ECE 598HH: Advanced Wireless Networks and Sensing Systems. Lecture 8: MIMO Part 1 Haitham Hassanieh

Similar documents
Distributed MIMO. Patrick Maechler. April 2, 2008

ECE 598HH: Special Topics in Wireless Networks and Mobile Systems

ibf BeamformingTechnology

MIMO RFIC Test Architectures

Links, clocks, optics and radios

Degrees of Freedom in Cached Interference Networks with Limited Backhaul

LEARNING-BASED ADAPTIVE TRANSMISSION FOR LIMITED FEEDBACK MULTIUSER MIMO-OFDM. Alberto Rico-Alvariño and Robert W. Heath Jr.

11ax MU-MIMO; how is it different from 11ac?

Many-to-Many Beam Alignment in Millimeter Wave Networks

Practical MU-MIMO User Selection on ac Commodity Networks

B.E. ELECTRONICS & COMMUNICATION ENGINEERING SEMESTER - VII EC WIRELESS COMMUNICATION

Six Things Security Professionals Need to Know About Wireless

s3.kth.se MUMS Lecture ACE course Agenda C-Programming language Global and local variables

Rate Adaptation for Multiuser MIMO Networks

Wireless Communication

Coding vs. ARQ in Fading Channels: How reliable should the PHY be?

Eco-pack (dual-band a/b/g/n/ac) 10 quantity access points

Solving High Density WiFi

Wireless MACs: MACAW/802.11

4Gon Tel: +44 (0) Fax: +44 (0)

Student Workbook. Presentation Graphics Notes Areas Glossary. Presenter Keith R. Parsons, CWNE #3

LANCOM Techpaper IEEE n Overview

Simulation, prototyping and verification of standards-based wireless communications

Optimizing Wireless Resources In ac And Beyond

Multimedia Communication Services Traffic Modeling and Streaming

LTE: MIMO Techniques in 3GPP-LTE

Christian Doppler Laboratory for Dependable Wireless Connectivity for the Society in Motion Three-Dimensional Beamforming

Rate Adaptation in

Energy Efficient Communications with Wi-Fi

This course provides students with the knowledge and skills to successfully survey, install, and administer enterprise Wi-Fi networks.

CSCI-1680 Physical Layer Link Layer I Rodrigo Fonseca

Converged Access: Wireless AP and RF

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

Home Security System with Remote Home Automation Control

Error Control System for Parallel Multichannel Using Selective Repeat ARQ

SourceSync: A Distributed Wireless Architecture for Exploiting Sender Diversity

Alternate PHYs

Continued Industry-Leading Performance via ClientLink 3.0 for High Density Wireless Networks

whitepaper ac Wave 2 Technology White Paper

Chapter 6 Digital Data Communications Techniques

Bringing Cross-Layer MIMO to Today s Wireless LANs

M06:Wireless and Mobile Networks. Corinna Schmitt

Energy-Efficient Cooperative Communication In Clustered Wireless Sensor Networks

PROPOSAL OF MULTI-HOP WIRELESS LAN SYSTEM FOR QOS GUARANTEED TRANSMISSION

BigStation: Enabling Scalable Real-time Signal Processing in Large MU-MIMO Systems

Design and Deployment Considerations for High Performance MIMO Testbeds

RF4431 wireless transceiver module

4G WIRELESS VIDEO COMMUNICATIONS

Multi-Hop Virtual MIMO Communication using STBC and Relay Selection

Coordinated Multi-Point in Mobile Communications

802.11n. Taking wireless to the next level. Carlo Terminiello Consulting SE Wireless & Mobility European Technology Marketing

RF4432 wireless transceiver module

Simulator Experiment. Physical Layer

Transmit Smart with Transmit Beamforming

CSE 123A Computer Networks

Optimal Packet Scheduling and Radio Resource Allocation. By Subhendu Batabyal Basabdatta Palit Prabhu chandar Dr. Suvra Sekhar Das

ANALYSIS OF COOPERATIVE TRANSMISSION MODIFIED ROUTING PROTOCOL IN MANETS

Local Area Networks NETW 901

Wireless Networked Systems

IEEE/ACM TRANSACTIONS ON NETWORKING 1

Gigabit WiFi: Utilising ac on Campus Considerations and Benefits

CSE 461 Multiple Access. David Wetherall

Robust Mobile Multimedia Conferencing

Geographic and Diversity Routing in Mesh Networks

Performance Study on a CSMA/CA-Based MAC Protocol for Multi-User MIMO Wireless LANs

StripComm. Interference-resilient Cross-technology Communication in Coexisting Environments. Tsinghua University. Xiaolong Zheng, Yuan He, Xiuzhen Guo

RF Cloak: Securing RFID Cards Without Modifying them

Monitoring the Network (CPE and WBS)

Common Public Radio Interface

A Glimpse at the Wireless Data Communications Standards. Fanny Mlinarsky 8 August 2007

King Fahd University of Petroleum & Minerals. Electrical Engineering Department. EE 575 Information Theory

BBN: Throughput Scaling in Dense Enterprise WLANs with Blind Beamforming and Nulling

Polar Codes for Noncoherent MIMO Signalling

ARUBA RAP-3 REMOTE ACCESS POINT

REALITIES OF AC SPEEDS IN

Hands-On Exercises: IEEE Standard

Some portions courtesy Robin Kravets and Steve Lumetta

FLEXIBLE WIPS SENSOR SUPPORT

Introduction. Communication Systems Simulation - I. Monte Carlo method. Simulation methods

Implementation of a Dual-Mode SDR Smart Antenna Base Station Supporting WiBro and TDD HSDPA

Viterbi Algorithm for error detection and correction

SAPHYRE. Contract No. FP7-ICT Network protocol design for resource sharing D4.2

Additional Slides (Basics) Intermediate Systems

Sensor Network Applications and In-Network Processing

Wireless Sensor Networks. Application Domains. Crosslayer Protocol Design in Sensor Networks. Technology Thrusts. Wireless Sensor Networks

WHITE PAPER AX WAIT, DID WE JUST BUILD A WIRELESS SWITCH?

Coexistence Gaps in Space via Interference Nulling for LTE-U/WiFi Coexistence

Design and Evaluation of the Ultra- Reliable Low-Latency Wireless Protocol EchoRing

Outline. Lecture 16: Wireless Networking. Physical Layer (Layer 1) Ethernet: Wireless is Different. Attenuation Over Space

DV4mini. DV4mini: D-Star/DMR/C4FM Hotspot-USB-Stick Interface Description Version DV Development Group Author : DJ0ABR

NTT DOCOMO s Views on 5G

Channel Decoding in Wireless Communication Systems using Deep Learning

ARUBA RAP-3 REMOTE ACCESS POINT High-performance wireless and wired networking for branch offices and teleworkers

SharkFest 18 Europe. Troubleshooting WLANs (Part 2) Troubleshooting WLANs using Management & Control Frames. Rolf Leutert

Complexity Assessment of Sphere Decoding Methods for MIMO Detection

Lecture Objectives. Lecture 1 Wireless Environment and Wireless LANs. Agenda (1) Agenda (2) Wireless Spectrum (1)

HP ProCurve MultiService Access Point Series

Link Layer Review. CS244A Winter 2008 March 7, 2008 Ben Nham

WCDMA evolution: HSPA and MBMS

Analysis of a fixed-complexity sphere decoding method for Spatial Multiplexing MIMO

Transcription:

ECE 598HH: Advanced Wireless Networks and Sensing Systems Lecture 8: MIMO Part 1 Haitham Hassanieh

MIMO: Multiple Input Multiple Output So far: single input single output This lecture: multiple input multiple output Increase capacity of channel using multiple transmit and receive antennas.

MIMO: Multiple TX-RX streams h #" h "# h ## h "" $ " = h "" + h "# = h #" + h ## $ " = h "" h #" h "# h ## + ) " ) # * = +, + - How to recover and? Estimate +, compute +." and invert the channel!,/ = +.0 * = +.0 +, + +.0 - =, + +.0 - Transmit 2 packets at the same time!

MIMO: Multiple TX-RX streams h #" h "# h ## h "" $ " = h "" + h "# = h #" + h ## $ " = h "" h #" h "# h ## + How to recover and? ) " ) # * = +, + - Estimate +, compute +." and invert the channel!,/ = +.0 * = +.0 +, + +.0 - =, + +.0 - For 1 antennas, + is 1 1 matrix à 3 1 4 Noise amplification

MIMO: Vector Representation h #" h "# h ## h "" $ " = h "" + h "# = h #" + h ## $ " = h "" h #" h "# h ## + ) " ) # * = +, + - How to recover and? h "" * = + =. " +. # h #" h "# h ##

MIMO: Antenna Space! = $ % & % + $ ( & ( Ant. 2: ) ( $ ( & (! $ % & % Ant. 1: ) %

MIMO: Antenna Space! = $ % & % + $ ( & ( Ant. 2: ) ( To decode & %, project on a vector $ ( * orthogonal to $( $ ( & (! $ ( *! = $( * $% & % + $ ( * $( & ( = $ ( * $% & % $ % & % h %%! = & % + & ( h (% h %( h (( $ ( *! = h(( h %% & % h %( h (% & % Ant. 1: ) % + h (( h %( & ( h %( h (( & ( $ ( * = h(( h %( = h (( h %% h %( h (% & %

MIMO: Antenna Space! = $ % & % + $ ( & ( Ant. 2: ) ( To decode & (, project on a vector $ % * orthogonal to $% $ ( & (! $ % *! = $% * $% & % + $ % * $( & ( = $ % * $( & ( $ % & % h %%! = & % + & ( h (% h %( h (( $ % *! = h(% h %% & % h (% h %% & % Ant. 1: ) % + h (% h %( & ( h %% h (( & ( $ % * = h(% h %% = h (% h %( h %% h (( & (

MIMO: Antenna Space What about MIMO with more antennas?! = $ % & % + $ ( & ( Ant. 2: ) ( +$ * & * To decode & %, project on a vector $ (* + orthogonal to the plane formed by $ ( and $ * $ ( & ( $ (* + = $( $ * $ * & * $ % & % Ant. 1: ) % Ant. 3: ) *

MIMO: Antenna Space What about MIMO with more antennas?! = $ % & % + $ ( & ( + $ ) & ) Ant. 2: * ( To decode & %, project on a vector $ () + orthogonal to the plane formed by $ ( and $ ) $ ( & ( $ () + = $( $ ) $ ) & ) $ % & % - antenna MIMO, receives signals in - dimensional Ant. space 1: * % à Can decode - parallel signals Decoding complexity scales.(- ( ) operations with the number Ant. of antennas 3: * )

MIMO Channel h #" h "# h ## h "" $ " = h "" + h "# = h #" + h ## How to estimate the channels: h "", h "#, h #", h ##? TX 1: TX 2: Preamble Preamble

MIMO Channel h #" h "# h ## h "" $ " = h "" + h "# = h #" + h ## How to estimate the channels: h "", h "#, h #", h ##? TX 1: TX 2: Preamble Preamble

MIMO Gains Multiplexing Gain: Send multiple packets at the same time!! MIMO à! more packets Diversity Gain: Send/Receive the same packet on multiple antennas Increase SNR of the received packets à transmit at higher data rates

Receiver Diversity h # # = h #! + ( # " $ =! + ( $ How to best decode!? Option 1: Add the received signals " # + " $ = h #! + ( # +! + ( $ = h # +! + ( # + ( $ Channels can sum up destructively! h # + 0

Receiver Diversity h # # = h #! + ( # " $ =! + ( $ How to best decode!? Option 1: Add the received signals Option 2: Decode independently Sub-optimal!

Receiver Diversity h # # = h #! + ( # " $ =! + ( $ How to best decode!? Option 1: Add the received signals Option 2: Decode independently Optimal Solution: Maximum Ratio Combining (MRC)

Maximum Ratio Combining h # # = h #! + ( # " $ =! + ( $ 7 # " # + 7 $ " $ = h # " # + " $ = h # h #! + h # ( # +! + ( $ = h + $! + h # ( # + h $ ( $ Let 0 = 5! $ and 6 $ = 5 ( $ = 5 ( $ +,-(./ 01234 = 5 h + $! $ = h + h $ $ $ 5! $ = $ + 0

Maximum Ratio Combining h # # = h #! + ( # " $ =! + ( $ 9 # " # + 9 $ " $ = h # " # + " $ = h # h #! + h # ( # +! + ( $ = h + $! + h # ( # + h $ ( $ Let 1 = )! $ and 8 $ = ) ( $ = ) ( $ +,-(./ 12345 = $ + 1 62,74 12345 = ) h # ( # + h $ $ ( $ = ) h # ( + ) h $ $ ( $ = h ) ( + $ ) ( $ $ = h + $ 8 $

Maximum Ratio Combining h # # = h #! + ( # " $ =! + ( $ : # " # + : $ " $ = h # " # + " $ = h # h #! + h # ( # +! + ( $ Let / = 7! $ and 6 $ = 7 ( # $ = 7 ( $ $ )*+(,- /0123 = h # $ + $ $ / 40*52 /0123 = h # $ + $ 6 $ )48 = h # $ + $ $ / h # $ + $ 6 $ = h # $ + $ / 6 $ = h # $ + $! + h # ( # + ( $

Maximum Ratio Combining h # # = h #! + ( # " $ =! + ( $ 0 # " # + 0 $ " $ = h # " # + " $ = h # h #! + h # ( # +! + ( $ = h # $ + $! + h # ( # + ( $ With Receiver Diversity: )*+ = h # $ + $ -. $ Single Receiver: )*+ = h # $ -. $

Receiver Diversity Gain h # # = h #! + ( # " $ =! + ( $ With Receiver Diversity: )*+ = h # $ + $ -. $ Single Receiver: )*+ = h # $ -. $ h # $ $ à Can double SNR!

Receiver Diversity Gain Do we care about doubling the SNR?!"#"$%&' log,-. Rate SNR

Receiver Diversity Gain h # # = h #! + ( # " $ =! + ( $ With Receiver Diversity: )*+ $,- = h # $ + $ / 0 $ Single Receiver: )*+ #,- = h # $ / 0 $ h # $ $ h # $ $ h # $ $ à Can double SNR! à Huge Gain in SNR à Little Gain in SNR It is unlikely that both antennas experience channel fading.

Transmitter Diversity % $! = % $ + h ' % ' + ( % ' h ' What should we transmit on each antenna? Option 1: transmit the same thing % on both antennas! = + h ' % + ( Channels can sum up destructively! + h ' 0 Total transmit power = 2,à Doubled TX power à Why not use 1 TX with 2,

Transmitter Diversity % $! = % $ + h ' % ' + ( % ' h ' What should we transmit on each antenna? Option 1: transmit the same thing % on both antennas! = + h ' % + ( Must ensure signals sum up constructively. Channels can sum up destructively! + h ' 0 Total Must transmit ensure total power TX = power 2,à = Doubled - % ' $ TX + power - % ' ' à = Why - not % ' use =, 1 TX with 2,

Transmitter Diversity % $! = % $ + h ' % ' + ( % ' h ' What should we transmit on each antenna? Option 2: Maximum Ratio Combining (MRC) % $ = ) $ %! = ) $ + ) ' h ' % + ( % ' = ) ' % Set: ) $ =, ) ' = h ' à! = + h ' h ' % + ( = ' + h ' ' % + (

Transmitter Diversity % $! = % $ + h ' % ' + ( % ' h ' What should we transmit on each antenna? Option 2: Maximum Ratio Combining (MRC) % $ = ' + h ' ' % % ' = +,-./ +0 1,234 = 5 % $ ' + 5 % $ ' = ' ' + h ' ' 1 + h ' ' + h ' ' % h ' ' ' + h ' ' 1 = 1

Transmitter Diversity % $! = % $ + h ' % ' + ( % ' h ' What should we transmit on each antenna? Option 2: Maximum Ratio Combining (MRC) % $ = ' + h ' ' % % ' = h ' ' + h ' ' %! = ' + h ' ' % + h ' h ' ' + h ' ' % + (

Transmitter Diversity % $! = % $ + h ' % ' + ( % ' h ' What should we transmit on each antenna? Option 2: Maximum Ratio Combining (MRC) % $ = ' + h ' ' % % ' = h ' ' + h ' ' %! = ' + h ' ' ' + h ' ' % + ( = ' + h ' ' % + (

Transmitter Diversity % $! = % $ + h ' % ' + ( % ' h ' What should we transmit on each antenna? Option 2: Maximum Ratio Combining (MRC)! = ' + h ' ' % + ( )*+ = h ' $ + h ', ' à Similar SNR Gain to RX Diversity -' Caveat: MRC at TX Requires Feedback from the Receiver!

Transmitter Diversity % $! = % $ + h ' % ' + ( % ' h ' What should we transmit on each antenna? Solution: Use Space-Time Codes MRC codes across space only (Requires Channel Feedback): TX1: % $, $ % 1, $ % 2, $ = TX2: % ', ' % 1, ' % 2, ' = ) = 1 ) = 2 ' + h ' ' h ' ' + h ' '

Transmitter Diversity % $! = % $ + h ' % ' + ( % ' h ' What should we transmit on each antenna? Solution: Use Space-Time Codes Alamouti Codes: TX1: % $ % 1 % 2![1] = %[1] + h ' %[2] TX2: % ' % 2 % 1! 2 = % [2] + h ' % [1] ) = 1 ) = 2

Transmitter Diversity % $! = % $ + h ' % ' + ( % ' h ' What should we transmit on each antenna? Solution: Use Space-Time Codes Alamouti Codes:![1] = %[1] + h ' %[2]! 2 = % [2] + h ' % [1] h $! 1 + h '! 2 = h $ % 1 + h $ h ' % 2 h ' h $ % 2 + h ' h ' % 1 = h ' $ + h ' ' % 1

Transmitter Diversity % $! = % $ + h ' % ' + ( % ' h ' What should we transmit on each antenna? Solution: Use Space-Time Codes Alamouti Codes:![1] = %[1] + h ' %[2]! 2 = % [2] + h ' % [1] h '! 1! 2 = h ' % 1 + h ' h ' % 2 + h $ % 2 h ' % 1 = h ' $ + h ' ' % 2

Transmitter Diversity % $! = % $ + h ' % ' + ( % ' h ' What should we transmit on each antenna? Solution: Use Space-Time Codes Alamouti Codes: TX1: % $ % 1 % 2! 1 + h '! 2 = ' + h ' ' % 1 TX2: % ' % 2 % 1 ) = 1 ) = 2 h '! 1! 2 = ' + h ' ' % 2

MIMO Gains Multiplexing Gain: Send multiple packets at the same time!! MIMO à! more packets Data Rate:! log '!(/! Diversity Gain: Increase SNR of the received packets!! MIMO à log! * data rate Data Rate log '!(! *

MIMO h #" h "# h ## h "" $ " = h "" + h "# = h #" + h ## ) = *+ +, +- = *./ ) = *./ *+ + *./, = + + *./,

Multi-User MIMO h #" h "# h ## h "" $ " = h "" + h "# = h #" + h ## ) = *+ +, +- = *./ ) = *./ *+ + *./, = + + *./, Does not work. Receivers do not have access to each other s signals

Precoding h #" h "# h ## h "" $ " = h "" + h "# = h #" + h ## Send: +, = *./ + Receive: ) = *+, + - = **./ + + - = + + - Also known as Beamforming or Zero-Forcing

What about distributed transmitters? h #" h "# h ## h "" $ " = h "" + h "# = h #" + h ## Send: +, = *./ + Receive: ) = *+, + - = **./ + + - = + + - Does not work. Transmitters do not have access to each other s signals False: what if transmitters are APs connected over Ethernet?

Clock Synchronization in MIMO h "" $ h " #" h "# h ## $ " = h "" ' ()#*+, --. + h "# ' ()#*+, -1. = h #" ' ()#*+, 1-. + h ## ' ()#*+, 11. $ " = h "" h #" h "# h ## + 2 " 2 #

Clock Synchronization in MIMO h "" $ h " #" h "# h ## $ " = h "" ' ()#*+, --. h #" ' ()#*+, /-. h "# ' ()#*+, -/. h ## ' ()#*+, //. + 1 " 1 # On chip MIMO: Δ3 "" = Δ3 #" = Δ3 "# = Δ3 ## = Δ3 $ " = h "" h #" h "# h ## ' ()#*+,. + 1 " 1 #

Clock Synchronization in MIMO h "" $ h " #" h "# h ## $ " = h "" ' ()#*+, --. h #" ' ()#*+, /-. h "# ' ()#*+, -/. h ## ' ()#*+, //. + 1 " 1 # MU-MIMO: Δ3 "" = Δ3 "# and Δ3 #" = Δ3 ## $ " = h "" ' ()#*+, -. h #" ' ()#*+, /. h "# ' ()#*+, -. h ## ' ()#*+, /. + 1 " 1 #

Clock Synchronization in MIMO h "" $ h " #" h "# h ## $ " = h "" ' ()#*+, --. h #" ' ()#*+, /-. h "# ' ()#*+, -/. h ## ' ()#*+, //. + 1 " 1 # MU-MIMO: Δ3 "" = Δ3 "# and Δ3 #" = Δ3 ## $ " = ' ()#*+, -. 0 0 ' ()#*+, /. h "" h #" h "# h ## + 1 " 1 #

Clock Synchronization in MIMO h "" $ h " #" h "# h ## $ " = h "" ' ()#*+, --. h #" ' ()#*+, /-. h "# ' ()#*+, -/. h ## ' ()#*+, //. + 1 " 1 # Distributed MIMO: Δ3 "" Δ3 "# Δ3 #" Δ3 ## Next Lecture!