)))) (fib-tail 0 0 1) ) 23 24

Itera*ve List Summa*on 6 3-5 7 nums Iteration table sumsofar '(6 3-5 7) 0 '(3-5 7) 6 '(-5 7) 9 '(7) 4 () 11 (define (sumlist-iter L) (sumlist-tail L 0 )) Capturing list itera*on via my-foldl V 1 V 2 V n-1 V n initval combine combine combine combine (initval is the ini*al resultsofar) (define (sumlist-tail nums sumsofar) (if (null? nums) sumsofar (sumlist-tail (rest nums) (+ (first nums) sumsofar)))) (define (my-foldl combine resultsofar xs) (if (null? xs) resultsofar (my-foldl combiner (combine (first xs) resultsofar) (rest xs)))) 25 26 combine foldr vs foldl combine combine combine V 1 V 2 V n-1 V n initval combine combine combine combine nullval my-foldl Examples > (my-foldl + 0 (list 7 2 4)) 13 > (my-foldl * 1 (list 7 2 4)) 56 > (my-foldl - 0 (list 7 2 4)) 9 > (my-foldl cons null (list 7 2 4)) '(4 2 7) > (my-foldl (λ (n res) (+ (* 3 res) n)) 0 (list 10-4 5 2)) 251 ; = 10*3^3 + -4*3^2 + 5*3^1 + 2*3&0 ; An example of Horner s method ; for polynomial evaluation 27 28

Built-in Racket foldl Func*on Folds over Any Number of Lists > (foldl cons null (list 7 2 4)) '(4 2 7) > (foldl (λ (a b res) (+ (* a b) res)) 56 0 (list 2 3 4) (list 5 6 7)) > (foldl (λ (a b res) (+ (* a b) res)) 0 (list 1 2 3 4) (list 5 6 7)) Same design decision as in map and foldr > ERROR: foldl: given list does not have the same size as the first list: '(5 6 7) 29 Itera*ve vs Recursive List Reversal (define (reverse-iter xs) (foldl cons null xs)) (define (snoc x ys) (foldr cons (list x) ys)) (define (reverse-rec xs) (foldr snoc null xs)) How do these compare in terms of the number of conses performed for a list of length 100? 1000? n? How about stack depth? 30 What does this do? Tail Recursion Review 1 (define (whatisit f xs) (foldl (λ (x listsofar) (cons (f x) listsofar)) null xs))) # Euclid s algorithm def gcd(a,b): while b!= 0: temp = b b = a % b a = temp return a 1. Create an iteration table for gcd(42,72) 2. Translate Python gcd into Racket tail recursion. 31 32

Tail Recursion Review 2 iterate def toint(digits): i = 0 for d in digits: i = 10*i + d return i 1. Create an iteration table for toint([1,7,2,9]) 2. Translate Python toint into Racket tail recursion. 3. Translate Python toint into Racket foldl. (define (iterate next done? finalize state) (if (done? state) (finalize state) (iterate next done? finalize (next state)))) For example: step num prod 1 4 1 2 3 4 3 2 12 4 1 24 5 0 24 (define (fact-iterate n) (iterate (λ (num&prod) (list (- (first num&prod) 1) (* (first num&prod) (second num&prod)))) (λ (num&prod) (<= (first num&prod) 0)) (λ (num&prod) (second num&prod)) (list n 1))) step num&prod 1 '(4 1) 2 '(3 4) 3 '(2 12) 4 '(1 24) 5 '(0 24) 33 34 least-power-geq What do These Do? (define (least-power-geq base threshold) (iterate ; next ; done? ; finalize ; initial state )) (define (mystery1 n) ; Assume n >= 0 (iterate (λ (ns) (cons (- (first ns) 1) ns)) (λ (ns) (<= (first ns) 0)) (λ (ns) ns) (list n))) > (least-power-geq 2 10) 16 > (least-power-geq 5 100) 125 (define (mystery2 n) (iterate (λ (ns) (cons (quotient (first ns) 2) ns)) (λ (ns) (<= (first ns) 1)) (λ (ns) (- (length ns) 1)) (list n))) > (least-power-geq 3 100) 243 How could we return just the exponent rather than the base raised to the exponent? 35 36

Using let to introduce local names Using match to introduce local names (define (fact-let n) (iterate (λ (num&prod) (let ([num (first num&prod)] [prod (second num&prod)]) (list (- num 1) (* num prod)))) (λ (num&prod) (<= (first num&prod) 0)) (λ (num&prod) (second num&prod)) (list n 1))) (define (fact-match n) (iterate (λ (num&prod) (match num&prod [(list num prod) (list (- num 1) (* num prod))])) (λ (num&prod) (match num&prod [(list num prod) (<= num 0)])) (λ (num&prod) (match num&prod [(list num prod) prod])) (list n 1))) 37 38 Racket s apply iterate-apply: a kinder, gentler iterate (define (avg a b) (/ (+ a b) 2)) > (avg 6 10) 8 > (apply avg '(6 10)) 8 > ((λ (a b c) (+ (* a b) c)) 2 3 4) 10 > (apply (λ (a b c) (+ (* a b) c)) (list 2 3 4)) 10 apply takes (1) a func*on and (2) a single argument that is a list of values and returns the result of applying the func*on to the values. 39 (define (iterate-apply next done? finalize state) (if (apply done? state) (apply finalize state) (iterate-apply next done? finalize (apply next state)))) (define (fact-iterate-apply n) (iterate-apply (λ (num prod) (list (- num 1) (* num prod))) (λ (num prod) (<= num 0)) (λ (num prod) prod) step num prod (list n 1))) 1 4 1 2 3 4 3 2 12 4 1 24 5 0 24 40

iterate-apply: fib and gcd (define (fib-iterate-apply n) (iterate-apply (lambda (i fibi fibi+1) ; next (list (+ i 1) fibi+1 (+ fibi fibi+1)) (lambda (i fibi fibi+1) (= i n)); done? (lambda (i fibi fibi+1) fib_i) ; finalize (list 0 0 1) )) (define (gcd-iterate-apply a b) (iterate-apply (lambda (a b) (list b (remainder a b)) (lambda (a b) (= b 0) (lambda (a b) a) (list a b))) )) ; init state ; next ; done? ; finalize ; init state n i fibi fibi+1 8 0 0 1 8 1 1 1 8 2 1 2 8 3 2 3 8 4 3 5 8 5 5 8 8 6 8 13 8 7 13 21 8 8 21 34 a b 42 72 72 42 42 30 30 12 12 6 6 0 seed V1 next done? #f Crea*ng lists with genlist V2 next done? #f Vpenult next Vdone? done? (define (genlist next done? keepdonevalue? seed) (if (done? seed) (if keepdonevalue? (list seed) null) (cons seed (genlist next done? keepdonevalue? (next seed))))) #f Keep Vdone only if keepdonevalue? Is true done? 41 not itera*ve as wrinen, but next func*on gives itera*ve ``flavor 42 Simple genlist examples What are the values of the following calls to genlist? (genlist (λ (n) (- n 1)) (λ (n) (= n 0)) 5) (genlist (λ (n) (* n 2)) (λ (n) (> n 100)) 1) (genlist (λ (n) (- n 1)) (λ (n) (= n 0)) #f 5) '(5 4 3 2 1 0) '(5 4 3 2 1) (genlist (λ (n) (* n 2)) (λ (n) (> n 100)) #f 1) '(1 2 4 8 16 32 64 128) '(1 2 4 8 16 32 64) 43 genlist: my-range and halves (my-range lo hi) > (my-range 10 15) '(10 11 12 13 14) > (my-range 20 10) '() (halves num) > (halves 64) '(64 32 16 8 4 2 1) > (halves 42) '(42 21 10 5 2 1) > (halves -63) '(-63-31 -15-7 -3-1) (define (my-range-genlist lo hi) (genlist (λ (n) (+ n 1)) ; next (λ (n) (>= n hi)) ; done? #f ; keepdonevalue? lo )) (define (halves num) (genlist ; seed (λ (n) (quotient n 2)) ; next (λ (n) (= n 0)) ; done? #f ; keepdonevalue? num )) ; seed 44

Using genlist to generate itera*on tables (define (fact-table n) (genlist (λ (num&prod) (let ((num (first num&ans)) (prod (second num&ans))) (list (- num 1) (* num prod)))) (λ (num&prod) (<= (first num&prod) 0)) (list n 1))) step num prod 1 4 1 2 3 4 3 2 12 4 1 24 5 0 24 > (fact-table 4) '((4 1) (3 4) (2 12) (1 24) (0 24)) > (fact-table 5) '((5 1) (4 5) (3 20) (2 60) (1 120) (0 120)) > (fact-table 10) '((10 1) (9 10) (8 90) (7 720) (6 5040) (5 30240) (4 151200) (3 604800) (2 1814400) (1 3628800) (0 3628800)) 45 Your turn: sum-list itera*on table (define (sum-list-table ns) (genlist (λ (nums&sum) ; next (let {[nums (first nums&ans)] [sum (second nums&ans)]} (list (rest nums) (+ sum (first nums))))) (λ (nums&sum) ; done? (null? (first nums&sum))) ; keepdonevalue? (list ns 0)) ; seed ) > (sum-list-table '(7 2 5 8 4)) '(((7 2 5 8 4) 0) ((2 5 8 4) 7) ((5 8 4) 9) ((8 4) 14) ((4) 22) (() 26)) 46 genlist can collect itera*on table column! ; With table abstraction (define (partial-sums ns) (map second (sum-list-table ns))) ; Without table abstraction (define (partial-sums ns) (map second (genlist (λ (nums&sum) (let ((nums (first nums&ans)) (sum (second nums&ans))) (list (rest nums) (+ (first nums) sum)))) (λ (nums&sum) (null? (first nums&sum))) (list ns 0)))) > (partial-sums '(7 2 5 8 4)) '(0 7 9 14 22 26) Moral: ask yourself the ques*on Can I generate this list as the column of an itera*on table? 47 genlist-apply: a kinder, gentler genlist (define (genlist-apply next done? keepdonevalue? seed) (if (apply done? seed) (if keepdonevalue? (list seed) null) (cons seed (genlist-apply next done? keepdonevalue? (apply next seed))))) Example: (define (partial-sums ns) (map second (genlist-apply (λ (nums ans) (list (rest nums) (+ (first nums) ans))) (λ (nums ans) (null? nums)) (list ns 0)))) 48

partial-sums-between (define (partial-sums-between lo hi) (map second (genlist-apply (λ (num sum) ; next (list (+ num 1) (+ num sum))) (λ (num sum) ; done? (> num hi)) ; keepdonevalue? (list lo 0) ; seed ))) Itera*ve Version of genlist ;; Returns the same list as genlist, but requires only ;; constant stack depth (*not* proportional to list length) (define (genlist-iter next done? keepdonevalue? seed) (iterate-apply (λ (state reversedstatessofar) (list (next state) (cons state reversedstatessofar))) (λ (state reversedstatessofar) (done? state)) (λ (state reversedstatessofar) (if keepdonevalue? (reverse (cons state reversedstatessofar)) (reverse reversedstatessofar))) (list seed '()))) > (partial-sums-between 3 7) '(0 3 7 12 18 25) > (partial-sums-between 1 10) '(0 1 3 6 10 15 21 28 36 45 55) 49 Example: How does this work? (genlist-iter (λ (n) (quotient n 2)) (λ (n) (<= n 0)) 5) 50 Itera*ve Version of genlist-apply (define (genlist-apply-iter next done? keepdonevalue? seed) (iterate-apply (λ (state reversedstatessofar) (list (apply next state) (cons state reversedstatessofar))) (λ (state reversedstatessofar) (apply done? state)) (λ (state reversedstatessofar) (if keepdonevalue? (reverse (cons state reversedstatessofar)) (reverse reversedstatessofar))) (list seed '()))) 51