Feature Extraction and Image Processing, 2 nd Edition. Contents. Preface

Similar documents
CHAPTER 1 Introduction 1. CHAPTER 2 Images, Sampling and Frequency Domain Processing 37


Fundamentals of Digital Image Processing

Image Processing, Analysis and Machine Vision

Digital Image Processing

Local Image preprocessing (cont d)

2: Image Display and Digital Images. EE547 Computer Vision: Lecture Slides. 2: Digital Images. 1. Introduction: EE547 Computer Vision

Digital Image Processing COSC 6380/4393

Computer vision: models, learning and inference. Chapter 13 Image preprocessing and feature extraction

Anno accademico 2006/2007. Davide Migliore

Outline 7/2/201011/6/

COMPUTER AND ROBOT VISION

An Introduc+on to Mathema+cal Image Processing IAS, Park City Mathema2cs Ins2tute, Utah Undergraduate Summer School 2010

Other Linear Filters CS 211A

Requirements for region detection

Classification of image operations. Image enhancement (GW-Ch. 3) Point operations. Neighbourhood operation

Index. χ 2 distance, 144

Introduction to Medical Imaging (5XSA0)

Image Processing Fundamentals. Nicolas Vazquez Principal Software Engineer National Instruments

Image features. Image Features

Advanced Video Content Analysis and Video Compression (5LSH0), Module 4

Boundary descriptors. Representation REPRESENTATION & DESCRIPTION. Descriptors. Moore boundary tracking

Machine Vision: Theory, Algorithms, Practicalities

MEDICAL IMAGE ANALYSIS

Computer Vision. Recap: Smoothing with a Gaussian. Recap: Effect of σ on derivatives. Computer Science Tripos Part II. Dr Christopher Town

COMPUTER AND ROBOT VISION

Lecture 14 Shape. ch. 9, sec. 1-8, of Machine Vision by Wesley E. Snyder & Hairong Qi. Spring (CMU RI) : BioE 2630 (Pitt)

Motion Estimation and Optical Flow Tracking

Dietrich Paulus Joachim Hornegger. Pattern Recognition of Images and Speech in C++

Schedule for Rest of Semester

EXAM SOLUTIONS. Image Processing and Computer Vision Course 2D1421 Monday, 13 th of March 2006,

Final Exam Study Guide

Topic 6 Representation and Description

Artistic Stylization of Images and Video Part III Anisotropy and Filtering Eurographics 2011

Lecture 8 Object Descriptors

Review for the Final

Contents I IMAGE FORMATION 1

Depth Measurement and 3-D Reconstruction of Multilayered Surfaces by Binocular Stereo Vision with Parallel Axis Symmetry Using Fuzzy

CS4733 Class Notes, Computer Vision

Computer Vision I. Announcements. Fourier Tansform. Efficient Implementation. Edge and Corner Detection. CSE252A Lecture 13.

Building a Panorama. Matching features. Matching with Features. How do we build a panorama? Computational Photography, 6.882

IMAGE ANALYSIS, CLASSIFICATION, and CHANGE DETECTION in REMOTE SENSING

Scale Invariant Feature Transform

EE795: Computer Vision and Intelligent Systems

Chapter 3 Image Registration. Chapter 3 Image Registration

Final Review CMSC 733 Fall 2014

Image Segmentation Image Thresholds Edge-detection Edge-detection, the 1 st derivative Edge-detection, the 2 nd derivative Horizontal Edges Vertical

M. Sc. (Artificial Intelligence and Machine Learning)

CS334: Digital Imaging and Multimedia Edges and Contours. Ahmed Elgammal Dept. of Computer Science Rutgers University

Final Review. Image Processing CSE 166 Lecture 18

Augmented Reality VU. Computer Vision 3D Registration (2) Prof. Vincent Lepetit

Filtering Applications & Edge Detection. GV12/3072 Image Processing.

The. Handbook ijthbdition. John C. Russ. North Carolina State University Materials Science and Engineering Department Raleigh, North Carolina

Scale Invariant Feature Transform

CAP 5415 Computer Vision Fall 2012

Concepts in. Edge Detection

EE795: Computer Vision and Intelligent Systems

AK Computer Vision Feature Point Detectors and Descriptors

Digital Image Processing (CS/ECE 545) Lecture 5: Edge Detection (Part 2) & Corner Detection

EE795: Computer Vision and Intelligent Systems

SIFT: SCALE INVARIANT FEATURE TRANSFORM SURF: SPEEDED UP ROBUST FEATURES BASHAR ALSADIK EOS DEPT. TOPMAP M13 3D GEOINFORMATION FROM IMAGES 2014

Corner Detection. GV12/3072 Image Processing.

Computer Vision 2. SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung. Computer Vision 2 Dr. Benjamin Guthier

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences

Contents. 1 Introduction Background Organization Features... 7

Shape description and modelling

Motion illusion, rotating snakes

Image processing and features

Scale Invariant Feature Transform by David Lowe

Image Segmentation. Ross Whitaker SCI Institute, School of Computing University of Utah

Multimedia Computing: Algorithms, Systems, and Applications: Edge Detection

Edge detection. Convert a 2D image into a set of curves. Extracts salient features of the scene More compact than pixels

Image Processing. Image Features

Image Analysis Lecture Segmentation. Idar Dyrdal

SURVEY ON IMAGE PROCESSING IN THE FIELD OF DE-NOISING TECHNIQUES AND EDGE DETECTION TECHNIQUES ON RADIOGRAPHIC IMAGES

CS534: Introduction to Computer Vision Edges and Contours. Ahmed Elgammal Dept. of Computer Science Rutgers University

BME I5000: Biomedical Imaging

Object Shape Recognition in Image for Machine Vision Application

Prof. Feng Liu. Spring /26/2017

Introduction. Introduction. Related Research. SIFT method. SIFT method. Distinctive Image Features from Scale-Invariant. Scale.

SIFT - scale-invariant feature transform Konrad Schindler

Last update: May 4, Vision. CMSC 421: Chapter 24. CMSC 421: Chapter 24 1

Denoising and Edge Detection Using Sobelmethod

All good things must...

IT Digital Image ProcessingVII Semester - Question Bank

Automatic Image Alignment (feature-based)

Structure from Motion. Introduction to Computer Vision CSE 152 Lecture 10

CLASSIFICATION AND CHANGE DETECTION

Chapter 11 Representation & Description

Babu Madhav Institute of Information Technology Years Integrated M.Sc.(IT)(Semester - 7)

Computer Vision I - Basics of Image Processing Part 2

Comparison between Various Edge Detection Methods on Satellite Image

Assignment 3: Edge Detection

Digital Image Processing. Image Enhancement - Filtering

MORPHOLOGICAL BOUNDARY BASED SHAPE REPRESENTATION SCHEMES ON MOMENT INVARIANTS FOR CLASSIFICATION OF TEXTURES

Large-Scale 3D Point Cloud Processing Tutorial 2013

Lecture 6: Multimedia Information Retrieval Dr. Jian Zhang

Visual Tracking (1) Tracking of Feature Points and Planar Rigid Objects

Morphological Image Processing

Detection of Edges Using Mathematical Morphological Operators

Transcription:

, 2 nd Edition Preface ix 1 Introduction 1 1.1 Overview 1 1.2 Human and Computer Vision 1 1.3 The Human Vision System 3 1.3.1 The Eye 4 1.3.2 The Neural System 7 1.3.3 Processing 7 1.4 Computer Vision Systems 9 1.4.1 Cameras 9 1.4.2 Computer Interfaces 12 1.4.3 Processing an Image 14 1.5 Mathematical Systems 15 1.5.1 Mathematical Tools 16 1.5.2 Hello Mathcad, Hello Images! 16 1.5.3 Hello Matlab! 20 1.6 Associated Literature 24 1.6.1 Journals and Magazines 24 1.6.2 Textbooks 25 1.6.3 The Web 27 1.7 Conclusions 28 1.8 Chapter 1 References 28 2 Images, Sampling and Frequency Domain Processing 31 2.1 Overview 31 2.2 Image Formation 31 2.3 The Fourier Transform 34 2.4 The Sampling Criterion 40 2.5 The Discrete Fourier Transform (DFT) 45 2.5.1 One Dimensional Transform 45 2.5.2 Two Dimensional Transform 47 2.6 Other Properties of the Fourier Transform 52 2.6.1 Shift Invariance 52 2.6.2 Rotation 54 2.6.3 Frequency Scaling 55 2.6.4 Superposition (Linearity) 56 2.7 Transforms other than Fourier 57 2.7.1 Discrete Cosine Transform 57 2.7.2 Discrete Hartley Transform 58 2.7.3 Introductory Wavelets; The Gabor Wavelet 59 2.7.4 Other Transforms 61 2.8 Applications using Frequency Domain Properties 62 2.9 Further Reading 63 v

2.10 Chapter 2 References 64 3 Basic Image Processing Operations 67 3.1 Overview 67 3.2 Histograms 68 3.3 Point Operators 69 3.3.1 Basic Point Operations 69 3.3.2 Histogram Normalisation 72 3.3.3 Histogram Equalisation 73 3.3.4 Thresholding 76 3.4 Group Operations 79 3.4.1 Template Convolution 79 3.4.2 Averaging Operator 82 3.4.3 On Different Template Size 85 3.4.4 Gaussian Averaging Operator 86 3.5 Other Statistical Operators 88 3.5.1 More on Averaging 88 3.5.2 Median Filter 89 3.5.3 Mode Filter 92 3.5.4 Anisotropic Diffusion 94 3.5.5 Force Field Transform 99 3.5.6 Comparison of Statistical Operators 100 3.6 Mathematical Morphology 101 3.6.1 Morphological Operators 102 3.6.2 Grey Level Morphology 104 3.6.3 Grey Level Erosion and Dilation 105 3.6.4 Minkowski Operators 107 3.7 Further Reading 110 3.8 Chapter 3 References 110 4 Low-Level Feature Extraction (including Edge Detection) 113 4.1 Overview 113 4.2 First Order Edge Detection Operators 115 4.2.1 Basic Operators 115 4.2.2 Analysis of the Basic Operators 117 4.2.3 Prewitt Edge Detection Operator 119 4.2.4 Sobel Edge Detection Operator 120 4.2.5 The Canny Edge Detector 126 4.3 Second Order Edge Detection Operators 135 4.3.1 Motivation 135 4.3.2 Basic Operators: The Laplacian 135 4.3.3 The Marr-Hildreth Operator 136 4.4 Other Edge Detection Operators 142 4.5 Comparison of Edge Detection Operators 143 4.6 Further Reading on Edge Detection 144 4.7 Phase Congruency 144 4.8 Localised Feature Extraction 150 4.8.1 Detecting Image Curvature (Corner Extraction) 150 4.8.1.1 Definition of Curvature 150 vi

4.8.1.2 Computing Differences in Edge Direction 152 4.8.1.3 Measuring Curvature by Changes in Intensity 154 4.8.1.4 Moravec and Harris Detectors 156 4.8.1.5 Further Reading on Curvature 160 4.8.2 Modern Approaches; Region/Patch Analysis 161 4.8.2.1 Scale Invariant Feature Transform 161 4.8.2.2 Saliency 163 4.8.2.3 Other Techniques and Performance Issues 164 4.9 Describing Image Motion 164 4.9.1 Area-based approach 165 4.9.2 Differential approach 168 4.9.3 Further Reading on Optical Flow 173 4.10 Conclusions 174 4.11 Chapter 4 References 174 5 Feature Extraction by Shape Matching 179 5.1 Overview 179 5.2 Thresholding and Subtraction 180 5.3 Template Matching 181 5.3.1 Definition 181 5.3.2 Fourier Transform Implementation 188 5.3.3 Discussion of Template Matching 191 5.4 Hough Transform (HT) 192 5.4.1 Overview 192 5.4.2 Lines 192 5.4.3 HT for Circles 198 5.4.4 HT for Ellipses 202 5.4.5 Parameter Space Decomposition 204 5.4.1 Parameter space reduction for lines 204 5.4.2 Parameter space reduction for circles 206 5.4.3 Parameter space reduction for ellipses 210 5.5 Generalised Hough Transform (GHT) 214 5.5.1 Formal Definition of the GHT 214 5.5.2 Polar definition 215 5.5.3 The GHT Technique 216 5.5.4 Invariant GHT 220 5.6 Other Extensions to the HT 225 5.7 Further Reading 226 5.8 Chapter 5 References 226 6 Flexible Shape Extraction (Snakes and Other Techniques) 228 6.1 Overview 228 6.2 Deformable Templates 229 6.3 Active Contours (Snakes) 231 6.3.1 Basics 231 6.3.2 The Greedy Algorithm for Snakes 235 6.3.3 Complete (Kass) Snake Implementation 240 6.3.4 Other Snake Approaches 245 6.3.5 Further Snake Developments 245 vii

6.3.6 Recent Developments in Contour Models 250 6.4 Shape Skeletonisation 254 6.4.1 Distance Transforms 254 6.4.2 Symmetry 256 6.5 Flexible Shape Models Active Shape and Active Appearance 260 6.6 Further Reading 263 6.7 Chapter 6 References 264 7 Object Description 266 7.1 Overview 266 7.2 Boundary Descriptions 267 7.2.1 Boundary and Region 267 7.2.2 Chain Codes 268 7.2.3 Fourier Descriptors 270 7.2.3.1 Basis of Fourier Descriptors 271 7.2.3.2 Fourier Expansion 272 7.2.3.3 Shift invariance 274 7.2.3.4 Discrete computation 275 7.2.3.5 Cumulative Angular Function 277 7.2.3.6 Elliptic Fourier Descriptors 286 7.2.3.7 Invariance 288 7.3 Region Descriptors 293 7.3.1 Basic Region Descriptors 294 7.3.2 Moments 297 7.3.2.1 Basic Properties 297 7.3.2.2 Invariant Moments 300 7.3.2.3 Zernike Moments 303 7.3.2.4 Other Moments 307 7.4 Further Reading 308 7.5 Chapter 7 References 309 8 Introduction to Texture Description, Segmentation and Classification 311 8.1 Overview 311 8.2 What is Texture? 311 8.3 Texture Description 313 8.3.1 Performance Requirements 313 8.3.2 Structural Approaches 314 8.3.3 Statistical Approaches 316 8.3.4 Combination Approaches 319 8.4 Classification 320 8.4.1 The k-nearest Neighbour Rule 320 8.4.2 Other Classification Approaches 325 8.5 Segmentation 326 8.6 Further Reading 327 8.7 Chapter 8 References 328 9 Appendix 1 Example Worksheets 329 9.1 Example Mathcad Worksheet for Chapter 3 329 viii

9.2 Example Matlab Worksheet for Chapter 4 332 10 Appendix 2 Camera Geometry Fundamentals 335 10.1 Image Geometry 335 10.2 Perspective Camera 336 10.3 Perspective Camera 337 10.3.1 Homogeneous co-ordinates and Projective Geometry 337 10.3.1.1 Representation of a Line and Duality 338 10.3.1.2 Ideal Points 338 10.3.1.3 Transformations in the Projective Space 339 10.3.2 Perspective Camera Model 341 10.3.3 Parameters of the Perspective Camera Model 344 10.4 Affine Camera 345 10.4.1 Affine Camera Model 346 10.4.2 Affine Camera Model and the Perspective Projection 347 10.4.3 Parameters of the Affine Camera Model 349 10.5 Weak Perspective Model 350 10.6 Example of Camera Models 352 10.7 Discussion 359 10.8 Appendix 2 References 359 11 Appendix 3 Least Squares Analysis 360 11.1 The Least Squares Criterion 362 11.2 Appendix 2.2 Curve Fitting by Least Squares 362 12 Appendix 4: Principal Components Analysis 364 12.1 Principal Components Analysis (PCA) 364 12.2 Data 364 12.3 Covariance 365 12.4 Covariance Matrix 367 12.5 Data Transformation 368 12.6 Inverse Transformation 369 12.7 Eigenproblem 370 12.8 Solving the Eigenproblem 371 12.9 PCA Method Summary 372 12.10 Example 372 12.11 Appendix 4 References 377 Index 378 ix