Original Contribution EFFECTS OF PARALLEL FACTS CONTROLLERS ON STAEDY STATE VOLTAGE STABILITY MARGIN M. A. Kamarposhti 1 *, H.

Similar documents
Voltage Stability assessment by SVC Device Via CPF

Voltage Collapse Prediction and Voltage Stability Enhancement by Using Static Var Compensator

Chapter 3 MODELING OF SHUNT FACTS DEVICES. The Shunt FACTS Devices are used for voltage control and

CHAPTER 4 FACTS CONTROLLERS FOR OPTIMIZATION OF POWER SYSTEM

IJETST- Volume 01 Issue 09 Pages November ISSN

Optimal Placement and Sizing of SVC for Improving Voltage Profile of Power System

The Study of Voltage Profile and Power Quality with SVC in Transmission System at Different Loads

Re-Dispatching Generation to Increase Power System Security Margin and Support Low Voltage Bus

Analysis of Power System Stability by Using Optimally Located SVC and STATCOM

IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 10, 2015 ISSN (online):

Transient Stability Improvement of Long Transmission Line System by Using SVC

Simulation and Analysis of Static Var Compensator with Matlab

POWER FACTOR CORRECTION USING SVC WITH FUZZY LOGIC CONTROLLER

OPTIMAL LOCATION OF SVC USING BENEFIT FACTORS TO IMPROVE THE VOLTAGE PROFILE IN POWER SYSTEMS

Final Report. Mini Project TET Group nr 7 - Project nr 4. Students: Hans Lavoll Halvorson, NTNU

International Journal of Scientific & Engineering Research Volume 4, Issue 2, February ISSN

Study of Transient Stability Improvement of IEEE 9-Bus System by using SVC

MODELING AND SIMULATION OF SVC CONTROLLER FOR ENHANCEMENT OF POWER SYSTEM STABILITY

Artificial Neural Network Controller With Static VAR Compensator to Improve Transient Stability for A Grid Connected Distributed Generation System

Main Components of a Static Var Compensator (SVC)

Power Stability and Oscillation Damping Analysis of a Three Machine Nine Bus System

Modeling and Simulation of Static VAR Compensator Controller for Improvement of Voltage Level in Transmission Lines

SVC & TCSC for Minmum Operational Cost Under Different Loading Condition

Performance Analysis of Power Flow Control Through Statcom, SVC and UPFC

Transient stability of 11-bus system using SVC and improvement of voltage profile in transmission line using series compensator

Performance analysis of FACTS devices in steady state power flow

Voltage Profile Improvement of Transmission Lines Using Static VAR Compensator

Journal of Applied Research and Technology ISSN: Centro de Ciencias Aplicadas y Desarrollo Tecnológico.

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 7, Issue 1, July 2017

Transient Stability Improvement in Transmission System Using SVC with fuzzy logic Control

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI EE-2401 POWER SYSTEM OPERATION AND CONTROL UNIT-III REACTIVE POWER VOLTAGE CONTROL

Research Article A Parameterization Technique for the Continuation Power Flow Developed from the Analysis of Power Flow Curves

Research Article Development of Inexpensive Static Var Compensator Using PIC

Enhancement of Voltage Stability by Optimal Location of Static Var Compensator Using Genetic Algorithm and Particle Swarm Optimization

A Svc Light Based Technique for Power Quality Improvement for Grid Connected Wind Energy System

FUZZY LOGIC TECHNIQUE FOR CONGESTION LINE IDENTIFICATION IN POWER SYSTEM

FACTS and HVDC for Grid Connection of Large Wind Farms

ABB static var compensator stabilizes Namibian grid voltage

Enhancement Voltage Stability of the Iraqi Power Grid Using Shunt FACTs Devices

Simulation of FACTS Devices as Reactive Power Compensators and Voltage Controllers in the Smart Grid

Static Var Compensator: Effect of Fuzzy Controller and Changing Membership Functions in its operation

Lessons Learned in Static VAR Compensator Protection

Haidar Samet, and Mohammad Amin Jarrahi School of Electrical and Computer Engineering Shiraz University Shiraz, Iran

Study on Power Transformer Inrush Current

Introduction to new ABB STATCOM portfolio Power Grid Integration FACTS

Micro physical simulation system of electric power systems

LOAD SHEDDING AN EFFICIENT USE OF LTC TRANSFORMERS

On-line Estimation of Power System Security Limits

Optimal Allocation of Distributed Generation (DGs) and Static VAR Compensator (SVC) in a power system using Revamp Voltage Stability Indicator

Transient stability improvement using svc and pss

Optimization of Reactive Power by Using SVC and TCSC Devices for Reducing Transmission Losses

Power Quality Enhancement using Different FACTS Devices.

An efficient approach for contingency ranking based on voltage stability

PowerWorld Tutorial. Yen-Yu Lee The University of Texas at Austin Jan 18, Updated December 26, 2012, by Ross Baldick

An Improved Measurement Placement Algorithm for Network Observability

ANNA UNIVERSITY QB ( )

A PMU-Based Three-Step Controlled Separation with Transient Stability Considerations

RELIABILITY EVALUATION WITH EFFECTS ON SYSTEM PARAMETERS INCORPORATING FACTS DEVICES

Reactive Power Control and Transmission Line Loss Reduction with Realization of FACT Controller

A Neuro-Fuzzy Application to Power System

An Inrush Current Elimination Technique for Line-Interactive UPS Systems During Switching-in of an Auxiliary Load While Feeding a Main Load

ISO New England Data Modeling Requirements

CHAPTER-5 APPLICATION OF SYMBIOTIC ORGANISMS SEARCH ALGORITHM

LAB1 INTRODUCTION TO PSS/E EE461: POWER SYSTEMS COLORADO STATE UNIVERSITY

NYPA FACTS CSC System

HVDC Control and Protection Testing Using the RTDS Simulator

Decompensated Operational Amplifiers

Minimization of Power Loss and Voltage Deviation by SVC Placement Using GA.

Modelling and Simulation of the SVC for Power System Flow Studies: Electrical Network in voltage drop

Distribution Static Var Compensators and Static Synchronous Compensators for Suppressing Voltage Fluctuation

Ali Abur Northeastern University Department of Electrical and Computer Engineering Boston, MA 02115

The Efficient Way. SVC PLUS Innovation meets experience. Answers for energy.

CPFLOW for Power Tracer and Voltage Monitoring

Small Generator Interconnection System Impact Study Report. Completed For Q0047

Transient Stability Analysis with PowerWorld Simulator

Optimum Placement of Decoupling Capacitors on Packages and Printed Circuit Boards Under the Guidance of Electromagnetic Field Simulation

SYMPATHETIC INRUSH PHENOMENA IN PARALLEL AND SERIES CONNECTED TRANSFORMERS USING PSCAD

Telecommunication of Stabilizing Signals in Power Systems

AUAS SVC, PERFORMANCE VERIFICATION BY RTDS AND FIELD TESTS. S. Boshoff C. van Dyk L Becker M Halonen, S Rudin, J Lidholm Dr T Maguire

DRAFT Reliability Guideline: Modeling Distributed Energy Resources in Dynamic Load Models

Transformer core modeling for magnetizing inrush current investigation.

SVC FOR MAINTAINING OF POWER QUALITY IN THE FEEDING GRID IN CONJUNCTION WITH AN ELECTRIC ARC FURNACE IN A STEEL PLANT

Optimal Proxy-Limited Lines for Representing Voltage Constraints in a DC Optimal Powerflow

Auto-Check Circuit Breaker Interrupting Capabilities

[Kashyap*, 5(2): February, 2016] ISSN: (I2OR), Publication Impact Factor: 3.785

The Different Types of UPS Systems

Automatic Control & Systems Engineering.

Short-Circuit Calculation Methods

WECC Criterion MOD-(11 and 13)-WECC-CRT-1.1

Congestion Management in Deregulated Power System by Fuzzy Based Optimal Location and Sizing of UPFC

International Conference on Advances in Mechanical Engineering and Industrial Informatics (AMEII 2015)

Static var compensator (SVC) applications for improving transmission system performance

Optimal Reactive Power Dispatch Using Hybrid Loop-Genetic Based Algorithm

Real Time Monitoring of

Aggregation of Buses for a Network Reduction HyungSeon Oh, Member, IEEE

Implementation of Wide Area Monitoring System for interconnected power system in India

Enhancing the Grid Compliance of Wind Farms by Means of Hybrid SVC

A guide on PowerWorld Simulator ver. 12.0

SMUD Model Data Requirements & Reporting Procedures MOD VERSION 1.2

AN ADVANCED APPROACH TO IDENTIFY INRUSH CURRENT AND HARMONICS USING ARTIFICIAL INTELLIGENCE FOR POWER SYSTEM PROTECTION

Transcription:

Trakia Journal of Sciences, Vol. 7, No. 3, pp 8-90, 2009 Copyright 2009 Trakia University Available online at: http://www.uni-sz.bg ISSN 33-7050 (print) ISSN 33-355 (online) Original Contribution EFFECTS OF PARALLEL FACTS CONTROLLERS ON STAEDY STATE VOLTAGE STABILITY MARGIN M. A. Kamarposhti *, H. Lesani 2 Department of Electrical, Islamic Azad University, Jouybar Branch, Jouybar, Iran 2 Department of Electrical, University of Tehran, Tehran, Iran ABSTRACT The reconstructed power systems under deregulation are confronted with new challenges to building new transmission lines for accommodating significantly increased power transactions. In order to improve system transmission line and derive high operational efficiency and system security, other than to build large interconnected systems, however, another viable way is the use of the Flexible AC transmission systems (FACTS) devices. Voltage stability is a reactive power problem and can be solved by providing adequate reactive power support at some critical buses. FACTS devices are being increasing used to provide not only the reactive power support but also to control other aspects of a power system. The purpose of this paper is to study the effects of two parallel FACTS controllers on voltage stability in power systems. Continuation power flow, with accurate model of these controllers, is used for this study. The proposed approach is based on SVC comparison with STATCOM compensation to increase the steady state voltage stability margin of power capability. Key words: reactive power, voltage stability, Maximum Loading Point, FACTS INTRODUCTION When a bulk power transmission network is operated close to the voltage stability limit, it becomes difficult to control the reactive power demand for that system. As a result, the system voltage stability will be affected, so it should be prevented. Voltage collapse has been deemed responsible for several major disturbances and significant research efforts are under way in an effort to further understand voltage phenomena. As a consequence, attempts at power flow solutions near the critical point are prone to divergence and error. For this reason, double precision computation and anti divergence algorithms have been used in attempts to overcome the numerical instability []. Voltage instability is mainly associated with reactive power imbalance. The loadability of a bus in the power system depends on the reactive power support that the bus can receive from the system, as the system approaches the Maximum Loading Point (MLP) or voltage * Correspondence to: M. A. Kamarposhti, Post code: 47776-8630; Telephone: +98-24-33639; Fax +98-24-336390, Mehrdad.Ahmadi.K@gmail.com collapse point, both real and reactive power losses increase rapidly. Therefore, the reactive power supports have to be local and adequate. There are two types of voltage stability based on the time frame of simulation: static voltage stability and dynamic voltage stability. Static or steady state analysis involves only the solution of algebraic equations and therefore is computationally less extensive than dynamic analysis. Static voltage stability is ideal for the bulk of studies in which voltage stability limit for many pre-contingency and postcontingency cases must be determined. In static voltage stability, slowly developing changes in the power system occur that eventually lead to a shortage of reactive power and declining voltage. This phenomenon can be seen from the plot of the power transferred versus the voltage at receiving end. The plots are popularly referred to as P-V curve or Nose curve. As the power transfer increases, the voltage at the receiving end decreases. Eventually, the critical (nose) point, the point at which the system reactive power is short in supply, is reached where any further increase in active power transfer will lead to very rapid Trakia Journal of Sciences, Vol. 7, No. 3, 2009 8

decrease in voltage magnitude. Before reaching the critical point, the large voltage drop due to heavy reactive power losses can be observed. The only way to save the system from voltage collapse is to reduce the reactive power load or add additional reactive power prior to reaching the point of voltage collapse [2]. Voltage collapse phenomena in power systems have become one of the important concerns in the power industry over the last two decades, as this has been the major reason for several major blackouts that have occurred throughout the world including the recent Northeast Power outage in North America in August 2003 [3]. Point of collapse method and continuation method are used for voltage collapse studies [4]. Of these two techniques continuation power flow method is used for voltage analysis. These techniques involve the identification of the system equilibrium points or voltage collapse points where the related power flow Jacobian becomes singular [5, 6]. Usually, placing adequate reactive power support at the weakest bus enhances staticvoltage stability margins. The weakest bus is defined as the bus, which is nearest to experiencing a voltage collapse. Equivalently, the weakest bus is one that has a large ratio of differential change in voltage to differential change in load ( V / PTotal ). Changes in voltage at each bus for a given change in system load are available from the tangent vector, which can be readily obtained from the predictor steps in the CPF process. Reactive power support can be done with FACTS devices. Each FACTS device has different characteristics; some of them may be problematic as far as the static voltage stability is concerned. Therefore, it is important to study their behaviors in order to use them effectively. Canizares and Faur studied the effects of SVC and TCSC on voltage collapse [7]. Study of STATCOM and UPFC Controllers for Voltage Stability Evaluated by Saddle-Node Bifurcation Analysis is carried out in [8]. In this paper is to compare the merits and demerits of two FACTS devices, namely, SVC and STATCOM in terms of Maximum Loading Point (MLP) in static voltage collapse study. Rest of the paper is organized as follows: Section II briefly introduces the basic mathematical tools required for the analysis of voltage collapse phenomena. A brief introduction of the stability models including DC representations of SVC and STATCOM is presented in Section III. Section IV is depicted to simulation of voltage collapse phenomena on IEEE 4 bus test system with implementing SVC and STATCOM. Section V reviews the main points discussed in this paper. VOLTAGE COLLASPE Voltage collapse studies and their related tools are typically based on the following general mathematical descriptions of the system [9]: n Where x R represents the system state variables, corresponding to dynamical states of generators, loads, and any other time varying element in the system such as FACTS devices; n y R corresponds to the algebraic variables, usually associated to the transmission system and steady state element models, such as some k generators and loads in the network; λ R stands for a set of uncontrolled parameters that drive the system to voltage collapse, which are typically used to represent system demand. k Vector p R is used here to represent system parameters that are directly controllable, such as shunt and series compensation levels. Based on equation () the voltage collapse point may be defined, under certain assumptions, as the equilibrium point where the related system jacobian is singular, i.e. the point ( x0, y0, λ 0, p0 ) where D x F has a zero 0 eigenvalue. This equilibrium is typically associated to a saddle-node bifurcation point. For a given set of controllable parameters P 0, voltage collapse studies usually concentrate on determining the collapse or bifurcation point ( x 0, y0, λ0 ), where λ 0 typically corresponds to the maximum loading level or loadability margin in P.U., %, MW or MVA depending on how the load variation are defined. Based on bifurcation theory, two basic tools have been defined and applied to computation of this collapse point, namely, direct and continuation methods. In voltage collapse studies, the continuation method shows many advantages, so, most of the researchers apply this technique to trace 82 Trakia Journal of Sciences, Vol. 7, No. 3, 2009

voltage profile at various buses of the test power system, with respect to changes of loading level λ, namely, Continuation Power Flow (CPF). In this paper the continuation power flow algorithm with smooth changes of loading level at various buses of the system, is chosen for simulation purpose. There are two types of FACTS devices considered in this study, namely, SVC and STATCOM. Details including basic structures and terminal characteristics of these FACTS devices are presented in the following section. MODEL OF FACTS CONTROLLERS The following general model is proposed for correct representation of SVC and STATCOM in voltage collapse studies [0]. The model includes a set of differential and algebraic equations of the form: Fig.. Equivalent FC-TCR circuit of SVC The TCR consists of a fixed reactor of inductance L and a bi-directional thyristor valve that are fired symmetrically in an angle control range of 90 to 80, with respect to the SVC voltage. Assuming controller voltage equal to the bus voltage and performing a Fourier series analysis on the inductor current wave form, the TCR at fundamental frequency can be considered to act like variable inductance given by [7], [9]: Where x C represents the control system variables and the algebraic variables V and θ denote the voltage magnitudes and phases at the buses to which the FACTS devices are connected. Finally, the variables u represents the input control parameters, such as reference voltages or reference power owns. Description and terminal characteristics of these FACTS devices are given in the next subsections. A. SVC The two most popular configuration of this type of shunt controller are the fixed capacitor (FC) with a thyristor controlled reactor (TCR) and the thyristor switched capacitor (TSC) with TCR. Among these two setups, the second (TSC-TCR) minimizes stand-by losses; however from a steady-state point of view, this is equivalent to the FC-TCR. In this paper, the FC-TCR structure is used for analysis of SVC which is shown in Figure. Where, X L is the reactance caused by the fundamental frequency without thyristor control and α is the firing angle, hence, the total equivalent impedance of the controller can be represented as: Where r x = X C / X L. The limits of the controller are given by the firing angle limits, which are fixed by design. The typical steadystate control law of a SVC used here is depicted in Figure 2, and may be represented by the following voltage-current characteristic: Where V and I stand for the total controller RMS voltage and current magnitudes, respectively, and V ref represents a reference voltage. Trakia Journal of Sciences, Vol. 7, No. 3, 2009 83

Fig.2. Typical steady state V I characteristic of a SVC Typical values for the slope X SL are in the range of 2 to 5 %, with respect to the SVC base; this is needed to avoid hitting limits for small variations of the bus voltage. A typical value for the controlled voltage range is ± 5% about V ref [7]. At the firing angle limits, the SVC is transformed into a fixed reactance. Fig.4. Typical steady state V I characteristic of a STATCOM The AC circuit is considered in steady-state, whereas the DC circuit is described by the following differential equation, in terms of the voltagev dc on the capacitor [8]: B. STATCOM STATCOM is the Voltage-Source Inverter (VSI), which converts a DC input voltage into AC output voltage in order to compensate the active and reactive power needed by the system [0]. Figures 3 and 4 show the Basic structure and typical steady state V I characteristic of STATCOM, respectively. From Figure 3, STATCOM is a shuntconnected device, which controls the voltage at the connected bus to the reference value by adjusting voltage and angle of internal voltage source. From Figure 4, STATCOM exhibits constant current characteristics when the voltage is low/high under/over the limit. This allows STATCOM to delivers constant reactive power at the limits compared to SVC. The power injection at the AC bus has the form: Where k = 3/ 8m. SIMULATIN RESULTS An IEEE 4-bus test system as shown in Figure 5 is used for voltage stability studies. The test system consists of five generators and eleven PQ bus (or load bus). The simulations use PSAT simulation software []. PSAT is power system analysis software, which has many features including power flow and continuation power flow. Using continuation power flow feature of PSAT, voltage stability of the test system is investigated. Voltage stability analysis is performed by starting from an initial stable operating point and then increasing the loads by a factor λ until singular point of power flow linearization is reached. The loads are defined as: Fig.3. Basic structure of STACOM 84 Trakia Journal of Sciences, Vol. 7, No. 3, 2009

Where P L0 and Q L0 are the active and reactive base loads, whereas P L, and Q L, are the active and reactive loads at bus L for the current operating point as defined by λ. Fig.5. The IEEE 4-bus test system The behavior of the test system with and without FACTS devices under different loading conditions is studied. The location of the FACTS controllers is determined through bifurcation analysis. A typical PQ model is used for the loads and the generator limits are ignored. From the continuation power flow results which are shown in the Figure 6, the buses 4, 5, 9 and 4 are the critical buses. Among these buses, bus 4 has the weakest voltage profile. Figure 7 shows PV curves for 4-bus test system without FACTS. The system presents a collapse or Maximum Loading Point, where the system Jacobian matrix become singular at λmax = 3.97295 p.u. Based on largest entries in the right and left eigenvectors associated to the zero eigenvalue at the collapse point, bus 4 is indicated as the critical voltage bus needing Q support. Voltage magnitude in MLP in bus 4 that is known as the weakest bus is 8833 p.u..4 Voltage Magnitude Profile.2 V [p.u.] 0.2 0 2 3 4 5 6 7 8 9 0 2 3 4 Bus # Fig.6. Voltage magnitude profile for 4-bus test system without FACTS A. SVC Based on collapse analysis bus 4 is targeted as the first location for an SVC. The results of locating the SVC at the desired bus are depicted in the voltage profile of Figure 8. The new maximum loading level in this condition is λmax = 4.08238p.u. To show that maximum loading margin doesn t increase as much when the same SVC is moved to a bus that doesn t belong to the critical voltage buses e.g. for bus Trakia Journal of Sciences, Vol. 7, No. 3, 2009 85

No. 4 λmax = 4.06984 p.u. drive (Figure 9).. 0.9 V Bus 04 V Bus 05 V Bus 09 Vbus#(p.u.) 0.7 V Bus 4 0.5 0.5.5 2 2.5 3 3.5 Loading Parameter λ (p.u.) Fig.7. PV curves for 4-bus test system without FACTS. 0.9 V Bus 04 V Bus 05 V Bus 09 Vbus#(p.u.) 0.7 V Bus 4 0.5 0.5.5 2 2.5 3 3.5 4 Loading Parameter λ (p.u.) Fig.8. PV curves for 4-bus test system with SVC at bus 4 B. STATCOM Then, remove the SVC, and insert the STATCOM at the bus 4 which the lowest the critical point and repeat the simulation, When STATCOM is connected at bus 4. We can observe from Figure 0 that bus 4 has a flatter voltage profile. The Maximum 86 Trakia Journal of Sciences, Vol. 7, No. 3, 2009

Loading Point is increasing further at λmax = 4.0892 p.u. It is noticed that bus 5 is the next weakest bus if the STATCOM is introduced at bus 4.. 0.9 V Bus 04 V Bus 05 V Bus 09 Vbus#(p.u.) 0.7 V Bus 4 0.5 0.5.5 2 2.5 3 3.5 4 Loading Parameter λ (p.u.) Fig.9. PV curves for 4-bus test system with SVC at bus 4. 0.9 V Bus 04 V Bus 05 V Bus 09 Vbus#(p.u.) 0.7 V Bus 4 0.5 0.5.5 2 2.5 3 3.5 4 Loading Parameter λ (p.u.) Fig.0. PV curves for 4-bus test system with STATCOM at bus 4 C. Comparison SVC and STATCOM PV curves of base case and system with SVC and STATCOM are illustrated in Figure. It indicates that with the application of SVC and STATCOM, voltage profile in bus 4 has improved significantly. At first that system experiences light load, the voltage profile of this bus with SVC and STATCOM is the same. In this condition SVC and STATCOM operate in linear region of their V-I characteristics. When the load of the system is increased, the Trakia Journal of Sciences, Vol. 7, No. 3, 2009 87

effect of STATCOM in improving the voltage is more adequate than the SVC. When the maximum limit is reached, the SVC behaves exactly like a fixed shunt capacitor. In maximum load condition or MLP, the magnitude of the bus no.4 voltage reaches to 8987 p.u. (with SVC) and reaches to 0.99237 p.u. (with STATCOM) from 8833 p.u. (without FACTS). It is obviously from Figure 2 that the MLP of the system with STATCOM is highest while that without FACTS is lowest. Voltage reduction is lowest in case of STATCOM. From the Figure, it is obvious that STATCOM gives the maximum loading margin compared to other devices..2 Vbus4(p.u.) 0.2 Base Case SVC ST AT COM 0 0 0.5.5 2 2.5 3 3.5 4 4.5 Loading Parameterλ(p.u.) Fig.. Voltage profile for bus 4 with and without SVC & STATCOM at bus4 M aximum Loading Point(p.u.) 4. 4.08 4.06 4.04 4.02 4 3.98 3.96 3.94 3.92 3.9 Base Case SVC STATCOM Fig.2. Maximum Loading Point with various FACTS devices 88 Trakia Journal of Sciences, Vol. 7, No. 3, 2009

A snap shot of voltage profile at all the busses with different controllers are given in Figure 3 at the Maximum Loading Point. Notice with SVC, STATCOM keeps all busses within the acceptable voltage range. Using of SVC and STATCOM give the view of voltage decline before entering to the collapse point. The SVC and STATCOM significantly affects the shape of the PV curve, which improves the critical point without masking the nose point by only shift out the PV curve..2 Vbus#(p.u.) 0.2 Base Case SVC STATCOM 0 0 2 4 6 8 0 2 4 6 Bus # Fig.3. Voltage profile of each bus at the MLP of system with and without SVC and STATCOM From Figure 3, STATCOM provides a better voltage profile at the collapse point at bus 4 compared to other FACTS devices. This is due to the reason that the STATCOM is installed at the weakest bus. Reactive power support at the weakest bus provides better voltage profiles throughout the system. STATCOM introduces reactive power at bus 4, which improves voltage profile in its vicinity. Voltage magnitudes at load buses 4, 5 of the system are lower in case of STATCOM compared to SVC. Voltage magnitudes at load buses 7, 9, 0,, 2, 3 and 4 of the system is better in case of STATCOM compared to SVC. CONCLUSIONS A comparison study of SVC and STATCOM in steady state voltage stability margin enhancement is presented. SVC and STATCOM increase steady state voltage stability margin and power transfer capability. In this paper adequate models for the SVC and STATCOM in the steady-state studies are presented and thoroughly discussed. Hence, a technique to identify the optimal placement of the FACTS devices and related equations are derived. The results of simulations on the IEEE 4 bus test system have clearly shown that how SVC and STATCOM devices increased the buses voltage, power limits, line powers, and loading capability of the network. The results of simulations also show that with the insertion of STATCOM, improving these parameters and steady-state stability of the system is more than the case when the SVC is inserted in the system. REFERENCES. V. Ajjarapu and C. Christy, The continuation power flow: A tool for steady state voltage stability analysis, IEEE Trakia Journal of Sciences, Vol. 7, No. 3, 2009 89

Trans. on Power Systems, vol. 7, no., pp.426-423, Feb. 992. 2. Arthit Sode-Yome, Nadarajah Mithulananthan and Kwang Y. Lee, Static Voltage Stability Margin Enhancement Using STATCOM, TCSC and SSSC, IEEE/PES Transmission and Distribution Conference & Exhibition, Asia and pacific, Dalian Chine, 2005. 3. Blackout of 2003: Description and Responses, Available: http://www.pserc.wisc.edu/. 4. R. Natesan and G. Radman, Effects of STATCOM, SSSC and UPFC on Voltage Stability, Proceedings of the system theory thirty- Sixth southeastern symposium, 2004, pp. 546-550. 5. Dobson and H. D. Chiang, "Towards a theory of Voltage collapse in electric power systems," Systems& Control Letters, vol. 3, 989, pp. 253-262. 6. C. A. Canizares, F. L. Alvarado, C. L. DeMarco, I. Dobson, and W. F. Long, "Point of collapse methods applied to acldc power systems," IEEE Trans. Power Systems, vol. 7, no. 2, May 992, pp. 673-683. 7. C. A. Canlzares, Z. T. Faur, "Analysis SVC and TCSC Controllers in Voltage Collapse," IEEE Trans. Power Systems, Vol. 4, No., February 999, pp. 58-65. 8. A. Kazemi, V. Vahidinasab and A. Mosallanejad, Study of STATCOM and UPFC Controllers for Voltage Stability Evaluated by Saddle-Node Bifurcation Analysis, First International Power and Energy Conference PECon/IEEE, Putrajaya, Malaysia, November 28-29, 2006. 9. N. Talebi, M. Ehsan, S.M.T Bathaee, "Effects of SVC and TCSC Control Strategies on Static Voltage Collapse Phenomena, IEEE Proceedings, SoutheastCon, pp. 6-68, Mar 2004. 0. C. A. Canizares, "Power Row and Transient Stability Models of FACTS controllers for Voltage and Angle Stability Studies," IEEE/PES WM Panel on Modeling, Simulation and Applications of FACTS Controllers in Angle and Voltage Stability Studies, Singapore, Jan. 2000. F. Milano, Power System Analysis Toolbox," Version.3.4, Software and Documentation, July 4, 2005. 90 Trakia Journal of Sciences, Vol. 7, No. 3, 2009