6LoWPAN (IPv6 based Low Power WPAN)

Similar documents
TinyOS meets IP -- finally

Wireless Embedded InterNetworking Foundations of Ubiquitous Sensor Networks 6LoWPAN David E. Culler University of California, Berkeley June 2008

Outlook on IEEE ZigBee Implications IP Requirements IPv6 over Low Power WPAN (IEEE ) Conclusions. KRnet /21

IPv6 Stack. 6LoWPAN makes this possible. IPv6 over Low-Power wireless Area Networks (IEEE )

Outline. Introduction. The Internet Architecture and Protocols Link Layer Technologies Introduction to 6LoWPAN The 6LoWPAN Format Bootstrapping

Interworking between USN and IP Networks Ki-Hyung Kim Ajou University, Korea

Proposed Node and Network Models for M2M Internet

Sensors The Next Tier of the Internet

Politecnico di Milano Advanced Network Technologies Laboratory. 6LowPAN

Mobile Communications

CHAPTER 3. 6LoWPAN 3.1 INTRODUCTION

Integration of Wireless Sensor Network Services into other Home and Industrial networks

6LoWPAN Eliminate Energy Waste by Sensing and Informing. Patrick Grossetete Product Management and Customers Solutions

Lecture 3. The Network Layer (cont d) Network Layer 1-1

Evaluation of 6LoWPAN Implementations

The Internet Protocol. IP Addresses Address Resolution Protocol: IP datagram format and forwarding: IP fragmentation and reassembly

How to develop and validate a scalable mesh routing solution for IEEE sensor networks Altran Benelux

Networked Embedded Systems: 6LoWPAN

Lecture 16: Network Layer Overview, Internet Protocol

Computer Network Fundamentals Spring Week 4 Network Layer Andreas Terzis

Quiz. Segment structure and fields Flow control (rwnd) Timeout interval. Phases transition ssthresh setting Cwnd setting

Outline. IP Address. IP Address. The Internet Protocol. o Hostname & IP Address. o The Address

Introduction to IEEE and IPv6 over (6LowPAN)

WPAN/WBANs: ZigBee. Dmitri A. Moltchanov kurssit/elt-53306/

Politecnico di Milano Advanced Network Technologies Laboratory. 6LowPAN

Networked Embedded Systems: 6LoWPAN

CPSC 826 Internetworking. The Network Layer: Routing & Addressing Outline. The Network Layer

An Industry view of IPv6 Advantages

Lecture 8. Network Layer (cont d) Network Layer 1-1

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 12

Lesson 4 RPL and 6LoWPAN Protocols. Chapter-4 L04: "Internet of Things ", Raj Kamal, Publs.: McGraw-Hill Education

Internet of Things: Latest Technology Development and Applications

Module 1: Wireless Sensor Networks

IPv4. Christian Grothoff.

IPv6 Protocol. Does it solve all the security problems of IPv4? Franjo Majstor EMEA Consulting Engineer Cisco Systems, Inc.

On Distributed Communications, Rand Report RM-3420-PR, Paul Baran, August 1964

COMP211 Chapter 4 Network Layer: The Data Plane

TCP/IP Protocol Suite

Network layer: Overview. Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing

IETF Update about IPv6

Network layer: Overview. Network Layer Functions

Introduction to IPv6 - II

Implementation and Evaluation of the Enhanced Header Compression (IPHC) for 6LoWPAN

ETSF05/ETSF10 Internet Protocols Network Layer Protocols

CSC 401 Data and Computer Communications Networks

CS 356: Computer Network Architectures. Lecture 10: IP Fragmentation, ARP, and ICMP. Xiaowei Yang

Design and Implementation of NEMO based ZigBee Mobile Router for Healthcare System

Juniper Netscreen Security Device. How to Enable IPv6 Page-51

CS-435 spring semester Network Technology & Programming Laboratory. Stefanos Papadakis & Manolis Spanakis

CCNA Exploration Network Fundamentals. Chapter 06 Addressing the Network IPv4

Configuring IPv6 for Gigabit Ethernet Interfaces

CSCI-1680 Network Layer:

IPv6: An Introduction

Network Layer: Internet Protocol

Mapping of Address and Port Using Translation

IPv6, IPv4 and Coexistence Updates for IPPM's Active Metric Framework (Title updated formerly referred to as IPv6 update) draft-ietf-ippm-2330-ipv6-02

Configuring IPv6. Information About IPv6. Send document comments to CHAPTER

Internet Technology 3/23/2016

Mobile Communications. Ad-hoc and Mesh Networks

The Interconnection Structure of. The Internet. EECC694 - Shaaban

Agenda L2 versus L3 Switching IP Protocol, IP Addressing IP Forwarding ARP and ICMP IP Routing First Hop Redundancy

ETSI Plugtests Guide V1.0.0 ( ) 6LoWPAN Plugtests; Berlin, Germany; July 2013

Chapter 4: Network Layer

Internet Protocol, Version 6

Department of Computer and IT Engineering University of Kurdistan. Network Layer. By: Dr. Alireza Abdollahpouri

Network Layer PREPARED BY AHMED ABDEL-RAOUF

Network Layer/IP Protocols

IPv4 addressing, NAT. Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley.

Chapter 4 Network Layer: The Data Plane

ET4254 Communications and Networking 1

internet technologies and standards

SEN366 (SEN374) (Introduction to) Computer Networks

Fixed Internetworking Protocols and Networks. IP mobility. Rune Hylsberg Jacobsen Aarhus School of Engineering

IPv6 Protocols and Networks Hadassah College Spring 2018 Wireless Dr. Martin Land

EC441 Fall 2018 Introduction to Computer Networking Chapter4: Network Layer Data Plane

Module 1: Wireless Sensor Networks

The Internetworking Problem. Internetworking. A Translation-based Solution

Chapter 4: network layer. Network service model. Two key network-layer functions. Network layer. Input port functions. Router architecture overview

Dual Addressing Scheme in IPv6 over IEEE Wireless Sensor Networks

cs144 Midterm Review Fall 2010

Ref: A. Leon Garcia and I. Widjaja, Communication Networks, 2 nd Ed. McGraw Hill, 2006 Latest update of this lecture was on

IP - The Internet Protocol. Based on the slides of Dr. Jorg Liebeherr, University of Virginia

Protocol Layers & Wireshark TDTS11:COMPUTER NETWORKS AND INTERNET PROTOCOLS

Router Architecture Overview

Content. 1. Introduction. 2. The Ad-hoc On-Demand Distance Vector Algorithm. 3. Simulation and Results. 4. Future Work. 5.

Introduction to routing in the Internet

Foreword xxiii Preface xxvii IPv6 Rationale and Features

Guide to Wireless Communications, 3 rd Edition. Objectives

Lecture 8. Basic Internetworking (IP) Outline. Basic Internetworking (IP) Basic Internetworking (IP) Service Model

internet technologies and standards

Zigbee protocol stack overview

Internet Protocol (IP)

CSE/EE 461 The Network Layer. Application Presentation Session Transport Network Data Link Physical

1-1. Switching Networks (Fall 2010) EE 586 Communication and. October 25, Lecture 24

Lecture 8. Reminder: Homework 3, Programming Project 2 due on Thursday. Questions? Tuesday, September 20 CS 475 Networks - Lecture 8 1

IPv6. Copyright 2017 NTT corp. All Rights Reserved. 1

Introduction to routing in the Internet

IPv6 over IEEE 구현시나리오

The Netwok 15 Layer IPv4 and IPv6 Part 3

Master Course Computer Networks IN2097

Transcription:

6LoWPAN (IPv6 based Low Power WPAN) Kyung Hee University Nov. 19. 2007 Choong Seon Hong, cshong@khu.ac.kr

Outline 2 Overview of 6LoWPAN Transmission of IPv6 Packets over IEEE 802.15.4 WPAN Networks 6LoWPAN Header Fragmentation Mesh Routing Requirements of 6LoWPAN Technologies 6LoWPAN Application + Architecture 6LoWPAN Neighbor Discovery Optimizations 6LoWPAN Routing Conclusion

Overview of 6LoWPAN

4 Overview of 6LoWPAN No method exists to make IP run over IEEE 802.15.4 networks Worst case: 802.15.4 PDU 81 octets, IPv6 MTU requirements 1280 octets Stacking IP and above layers as is may not fit within one 802.15.4 frame IPv6 40 octets, TCP 20 octets, UDP 8 octets + other layers (security, routing, etc) leaving few bytes for data Not all ad-hoc routing protocols may be immediately suitable for LoWPAN DSR may not fit within a packet, AODV needs more memory, etc

IETF 6LoWPAN 5 LoWPANs Low Cost, Low Power, Low Speed, Limited Distance 900~2400MHz, 20~250kbit/s FFD (Full-Function Device) vs. RFD (Reduced-Function Device) Mesh network of interconnected devices 10s to 1000s of nodes Conforming to IEEE 802.15.4-2003 Standard Current Scope of 6lowPAN Produce "Problems Statement, Assumptions and Goals for IPv6 for LoWPANs RFC 4919 Produce "Transmission of IPv6 Packets over IEEE 802.15.4 WPAN Networks RFC 4944 Rechartering is on-going (IETF-68 Prague, IETF-69 Chicago) Architecture (Bootstrapping), ND Optimization, etc.. Routing, Mobility, Security, etc..

6LoWPAN Network Topology 6 Internet, WCDMA, WiBro, 6LoWPAN Coordinator (FFD) 6LoWPAN Router / Device (FFD) 6LoWPAN Gateway 6LoWPAN End Device (RFD or FFD) Mesh Link Star Link

6LoWPAN Gateway Architecture 7 IPv6 Network 6LoWPAN IP Network 6LoWPAN Gateway Host of IP network Application Layer Transport Layer (TCP/UDP) Network Layer (IP) Ethernet or other MAC/PHY Gateway (Dual stack) Application Layer Transport Layer (TCP/UDP) Ethernet or other MAC/PHY Network Layer (IP) Adaptation Layer IEEE 802.15.4 MAC/PHY 6LoWPAN Sensor node Application Layer Transport Layer (TCP/UDP) Network Layer (IP) Adaptation Layer IEEE 802.15.4 MAC/PHY

Many Advantages of IP 8 Extensive interoperability Other wireless embedded 802.15.4 network devices Devices on any other IP network link (WiFi, Ethernet, GPRS, Serial lines, ) Established security Authentication, access control, and firewall mechanisms Network design and policy determines access, not the technology Established naming, addressing, translation, lookup, discovery Established proxy architectures for higher-level services NAT, load balancing, caching, mobility Established application level data model and services HTTP/HTML/XML/SOAP/REST, Application profiles Established network management tools Ping, Traceroute, SNMP, OpenView, NetManager, Ganglia, Transport protocols End-to-end reliability in addition to link reliability Most industrial (wired and wireless) standards support an IP option

Why global addresses 9 Why global addresses End-to-end communication in networks with heterogeneous links without a stateful (possibly application specific) translation gateway data collection point may be multiple IP hops away End-to-end communication across different PANs IP connects different subnetworks ZigBee does not

Why global addresses : example 10 Monitoring and Control Applications Collector OR controller generally not a 802.15.4 device Conventional device on conventional link Collector/controller often connected using other links

Why global addresses : example 11 Route directly to the data collector Possibly through different egress points Multiple PANs may be different in PAN ID, channel, MAC, network-wide keys, etc.

6LoWPAN Format 12 Limited Packet Size Protocols for low-end (limited RAM and storage) LowPAN devices should be designed such that control packets fit within a single 802.15.4 frame(127 octets). Given the limited packet size, headers for IPv6 and layers above must be compressed whenever possible. Adding all layers for IP connectivity should still allow transmission in one frame, avoiding fragmentation and reassembly.

6LoWPAN Format (con t) 13 Packet Overhead Worst Case Scenario: The Maximum Transmission Unit (MTU) size for IPv6 packets over IEEE 802.15.4 is 1280 octets. A full IPv6 packet does not fit in an IEEE 802.15.4 frame max. PHY frame = 127 octets E.g) 127 octets (25 + 21 + 40 + 8 ) == 33 octets for UDP application data? The maximal PHY layer frame overhead is 25octets Link-Layer security causes further overhead of max. 21octets 81 octets for MAC layer payload. Since the IPv6 header size is 40octets UDP uses 8 octets in the header So only 33octets are left for UDP application data.

Transmission of IPv6 Packets over IEEE 802.15.4 WPAN Networks (RFC 4944)

1. 6LoWPAN Header 15 Header Overhead Standard IPv6 header is 40 bytes [RFC 2460] Entire 802.15.4 MTU is 127 bytes [IEEE] Often data payload is small

6LoWPAN Header (Adaptation Layer) 16 Basic Header (addressing, hops left, etc.) IPv6 Header Hop-by-Hop Options Routing Fragment Destination Options Each header contains the type of the following header Addressing HBH Options Routing Fragment Dest Options Payload [Header Type] + [Header] Dispatch Type Mesh Type Fragmentation Type 6LowPAN Header (Adaptation Layer) Dispatch Header Mesh Header Fragmentation Header Typical Header Stacks (preserve IPv6 ordering) Single Hop, No Fragmentation HC1 Dispatch HC1 Hdr Multi Hop, No Fragmentation Mesh Dispatch Mesh Hdr HC1 Dispatch HC1 Hdr Single Hop, Fragmentation Frag Dispatch Frag Hdr HC1 Dispatch HC1 Hdr Multi Hop, Fragmentation Mesh Dispatch Mesh Hdr Frag Dispatch Frag Hdr HC1 Dispatch HC1 Hdr

SFD Len DSN IEEE 802.15.4 Frame Format 17 D pan Dst EUID 64 S pan Src EUID 64 Max 127 bytes preamble FCF Dst16 Src16 Network Header Application Data Fchk Low Bandwidth (250 kbps), low power (1 mw) radio Moderately spread spectrum (QPSK) provides robustness Simple MAC allows for general use Many TinyOS-based protocols (MintRoute, LQI, BVR, ), TinyAODV, Zigbee, SP100.11, Wireless HART, 6LoWPAN => IP Choice among many semiconductor suppliers Small Packets to keep packet error rate low and permit media sharing

mhop dsp HC1 dsp HC1 mhop dsp HC1 dsp HC1 HC2 SFD Len DSN 6LoWPAN Format Design 18 Orthogonal stackable header format Almost no overhead for the ability to interoperate and scale. Pay for only what you use IEEE 802.15.4 Frame Format D pan Dst EUID 64 S pan Src EUID 64 preamble FCF Dst16 Src16 IETF 6LoWPAN Format Dispatch: coexistence Header compression Mesh (L2) routing Message > Frame fragmentation frag frag Network Header Application Data IP UDP Max 127 bytes Fchk

SFD Len DSN 6LoWPAN The First Byte 19 Coexistence with other network protocols over same link Header dispatch - understand what s coming IEEE 802.15.4 Frame Format D pan Dst EUID 64 S pan Src EUID 64 preamble FCF Dst16 Src16 IETF 6LoWPAN Format Network Header Application Data Fchk 00 01 10 11 Not a LoWPAN frame LoWPAN IPv6 addressing header LoWPAN mesh header LoWPAN fragmentation header

dsp SFD Len DSN 6LoWPAN IPv6 Header 20 IEEE 802.15.4 Frame Format D pan Dst EUID 64 S pan Src EUID 64 preamble FCF Dst16 Src16 Network Header Application Data Fchk IETF 6LoWPAN Format 01 0 0 0 0 0 1 Uncompressed IPv6 address [RFC2460] 40 bytes 01 0 0 0 0 1 0 HC1 Fully compressed: 1 byte Source address Destination address Traffic Class & Flow Label Next header : derived from link address : derived from link address : zero : UDP, TCP, or ICMP

IPv6 Header Compression 21 in HC1 byte IP Header (version 6) Version v6 Traffic Class zero Flow Label In Payload 802.15.4 Length header Next Header Hop Limit Link local => derive Source Address from 802.15.4 header Link local => Destination derive from Address 802.15.4 header uncompressed

HC1 Compressed IPv6 Header 22 HC1 0 7 Source prefix compressed (to L2) Source interface identifier compressed (to L2) Destination prefix compressed (to L2) Destination interface identified compressed (to L2) Traffic and Flow Label zero (compressed) Next Header 00 uncompressed, 01 UDP, 10 TCP, 11 ICMP Additional HC2 compression header follows Zero or more uncompressed fields follow in order IPv6 address <prefix64 interface id> for nodes in 802.15.4 subnet derived from the link address. PAN ID maps to a unique IPv6 prefix Interface identifier generated from EUID64 or Pan ID & short address Hop Limit is the only incompressible IPv6 header field

dsp HC1 SFD Len DSN 6LoWPAN: Compressed IPv6 Header 23 IEEE 802.15.4 Frame Format D pan Dst EUID 64 S pan Src EUID 64 preamble FCF Dst16 Src16 IETF 6LoWPAN Format Network Header Application Data Fchk 01 0 0 0 0 1 0 HC1 uncompressed v6 fields -Non 802.15.4 local addresses -non-zero traffic & flow - rare and optional

dsp HC1 SFD Len DSN 6LoWPAN Compressed / UDP 24 IEEE 802.15.4 Frame Format D pan Dst EUID 64 S pan Src EUID 64 preamble FCF Dst16 Src16 Network Header Application Data Fchk IETF 6LoWPAN Format IP UDP Dispatch: Compressed IPv6 HC1: Source & Dest Local, next hdr=udp IP: Hop limit UDP: 8-byte header (uncompressed)

L4 UDP/ICMP Headers (8 bytes) 25 UDP Header (version 6) P + [0..15] P + [0..15] Source Port Length Destination Port Checksum from 15.4 header ICMP Header (version 6) Type Code Checksum Other message specific Information

dsp HC1 HC2 SFD Len DSN 26 6LoWPAN Compressed / Compressed UDP IEEE 802.15.4 Frame Format D pan Dst EUID 64 S pan Src EUID 64 preamble FCF Dst16 Src16 Network Header Application Data Fchk IETF 6LoWPAN Format Dispatch: Compressed IPv6 HC1: Source & Dest Local, next hdr=udp IP: Hop limit UDP: HC2+3-byte header (compressed) source port = P + 4 bits, P = 61616 (0xF0B0) destination port = P + 4 bits IP UDP

Fragmentation of 6LoWPAN Packet 27 Fragmentation Interoperability means that applications need not know the constraints of physical links that might carry their packets IP packets may be large, compared to 802.15.4 max frame size IPv6 requires all links support 1280 byte packets [RFC 2460]

Fragmentation 28 All fragments of an IP packet carry the same tag Assigned sequentially at source of fragmentation Each specifies tag, size, and position Do not have to arrive in order Time limit for entire set of fragments (60s) First fragment 11 0 0 0 size tag Rest of the fragments 11 1 0 0 size tag offset

dsp HC1 HC2 SFD Len DSN 29 6LoWPAN Example Fragmented / Compressed / Compressed UDP IEEE 802.15.4 Frame Format D pan Dst EUID 64 S pan Src EUID 64 preamble FCF Dst16 Src16 IETF 6LoWPAN Format Frag 1st Network Header IP UDP Application Data Fchk Dispatch: Fragmented, First Fragment, Tag, Size Dispatch: Compressed IPv6 HC1: Source & Dest Local, next hdr=udp IP: Hop limit UDP: HC2+3-byte header (compressed)

6LoWPAN Mesh Routing 30 Allow link-layer mesh routing under IP topology 802.15.4 subnets may utilize multiple radio hops per IP hop Similar to LAN switching within IP routing domain in Ethernet

Mesh Under Header 31 Originating node and Final node specified by either short (16 bit) or EUID (64 bit) 802.15.4 address In addition to IP source and destination Hops Left (up to 14 hops, then add byte) Mesh protocol determines node at each mesh hop LoWPAN mesh header o f hops left 10 orig. addr (16/64) final. addr (16/64)

dsp HC1 HC2 SFD Len DSN 6LoWPAN Example Mesh / Compressed / Compressed UDP 32 IEEE 802.15.4 Frame Format D pan Dst EUID 64 S pan Src EUID 64 preamble FCF Dst16 Src16 IETF 6LoWPAN Format M Network Header o16 f16 IP UDP Application Data Fchk Dispatch: Mesh under, orig short, final short Mesh: orig addr, final addr Dispatch: Compressed IPv6 HC1: Source & Dest Local, next hdr=udp IP: Hop limit UDP: HC2+3-byte header

dsp HC1 HC2 SFD Len DSN 6LoWPAN Example Mesh / Fragmented / Compressed / UDP 33 IEEE 802.15.4 Frame Format D pan Dst EUID 64 S pan Src EUID 64 preamble FCF Dst16 Src16 Network Header Fchk IETF 6LoWPAN Format M o16 f16 Frag 1st IP UDP Application Data Dispatch: Mesh under, orig short, final short Mesh: orig addr, final addr Dispatch: Fragmented, First Fragment, Tag, Size Dispatch: Compressed IPv6 HC1: IP: UDP: Source & Dest Local, next hdr=udp Hop limit HC2 + 3-byte header

6LoWPAN Header Summary 6LoWPAN Packet Format 34 Max 127 bytes M : Mesh Dispatch O16 : Originate 16bits address F16 : Final Destination 16bits address Frag 1 st : Fragmentation Header DSP : Dispatch Header (Compressed IPv6) HC1 : Source & Destination address = Local, next header = UDP HC2 : Compressed UDP IP : Hop Limit UDP : HC2 + 3bytes header (compressed) SFD : start-of-frame delimiter FCF : Frame Control Field DSN : data sequence number IPv6 Compressed Scheme LOWPAN_HC1 DISPATCH 0 1 0 0 0 0 1 0 HC1 Compressed IPv6 header 0 1 2 3 4 5 6 7 0 : Source prefix compressed 1 : Source interface identifier compressed 2 : Destination prefix compressed 3 : Destination interface identified compressed 4 : Traffic and Flow Label zero 5,6 : Next Header 00:uncompressed, 01:UDP, 10:TCP, 11:ICMP 7 : Additional HC2 compression header follows 6LoWPAN Headers Dispatch Header Fragmentation Header 0 7 15 23 31 0 Dispatch IPv6, LOWPAN_HC1, Source Route. Mesh Header 1 0 O F Hops Originator Addr, Final Addr 1 1 0 dgram_tag dgram_size 1 1 1 dgram_tag dgram_size dgram_offset

Requirements of 6LoWPAN Technologies - 6LoWPAN Application + Architecture - 6LoWPAN Neighbor Discovery Optimizations - 6LoWPAN Routing

6LoWPAN Architecture 36 6LoWPAN Solutions might be dependent on how to define 6LoWPAN Architecture Application Scenarios should be defined first. u-city, u-health, u-defense, MANEMO, etc Bootstrapping Architecture and Solutions Basic Stack 6LoWPAN Adaptation Layer & Format (Done!!) ND Optimizations Scenarios-Dependent Mesh Routing Mobility Support Security Support

6LoWPAN Neighbor Discovery Optimizations 37 draft-chakrabarti-6lowpan-ipv6-nd-03 Goal Minimizing Multicast messages such as: Reduce or avoid multicast for Duplicate Address Detection. Limit multicast Router Solicitations and Router Advertisements. Avoid/Reduce Multicast Neighbor Solicitations. Reduce or avoid (unicast) Neighbor Unreachability Detection messages.

6LoWPAN Routing Requirement 38 draft-dokaspar-6lowpan-routreq-02 General Requirements: Layer Transparency, Gateways Robustness despite hibernating nodes Local and Global Mobility High Scalability Secured control messages Bootstrapping Special to 6LoWPAN: Reusing MANET Protocols Adaptation Layer Routing No PHY frame fragmentation of control messages 16 bit and 64 bit Addressing Local repair MAY be omitted ND without Hello Messages (L2- mechanisms) Low Protocol Complexity Low Routing State Short code length Common requirements or guidelines for 6lowpan routing will lead to design refined routing solutions.

MANET Routing and Optimization 39 Mobile Ad-hoc Routing Protocols The MANET WG will develop two Standards track routing protocol specifications: Reactive MANET Protocol (RMP) -On-demand Proactive MANET Protocol (PMP) -Exchanges topology information Already provides a number of (experimental) mesh routing protocols RFC 3561: AODV Ad-Hoc On-Demand Distance Vector Routing RFC 3626: OLSR Optimized Link State Routing -<OLSRv2> Dynamic MANET On-demand (DYMO) Routing (I-D) For 6LoWPAN : Shares same goal, but for ultra-low performance devices (i.e. sensor nodes). Simplification and Optimization Required

Mesh Routing underneath to IPv6 Layer 40 Application Transport IPv6 Adaptation 802.15.4 MAC PHY Application Transport IPv6 Adaptation 802.15.4 MAC PHY Application Transport IPv6 Adaptation 802.15.4 MAC PHY

Conclusion 41 6LoWPAN will be a one of drivers for IPv6 Deployment 6LoWPAN turns IEEE 802.15.4 into the next IP-enabled link Provides open-systems based interoperability among low-power devices over IEEE 802.15.4 Provides interoperability between low-power devices and existing IP devices, using standard routing techniques Paves the way for further standardization of communication functions among low-power IEEE 802.15.4 devices Offers watershed leverage of a huge body of IP-based operations, management and communication services and tools Great ability to work within the resource constraints of low-power, lowmemory, low-bandwidth devices like WSN

Q & A 42 Thank you