Level lines based disocclusion

Similar documents
Vicent Caselles, Simon Masnou, Jean-Michel Morel, and Catalina Sbert

An Image Curvature Microscope

An Image Curvature Microscope

Three-Dimensional Computer Vision

OUR PURPOSE in this paper will be to discuss possible

Visualizing level lines and curvature in images

CHAPTER 6 PERCEPTUAL ORGANIZATION BASED ON TEMPORAL DYNAMICS

An Active Contour Model without Edges

Contour detection and completion for inpainting and segmentation based on topological gradient and fast marching algorithms

Image features. Image Features

Image Smoothing and Segmentation by Graph Regularization

Fundamentals of Stereo Vision Michael Bleyer LVA Stereo Vision

Textureless Layers CMU-RI-TR Qifa Ke, Simon Baker, and Takeo Kanade

Automated Segmentation Using a Fast Implementation of the Chan-Vese Models

Biomedical Image Analysis. Mathematical Morphology

A Simple Vision System

Lecture 6: Edge Detection

Edge and local feature detection - 2. Importance of edge detection in computer vision

A Singular Example for the Averaged Mean Curvature Flow

Colour Segmentation-based Computation of Dense Optical Flow with Application to Video Object Segmentation

Morphological Image Processing

Surfaces. Science B44. Lecture 11 Surfaces. Surfaces. 1. What problem do surfaces solve? 2. How are surfaces discovered

Edge and corner detection

Stereo Vision. MAN-522 Computer Vision

Fast Reliable Level-Lines Segments Extraction

General Principles of 3D Image Analysis

Computer Vision & Digital Image Processing. Global Processing via Graph-Theoretic Techniques

Stereo imaging ideal geometry

Multiple Motion and Occlusion Segmentation with a Multiphase Level Set Method

A Survey of Light Source Detection Methods

Boundary descriptors. Representation REPRESENTATION & DESCRIPTION. Descriptors. Moore boundary tracking

THE preceding chapters were all devoted to the analysis of images and signals which

Towards the completion of assignment 1

Mesh Processing Pipeline

Image Differentiation

SUMMARY: DISTINCTIVE IMAGE FEATURES FROM SCALE- INVARIANT KEYPOINTS

CS 534: Computer Vision Segmentation and Perceptual Grouping

Image Denoising Using Mean Curvature of Image Surface. Tony Chan (HKUST)

HOUGH TRANSFORM CS 6350 C V

Solution: filter the image, then subsample F 1 F 2. subsample blur subsample. blur

Local qualitative shape from stereo. without detailed correspondence. Extended Abstract. Shimon Edelman. Internet:

Segmentation and Tracking of Partial Planar Templates

Last update: May 4, Vision. CMSC 421: Chapter 24. CMSC 421: Chapter 24 1

Simplicial Hyperbolic Surfaces

Lecture 25: Bezier Subdivision. And he took unto him all these, and divided them in the midst, and laid each piece one against another: Genesis 15:10

Data Term. Michael Bleyer LVA Stereo Vision

3D Computer Vision. Dense 3D Reconstruction II. Prof. Didier Stricker. Christiano Gava

3D Shape Recovery of Smooth Surfaces: Dropping the Fixed Viewpoint Assumption

CHAPTER 6 Parametric Spline Curves

Lecture 10: Image Descriptors and Representation

Parameterization. Michael S. Floater. November 10, 2011

Convex Optimization MLSS 2015

Prof. Feng Liu. Winter /15/2019

Isophote-Based Interpolation

Multispectral Image Segmentation by Energy Minimization for Fruit Quality Estimation

Light source estimation using feature points from specular highlights and cast shadows

Optic Flow and Basics Towards Horn-Schunck 1

Multi-Scale Free-Form Surface Description

Some existence results for Chebyshev nets with singularities

3D graphics, raster and colors CS312 Fall 2010

High Dynamic Range Imaging.

Notes 9: Optical Flow

PS Geometric Modeling Homework Assignment Sheet I (Due 20-Oct-2017)

Digital Image Processing

Removing a mixture of Gaussian and impulsive noise using the total variation functional and split Bregman iterative method

Stereo Wrap + Motion. Computer Vision I. CSE252A Lecture 17

Biomedical Image Analysis. Homomorphic Filtering and applications to PET

Fingerprint Classification Using Orientation Field Flow Curves

Visual Representation from Semiology of Graphics by J. Bertin

Prof. Fanny Ficuciello Robotics for Bioengineering Visual Servoing

IMAGES ARE captured at low contrast in a number of

Active Geodesics: Region-based Active Contour Segmentation with a Global Edge-based Constraint

Dynamic Shape Tracking via Region Matching

InfoVis: a semiotic perspective

WATERSHED, HIERARCHICAL SEGMENTATION AND WATERFALL ALGORITHM

Filters. Advanced and Special Topics: Filters. Filters

Computational Geometry

A non-local algorithm for image denoising

Hidden Loop Recovery for Handwriting Recognition

Morphological and Statistical Techniques for the Analysis of 3D Images. Enric Meinhardt-Llopis

IMAGE DENOISING TO ESTIMATE THE GRADIENT HISTOGRAM PRESERVATION USING VARIOUS ALGORITHMS

Hand-Eye Calibration from Image Derivatives

COMPUTER VISION > OPTICAL FLOW UTRECHT UNIVERSITY RONALD POPPE

Project Updates Short lecture Volumetric Modeling +2 papers

A New Technique of Extraction of Edge Detection Using Digital Image Processing

1216 P a g e 2.1 TRANSLATION PARAMETERS ESTIMATION. If f (x, y) F(ξ,η) then. f(x,y)exp[j2π(ξx 0 +ηy 0 )/ N] ) F(ξ- ξ 0,η- η 0 ) and

Height from Gradient with Surface Curvature and Area Constraints

(Refer Slide Time: 0:32)

Optical Flow Estimation with CUDA. Mikhail Smirnov

Image Curvature Microscope

Digital Image Processing Fundamentals

Level Set Evolution without Reinitilization

Lecture 3: Some Strange Properties of Fractal Curves

Sobel Edge Detection Algorithm

Multiple Contour Finding and Perceptual Grouping as a set of Energy Minimizing Paths

lecture 10 - depth from blur, binocular stereo

Global Minimization of the Active Contour Model with TV-Inpainting and Two-Phase Denoising

09/11/2017. Morphological image processing. Morphological image processing. Morphological image processing. Morphological image processing (binary)

Lecture 4 Image Enhancement in Spatial Domain

Triple Integrals in Rectangular Coordinates

Transcription:

Level lines based disocclusion Simon Masnou Jean-Michel Morel CEREMADE CMLA Université Paris-IX Dauphine Ecole Normale Supérieure de Cachan 75775 Paris Cedex 16, France 94235 Cachan Cedex, France Abstract Object recognition, robotic vision, occluding noise removal or photograph design require the ability to perform disocclusion. We call disocclusion the recovery of hidden parts of objects in a digital image by interpolation from the vicinity of the occluded area. It is shown in this paper how disocclusion can be performed by means of level lines structure, which offers a reliable, complete and contrast-invariant representation of image, in contrast to edges. Level lines based disocclusion yields a solution that may have strong discontinuities, which is not possible with PDE-based interpolation. Moreover, the proposed method is fully compatible with Kanizsa s theory of amodal completion. 1 Introduction Disocclusion or amodal completion is a very common process in human vision. In a natural scene, an object is seldom totally visible. It is generally partially hidden by other objects. But our perception is under certain geometric conditions able to reconstruct the whole object by interpolating the missing part. In the example illustrated in Figure 1, one generally sees the same black rectangle in both drawings, despite the fact that this rectangle is never totally visible. Figure 1: The same rectangle can be seen in both figures by amodal completion. This ability of human vision has been widely studied by psychophysicists, particularly by Gaetano Kanizsa [5]. It appears that continuation of objects boundaries plays a central role in the disocclusion process. This continuation is performed between T- junctions, which are points where image edges form a T. We call amodal completion the process by which our perception extends visible edges behind occluding objects. According to psychophysicists, the continuation process is such that restored edges must be as smooth and straight as possible and the shapes as convex as possible. 2 Disocclusion as a variational process In [8], Nitzberg, Mumford and Shiota present a method for detecting and removing occlusions in a fixed image within the framework of a segmentation and depth computing algorithm. Their method is based on the detection of image edges and T- junctions followed by a variational continuation process. Roughly speaking, this process consists in linking together T-junctions of approximatively the same level by a new edge with minimum length and curvature. This method appears however to be very fragile. It can only be applied to highly segmented images with few T-junctions and few possible continuations between them, so that disocclusion of natural images is not directly possible. Moreover, it is now well-known that edges are not a reliable information, are very sensitive to contrast changes and do not offer a complete representation of the image. The method we propose in this paper is an adaptation of the Mumford, Nitzberg and Shiota variational continuation framework to the level lines structure, which is more precise and reliable than edges. 3 Level lines continuation Recent works [3] have emphasized the importance of level lines for image understanding and representation. Let u(x) denotes the gray level of an image u at point x. We define level lines as boundaries of upper level sets, defined at each gray level λ by X λ u = {x, u(x) λ}. An image and some of

its level lines are shown in Figure 2. In contrast to edge representation, the family of level lines is a complete representation of u, from which u can be reconstructed [1, 3]. In addition, this representation is in- A set E is said of finite perimeter if the quantity P(E) = TV (1I E ) is finite, where 1I E denotes the characteristic function of E. If E has Lipschitz boundary then P(E) = H 1 ( E) is interpreted as the length of the boundary of E. The Coarea formula states that TV (u) = P(X λ u)dλ Figure 2: An image and its level lines multiple of 15. variant with respect to any increasing contrast change. This point is crucial since, according to Gestalt school (Wertheimer), human vision is essentially sensitive to the only ordering of gray levels in an image. The intensity difference between two pixels is not a reliable characterization of an image since it arbitrarily depends on the used sensor as well as illumination conditions. To be reliable, any natural image processing must involve the only ordering of gray levels which remains identical by increasing contrast change. Unlike the edge representation, the level lines representation allows to perform the contrast invariance. In the following, we denote by Γ the part of the image plane occupied by the occluding object. We shall assume that Γ has no hole and we denote by Γ its boundary which we assume to be a simple curve. Our problem is to find some interpolant v of u which coincides with u on Γ. It was shown in [2] that every interpolation method yielding a smooth interpolant reduces under some reasonable stability and invariance assumptions to the only interpolating operator ) = 0. This method can therefore not be used for edges continuation. In addition, this operator does not allow to recover a strongly discontinuous function like most natural images are. The method we present here allows to recover functions with strong discontinuities. Let us describe an image as a function u of bounded variation (BV) such D 2 v( Dv Dv, Dv Dv that u dx < and the total variation of u TV (u) = sup{ u divφdx : φ C 1 c (, IR2 ), φ 1} is finite. The reader may wish to refer to [9] for more details. TV (u) may also be denoted as Du dx. and thus establishes a connection between the total variation of u and the length of its level lines. Following Kanizsa and Mumford et al, it seems reasonable to perform the continuation of level lines joining the occluding object at T-junctions by minimizing the functional Dv (1 + curv v )dx subject to the constraint v Γ c = u Γ c where curvv = div Dv Dv. In view of Coarea formula, the first term of the functional forces restored level lines to have minimum length when the second term forces the angle total variation to be minimum along the lines. Therefore, the solution to this problem consists of a function of bounded variation whose level lines within the occlusion Γ are geodesic paths joining T-junctions with minimum angle total variation. The reader may wish to refer to [7] for more details about the functional relaxation within a subset of the BV-space. 4 A practical algorithm Let us now examine how disocclusion can be performed on a digital image. It must be emphasized that this method can be applied to any image without preprocessing and independently from the number of T-junctions. Due to the properties of level lines, there is an even number of lines arising at Γ (Figure 3). These level lines can be continued with respect to the same rules holding for amodal completion. Each level line is oriented according to the direction of the image gradient, yielding two possible orientations, positive and negative. At each level, the number of lines with positive orientation equals the number of lines with negative orientation. Let L 1 and L 2 be two lines arising at Γ. L 1 and L 2 can be connected only if they have the same level and the same orientation. Since level lines can never cross, a global disocclusion will be valid if and only if this condition is satisfied. Our method makes an optimal connection of all pair of level lines. It must be emphasized that at least one (non optimal) connection exists which is given by the initial occluded image.

Gray level Li Lij Restored line between Li and Lj Lj Positive orientation Negative orientation Figure 3: An occlusion and a possible connection of level lines two by two. Like in the previous section, we compute the optimal disocclusion by minimizing the cost C = L i,j(1 + σ(s) )ds where σ(s) ds denotes the angle total variation L i,j along each restored level line L i,j and the sum goes over all restored level lines. The impossibility for level lines to intersect introduces a spatial causalĩty which makes possible the use of dynamic programming. Indeed, the computation of an optimal set of connections within the arc [t 1,, t 2n ] where t 1,,t 2n are T-junctions, consists of an optimal completion of the optimal connections within the arcs included in [t 1,, t 2n ]. Geodesic paths joining compatible T- junctions are computed by means of Hershberger and Snoeyink s funnel algorithm [4] after a triangulation of the polygonal line to which the occlusion boundary reduces. Once the best level lines configuration has been computed, the disocclusion process is completed by means of a simple geodesic propagation within the occlusion of the gray level values of the restored level lines. 5 Experimental results We present below (Figures 4, 5, 6) performances of our algorithm for different types of problems involving occlusion. The first one deals with occlusive (destructive) noise. Occlusions are supposed to be all image subsets that are not invariant with respect to a contrast-invariant and idempotent denoising filter, the so-called grain filter, that was described in [6]. Figure 5 illustrates that our disocclusion algorithm can be used for old photographs restoration. It is here associated with the grain filter which reduces occlusive noise within image. The final experiment (Figure 6) shows that in contrast to PDE-interpolation, our level lines based disocclusion allows to recover image singularities in a way compatible with Kanizsa s perception theory. In [7] we shall present a method for performing a disocclusion by minimizing Dv (1 + curvv p )dx, p > 1 subject to the constraint v Γ c = u Γ c which allows to restore smooth level lines yielding a disocclusion even closer to what the human perception achieves. Acknowledgments The first author is grateful to Françoise Dibos for useful discussions. References [1] V. Caselles, T. Coll and J.M. Morel, A Kanizsa programme, TR 9539, CEREMADE, Université Paris-Dauphine, France, 1995. [2] V. Caselles, J.M. Morel and C. Sbert, An axiomatic approach to image interpolation, IEEE, Special Issue on Differential Equations, 1998. [3] F. Guichard and J.M. Morel, Partial differential equations and image iterative filtering, TR 9535, CEREMADE, Université Paris-Dauphine, France, 1995. [4] J. Hershberger and J. Snoeyink, Computing minimum length paths of a given homotopy class, Comput. Geom Theory Appl., Vol. 4, pp. 63-98, 1994. [5] G. Kanizsa, Grammaire du Voir, Diderot, 1996. [6] S. Masnou and J.M. Morel, Image restoration involving connectedness, In Proc. DIP 97, Vienna, Austria, Vol. 3346, SPIE, 1998. [7] S. Masnou and J.M. Morel, Singular interpolation and disocclusion, in preparation, 1998. [8] M. Nitzberg, D. Mumford and T. Shiota, Filtering, Segmentation and Depth, Lecture Notes in Computer Science, Vol. 662, Springer-Verlag, Berlin, 1993. [9] W.P. Ziemer, Weakly differentiable functions, Springer-Verlag, New-York, 1989.

Figure 4: Left Noisy image (impulse noise, frequency = 10%) Right Occlusion detection is performed with the grain filter (see [6]); occlusions are non-invariant sets. Disocclusion is then achieved with our level lines based algorithm. Figure 5: Left An old damaged and noisy photograph (occlusion is in white). Right Result of image denoising by the grain filter and disocclusion by our level lines based algorithm.

Figure 6: Above Original image where occlusions are in white. Below-left Disocclusion performed by solving equation D 2 v( Dv Dv, Dv Dv ) = 0 (see [2]). Singularities cannot be restored but regular parts of image are well recovered. Below-right Disocclusion performed by our level lines based algorithm. The singularities are well restored.