CHAPTER 1 Introduction 1. CHAPTER 2 Images, Sampling and Frequency Domain Processing 37

Similar documents
Feature Extraction and Image Processing, 2 nd Edition. Contents. Preface

Fundamentals of Digital Image Processing


Digital Image Processing

Image Processing, Analysis and Machine Vision

2: Image Display and Digital Images. EE547 Computer Vision: Lecture Slides. 2: Digital Images. 1. Introduction: EE547 Computer Vision

Anno accademico 2006/2007. Davide Migliore

Computer vision: models, learning and inference. Chapter 13 Image preprocessing and feature extraction

Local Image preprocessing (cont d)

ELEC Dr Reji Mathew Electrical Engineering UNSW

Outline 7/2/201011/6/

Digital Image Processing COSC 6380/4393

Machine Vision: Theory, Algorithms, Practicalities

COMPUTER AND ROBOT VISION

Image Analysis Lecture Segmentation. Idar Dyrdal

Image Processing Fundamentals. Nicolas Vazquez Principal Software Engineer National Instruments

Fall 2015 Dr. Michael J. Reale

IT Digital Image ProcessingVII Semester - Question Bank

Pop Quiz 1 [10 mins]

Introduction to Video and Image Processing

Requirements for region detection

Classification of image operations. Image enhancement (GW-Ch. 3) Point operations. Neighbourhood operation

An Introduction to Content Based Image Retrieval

Advanced Video Content Analysis and Video Compression (5LSH0), Module 4

AK Computer Vision Feature Point Detectors and Descriptors

Other Linear Filters CS 211A

Introduction to Medical Imaging (5XSA0)

COMPUTER GRAPHICS, MULTIMEDIA AND ANIMATION, Second Edition (with CD-ROM) Malay K. Pakhira

An Introduc+on to Mathema+cal Image Processing IAS, Park City Mathema2cs Ins2tute, Utah Undergraduate Summer School 2010

Image processing and features

Computer Vision. Recap: Smoothing with a Gaussian. Recap: Effect of σ on derivatives. Computer Science Tripos Part II. Dr Christopher Town

One image is worth 1,000 words

Noise Model. Important Noise Probability Density Functions (Cont.) Important Noise Probability Density Functions

Motion Estimation and Optical Flow Tracking

EXAM SOLUTIONS. Image Processing and Computer Vision Course 2D1421 Monday, 13 th of March 2006,

Motion illusion, rotating snakes

Chapter 3 Image Registration. Chapter 3 Image Registration

SIFT: SCALE INVARIANT FEATURE TRANSFORM SURF: SPEEDED UP ROBUST FEATURES BASHAR ALSADIK EOS DEPT. TOPMAP M13 3D GEOINFORMATION FROM IMAGES 2014

Boundary descriptors. Representation REPRESENTATION & DESCRIPTION. Descriptors. Moore boundary tracking

COMPUTER AND ROBOT VISION

Final Exam Study Guide

Image Processing. Image Features

Lecture 6: Multimedia Information Retrieval Dr. Jian Zhang

All good things must...

CS4733 Class Notes, Computer Vision

3.5 Filtering with the 2D Fourier Transform Basic Low Pass and High Pass Filtering using 2D DFT Other Low Pass Filters

IMAGE ANALYSIS, CLASSIFICATION, and CHANGE DETECTION in REMOTE SENSING

Index. χ 2 distance, 144

M. Sc. (Artificial Intelligence and Machine Learning)

Building a Panorama. Matching features. Matching with Features. How do we build a panorama? Computational Photography, 6.882

Topic 6 Representation and Description

Vision and Image Processing Lab., CRV Tutorial day- May 30, 2010 Ottawa, Canada

Scale Invariant Feature Transform

MEDICAL IMAGE ANALYSIS

Review for the Final

CIE L*a*b* color model

Schedule for Rest of Semester

Computer and Machine Vision

Color and Shading. Color. Shapiro and Stockman, Chapter 6. Color and Machine Vision. Color and Perception

Contents I IMAGE FORMATION 1

Experimentation on the use of Chromaticity Features, Local Binary Pattern and Discrete Cosine Transform in Colour Texture Analysis

Depth Measurement and 3-D Reconstruction of Multilayered Surfaces by Binocular Stereo Vision with Parallel Axis Symmetry Using Fuzzy

Final Review CMSC 733 Fall 2014

Scale Invariant Feature Transform

Digital Image Processing

Filtering Applications & Edge Detection. GV12/3072 Image Processing.

Computer Vision 2. SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung. Computer Vision 2 Dr. Benjamin Guthier

CS2401 COMPUTER GRAPHICS ANNA UNIV QUESTION BANK

CLASSIFICATION AND CHANGE DETECTION

EE795: Computer Vision and Intelligent Systems

Image features. Image Features

Dietrich Paulus Joachim Hornegger. Pattern Recognition of Images and Speech in C++

CAP 5415 Computer Vision Fall 2012

EE795: Computer Vision and Intelligent Systems

Augmented Reality VU. Computer Vision 3D Registration (2) Prof. Vincent Lepetit

EE795: Computer Vision and Intelligent Systems

Digital Image Processing

Prof. Feng Liu. Spring /26/2017

Broad field that includes low-level operations as well as complex high-level algorithms

Introduction. Introduction. Related Research. SIFT method. SIFT method. Distinctive Image Features from Scale-Invariant. Scale.

Corner Detection. GV12/3072 Image Processing.

Lecture 14 Shape. ch. 9, sec. 1-8, of Machine Vision by Wesley E. Snyder & Hairong Qi. Spring (CMU RI) : BioE 2630 (Pitt)

Digital Image Processing (CS/ECE 545) Lecture 5: Edge Detection (Part 2) & Corner Detection

Detection of Edges Using Mathematical Morphological Operators

Computer Vision I - Appearance-based Matching and Projective Geometry

Final Review. Image Processing CSE 166 Lecture 18

CHAPTER-4 LOCALIZATION AND CONTOUR DETECTION OF OPTIC DISK

Computer Vision with MATLAB MATLAB Expo 2012 Steve Kuznicki

SECTION 5 IMAGE PROCESSING 2

Color Local Texture Features Based Face Recognition

Image Segmentation. Ross Whitaker SCI Institute, School of Computing University of Utah

Implementation and Comparison of Feature Detection Methods in Image Mosaicing

Artistic Stylization of Images and Video Part III Anisotropy and Filtering Eurographics 2011

MORPHOLOGICAL BOUNDARY BASED SHAPE REPRESENTATION SCHEMES ON MOMENT INVARIANTS FOR CLASSIFICATION OF TEXTURES

SIFT - scale-invariant feature transform Konrad Schindler

Lecture 8 Object Descriptors

Colour appearance and the interaction between texture and colour

Computer Vision I - Basics of Image Processing Part 2

SURF. Lecture6: SURF and HOG. Integral Image. Feature Evaluation with Integral Image

Image Processing: Final Exam November 10, :30 10:30

Transcription:

Extended Contents List Preface... xi About the authors... xvii CHAPTER 1 Introduction 1 1.1 Overview... 1 1.2 Human and Computer Vision... 2 1.3 The Human Vision System... 4 1.3.1 The Eye... 5 1.3.2 The Neural System... 8 1.3.3 Processing... 9 1.4 Computer Vision Systems... 12 1.4.1 Cameras... 12 1.4.2 Computer Interfaces... 15 1.4.3 Processing an Image... 17 1.5 Mathematical Systems... 19 1.5.1 Mathematical Tools... 19 1.5.2 Hello Matlab, Hello Images!... 20 1.5.3 Hello Mathcad!... 25 1.6 Associated Literature... 30 1.6.1 Journals, Magazines and Conferences... 30 1.6.2 Textbooks... 31 1.6.3 The Web... 34 1.7 Conclusions... 35 1.8 Chapter 1 References... 35 CHAPTER 2 Images, Sampling and Frequency Domain Processing 37 2.1 Overview... 37 2.2 Image Formation... 38 2.3 The Fourier Transform... 42 2.4 The Sampling Criterion... 49 2.5 The Discrete Fourier Transform (DFT)... 53 2.5.1 One Dimensional Transform... 53 2.5.2 Two Dimensional Transform... 57 2.6 Other Properties of the Fourier Transform... 63 2.6.1 Shift Invariance... 63 2.6.2 Rotation... 65 2.6.3 Frequency Scaling... 66 2.6.4 Superposition (Linearity)... 67 2.7 Transforms other than Fourier... 68 2.7.1 Discrete Cosine Transform... 68 2.7.2 Discrete Hartley Transform... 70 2.7.3 Introductory Wavelets... 71 2.7.3.1 Gabor Wavelet... 71 2.7.3.2 Haar Wavelet... 74 i

2.7.4 Other Transforms... 78 2.8 Applications using Frequency Domain Properties... 78 2.9 Further Reading... 80 2.10 Chapter 2 References... 81 CHAPTER 3 Basic Image Processing Operations 83 3.1 Overview... 83 3.2 Histograms... 84 3.3 Point Operators... 86 3.3.1 Basic Point Operations... 86 3.3.2 Histogram Normalisation... 89 3.3.3 Histogram Equalisation... 90 3.3.4 Thresholding... 93 3.4 Group Operations... 98 3.4.1 Template Convolution... 98 3.4.2 Averaging Operator... 101 3.4.3 On Different Template Size... 103 3.4.4 Gaussian Averaging Operator... 104 3.4.5 More on Averaging... 107 3.5 Other Statistical Operators... 109 3.5.1 Median Filter... 109 3.5.2 Mode Filter... 112 3.5.3 Anisotropic Diffusion... 114 3.5.4 Force Field Transform... 121 3.5.5 Comparison of Statistical Operators... 122 3.6 Mathematical Morphology... 123 3.6.1 Morphological Operators... 124 3.6.2 Grey Level Morphology... 127 3.6.3 Grey Level Erosion and Dilation... 128 3.6.4 Minkowski Operators... 130 3.7 Further Reading... 134 3.8 Chapter 3 References... 134 CHAPTER 4 Low-Level Feature Extraction (including Edge Detection) 137 4.1 Overview... 138 4.2 Edge Detection... 140 4.2.1 First Order Edge Detection Operators... 140 4.2.1.1 Basic Operators... 140 4.2.1.2 Analysis of the Basic Operators... 142 4.2.1.3 Prewitt Edge Detection Operator... 145 4.2.1.4 Sobel Edge Detection Operator... 146 4.2.1.5 The Canny Edge Detector... 153 4.2.2 Second Order Edge Detection Operators... 161 4.2.2.1 Motivation... 161 4.2.2.2 Basic Operators: The Laplacian... 163 4.2.2.3 The Marr-Hildreth Operator... 165 4.2.3 Other Edge Detection Operators... 170 4.2.4 Comparison of Edge Detection Operators... 171 ii

4.2.5 Further Reading on Edge Detection... 173 4.3 Phase Congruency... 173 4.4 Localised Feature Extraction... 180 4.4.1 Detecting Image Curvature (Corner Extraction)... 180 4.4.1.1 Definition of Curvature... 180 4.4.1.2 Computing Differences in Edge Direction... 182 4.4.1.3 Measuring Curvature by Changes in Intensity (Differentiation)... 184 4.4.1.4 Moravec and Harris Detectors... 188 4.4.1.5 Further Reading on Curvature... 192 4.4.2 Modern Approaches; Region/Patch Analysis... 193 4.4.2.1 Scale Invariant Feature Transform (SIFT)... 193 4.4.2.2 Speeded Up Robust Features (SURF)... 196 4.4.2.3 Saliency... 198 4.4.2.4 Other Techniques and Performance Issues... 198 4.5 Describing Image Motion... 199 4.5.1 Area-based approach... 200 4.5.2 Differential approach... 204 4.5.3 Further Reading on Optical Flow... 211 4.6 Further Reading... 212 4.7 Chapter 4 References... 212 CHAPTER 5 High-Level Feature Extraction: Fixed Shape Matching... 217 5.1 Overview... 218 5.2 Thresholding and Subtraction... 220 5.3 Template Matching... 222 5.3.1 Definition... 222 5.3.2 Fourier Transform Implementation... 230 5.3.3 Discussion of Template Matching... 234 5.4 Feature Extraction by Low Level Features... 235 5.4.1 Appearance-Based Approaches... 235 5.4.1.1 Object Detection by Templates... 235 5.4.1.2 Object Detection by Combinations of Parts... 237 5.4.2 Distribution-Based Descriptors... 238 5.4.2.1 Description by Interest Points... 238 5.4.2.2 Characterising Object Appearance and Shape... 241 5.5 Hough Transform (HT)... 243 5.5.1 Overview... 243 5.5.2 Lines... 243 5.5.3 HT for Circles... 250 5.5.4 HT for Ellipses... 255 5.5.5 Parameter Space Decomposition... 258 5.5.5.1 Parameter space reduction for lines... 259 5.5.5.2 Parameter space reduction for circles... 261 5.5.5.3 Parameter space reduction for ellipses... 266 5.5.6 Generalised Hough Transform (GHT)... 271 5.5.6.1 Formal Definition of the GHT... 272 5.5.6.2 Polar definition... 273 5.5.6.3 The GHT Technique... 274 iii

5.5.6.4 Invariant GHT... 279 5.5.7 Other Extensions to the HT... 287 5.6 Further Reading... 288 5.7 Chapter 5 References... 280 CHAPTER 6 High-Level Feature Extraction: Deformable Shape Analysis 293 6.1 Overview... 293 6.2 Deformable Shape Analysis... 294 6.2.1 Deformable Templates... 294 6.2.2 Parts-based Shape Analysis... 297 6.3 Active Contours (Snakes)... 299 6.3.1 Basics... 299 6.3.2 The Greedy Algorithm for Snakes... 301 6.3.3 Complete (Kass) Snake Implementation... 308 6.3.4 Other Snake Approaches... 313 6.3.5 Further Snake Developments... 314 6.3.6 Geometric Active Contours (Level-Set Based Approaches)... 318 6.4 Shape Skeletonisation... 325 6.4.1 Distance Transforms... 325 6.4.2 Symmetry... 327 6.5 Flexible Shape Models Active Shape and Active Appearance... 334 6.6 Further Reading... 338 6.7 Chapter 6 References... 338 CHAPTER 7 Object Description 343 7.1 Overview... 343 7.2 Boundary Descriptions... 345 7.2.1 Boundary and Region... 345 7.2.2 Chain Codes... 346 7.2.3 Fourier Descriptors... 349 7.2.3.1 Basis of Fourier Descriptors... 350 7.2.3.2 Fourier Expansion... 351 7.2.3.3 Shift invariance... 354 7.2.3.4 Discrete computation... 355 7.2.3.5 Cumulative Angular Function... 357 7.2.3.6 Elliptic Fourier Descriptors... 369 7.2.3.7 Invariance... 372 7.3 Region Descriptors... 378 7.3.1 Basic Region Descriptors... 378 7.3.2 Moments... 383 7.3.2.1 Basic Properties... 383 7.3.2.2 Invariant Moments... 387 7.3.2.3 Zernike Moments... 388 7.3.2.4 Other Moments... 393 7.4 Further Reading... 395 7.5 Chapter 7 References... 395 iv

CHAPTER 8 Intro. to Texture Description, Segmentation and Classification 399 8.1 Overview... 399 8.2 What is Texture?... 400 8.3 Texture Description... 403 8.3.1 Performance Requirements... 403 8.3.2 Structural Approaches... 403 8.3.3 Statistical Approaches... 406 8.3.4 Combination Approaches... 409 8.3.5 Local Binary Patterns... 411 8.3.6 Other Approaches... 417 8.4 Classification... 417 8.4.1 Distance Measures... 417 8.4.2 The k-nearest Neighbour Rule... 424 8.4.3 Other Classification Approaches... 428 8.5 Segmentation... 429 8.6 Further Reading... 431 8.7 Chapter 8 References... 432 CHAPTER 9 Moving Object Detection and Description 435 9.1 Overview... 435 9.2 Moving Object Detection... 437 9.2.1 Basic Approaches... 437 9.2.1.1 Detection by Subtracting the Background... 437 9.2.1.2 Improving Quality by Morphology... 440 9.2.2 Modelling and Adapting to the (Static) Background... 442 9.2.3 Background Segmentation by Thresholding... 447 9.2.4 Problems and Advances... 450 9.3 Tracking Moving Features... 451 9.3.1 Tracking Moving Objects... 451 9.3.2 Tracking by Local Search... 452 9.3.3 Problems in Tracking... 455 9.3.4 Approaches to Tracking... 455 9.3.5 MeanShift and Camshift... 457 9.3.5.1 Kernel-Based Density Estimation... 457 9.3.5.2 MeanShift Tracking... 461 9.3.5.3 Camshift Technique... 467 9.3.6 Recent Approaches... 472 9.4 Moving Feature Extraction and Description... 474 9.4.1 Moving (Biological) Shape Analysis... 474 9.4.2 Detecting Moving Shapes by Shape Matching in Image Sequences... 476 9.4.3 Moving Shape Description... 480 9.5 Further Reading... 484 9.6 Chapter 9 References... 484 CHAPTER 10 Appendix 1: Camera Geometry Fundamentals 489 10.1 Image Geometry... 10.2 Perspective Camera... 10.3 Perspective Camera Model... v

10.3.1 Homogeneous co-ordinates and Projective Geometry... 10.3.1.1 Representation of a Line and Duality... 10.3.1.2 Ideal Points... 10.3.1.3 Transformations in the Projective Space... 10.3.2 Perspective Camera Model Analysis... 10.3.3 Parameters of the Perspective Camera Model... 10.4 Affine Camera... 10.4.1 Affine Camera Model... 10.4.2 Affine Camera Model and the Perspective Projection... 10.4.3 Parameters of the Affine Camera Model... 10.5 Weak Perspective Model... 10.6 Example of Camera Models... 10.7 Discussion... 10.8 Appendix 1 References... CHAPTER 11 Appendix 2: Least Squares Analysis 519 11.1 The Least Squares Criterion... 11.2 Curve Fitting by Least Squares... CHAPTER 12 Appendix 3: Principal Components Analysis 525 12.1 Principal Components Analysis (PCA)... 12.2 Data... 12.3 Covariance... 12.4 Covariance Matrix... 12.5 Data Transformation... 12.6 Inverse Transformation... 12.7 Eigenproblem... 12.8 Solving the Eigenproblem... 12.9 PCA Method Summary... 12.10 Example... 12.11 Appendix 4 References... CHAPTER 13 Appendix 4: Colour Images 541 13.1 Colour Images 13.2 Tristimulus Theory 13.3 Colour Models 13.3.1 The Colorimetric Equation... 13.3.2 Luminosity Function... 13.3.3 Perception based Colour Models: The CIE RGB and CIE XYZ... 13.3.3.1 CIE RGB Colour Model: Wright-Guild Data... 13.3.3.2. CIE RGB Colour Matching Functions... 13.3.3.3 CIE RGB Chromaticity Diagram and Chromaticity Coordinates... 13.3.3.4 CIE XYZ Colour Model... 13.3.3.5 CIE XYZ Colour Matching Functions... 13.3.3.6 XYZ Chromaticity Diagram... 13.3.4 Uniform Colour Spaces: CIE LUV and CIE LAB... vi

13.3.5 Additive and Subtractive Colour Models: RGB and CMY... 13.3.5.1 RGB and CMY... 13.3.5.2 Transformation between RGB Colour Models... 13.3.5.3 Transformation between RGB and CMY Colour Models... 13.3.6 Luminance and Chrominance Colour Models: YUV, YIQ and YCbCr... 13.3.6.1 Luminance and Gamma Correction... 13.3.6.2 Chrominance... 13.3.6.3 Transformations between YUV, YIQ and RGB Colour Models... 13.3.6.4 Colour Model for Component Video: YPbPr... 13.3.6.5 Colour Model for Digital Video: YCbCr... 13.3.7 Perceptual Colour Models: HSV and HLS... 13.3.7.1 The Hexagonal Model: HSV... 13.3.7.2 The Triangular Model: HSI... 13.3.8 More Colour Models... 13.4 References... Index... 601 vii