Applied Photographic Optics

Similar documents
Lens Design. Craig Olson. Julie Bentley. Field Guide to. John E. Greivenkamp, Series Editor SPIE. SPIE Field Guides. Volume FG27

Modern Lens Design. Warren J. Smith Chief Scientist Kaiser Electro-Optics, Inc., Carisbad, California and Consultant in Optics and Design

Refractive Optical Design Systems Any lens system is a tradeoff of many factors Add optical elements (lens/mirrors) to balance these Many different

Refractive Optical Design Systems Any lens system is a tradeoff of many factors Add optical elements (lens/mirrors) to balance these Many different

Refractive Optical Design Systems Any lens system is a tradeoff of many factors Add optical elements (lens/mirrors) to balance these Many different

ntermediafe Optical Design

OPTI 513R / Optical Testing

Table of Contents. vii

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term

Section 2. Mirror and Prism Systems

Lenses lens equation (for a thin lens) = (η η ) f r 1 r 2

Lens Design I. Lecture 11: Imaging Herbert Gross. Summer term

INTRODUCTION REFLECTION AND REFRACTION AT BOUNDARIES. Introduction. Reflection and refraction at boundaries. Reflection at a single surface

Control of Light. Emmett Ientilucci Digital Imaging and Remote Sensing Laboratory Chester F. Carlson Center for Imaging Science 8 May 2007

Lens Design I. Lecture 1: Basics Herbert Gross. Summer term

Lens Design I. Lecture 4: Properties of optical systems III Herbert Gross. Summer term

Basic optics. Geometrical optics and images Interference Diffraction Diffraction integral. we use simple models that say a lot! more rigorous approach

Devices displaying 3D image. RNDr. Róbert Bohdal, PhD.

Rodenstock Products Photo Optics / Digital Imaging

Lecture 4 Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization

specular diffuse reflection.

Chapter 36. Image Formation

UNIT VI OPTICS ALL THE POSSIBLE FORMULAE

Final Exam. Today s Review of Optics Polarization Reflection and transmission Linear and circular polarization Stokes parameters/jones calculus

Diffraction. Single-slit diffraction. Diffraction by a circular aperture. Chapter 38. In the forward direction, the intensity is maximal.

Waves & Oscillations

All forms of EM waves travel at the speed of light in a vacuum = 3.00 x 10 8 m/s This speed is constant in air as well

Mirror Example Consider a concave mirror radius -10 cm then = = Now consider a 1 cm candle s = 15 cm from the vertex Where is the image.

Confocal Raman Systems SPECTROSCOPY GROUP

OC - Optical Components

Optical Design with Zemax

INFINITY-CORRECTED TUBE LENSES

Waves & Oscillations

The image is virtual and erect. When a mirror is rotated through a certain angle, the reflected ray is rotated through twice this angle.

LIGHT & OPTICS. Fundamentals of Physics 2112 Chapter 34 1

DIFFRACTION 4.1 DIFFRACTION Difference between Interference and Diffraction Classification Of Diffraction Phenomena

Lens Design I. Lecture 2: Properties of optical systems I Herbert Gross. Summer term

Physics 123 Optics Review

Advanced Lens Design

Photo Optics digital and analog

index of refraction-light speed

Chapter 7: Geometrical Optics

Mirror Example Consider a concave mirror radius r = -10 cm then. Now consider a 1 cm candle s = 15 cm from the vertex Where is the image.

A. K. Srivastava, K.C. Sati, Satyander Kumar alaser Science and Technology Center, Metcalfe House, Civil Lines, Delhi , INDIA

Light: Geometric Optics

Rodenstock Lenses for Enlarging and CCD Photos and Video

DSLR Cameras and Lenses. Paul Fodor

CHAPTER 26 INTERFERENCE AND DIFFRACTION

Ray Optics I. Last time, finished EM theory Looked at complex boundary problems TIR: Snell s law complex Metal mirrors: index complex

Advanced Lens Design

Optics and Photonics: An Introduction

What lenses are available What focal length do you need? Cleaning What s the difference between a 105mm macro and a 105mm telephoto?

Chapter 2: Wave Optics

Optical design of a rotating eyepiece telescope

Paraxial into real surfaces

Lenses for Digital Photography

Optics Vac Work MT 2008

2/26/2016. Chapter 23 Ray Optics. Chapter 23 Preview. Chapter 23 Preview

Microscopy Product Training

Design and Correction of optical Systems

AP Physics: Curved Mirrors and Lenses

WAVELENGTH MANAGEMENT

Optical Design with Zemax

Tutorial Solutions. 10 Holographic Applications Holographic Zone-Plate

Geometrical Optics. Chapter General Comments. 1.2 Snell s Law

Chapter 12-Close-Up and Macro Photography

Chapter 7: Geometrical Optics. The branch of physics which studies the properties of light using the ray model of light.

Fundamental Optics for DVD Pickups. The theory of the geometrical aberration and diffraction limits are introduced for

Physics 1202: Lecture 18 Today s Agenda

Aberrations in Holography

Conceptual Physics Fundamentals

Lecture PowerPoint. Chapter 25 Physics: Principles with Applications, 6 th edition Giancoli

Dynamical Theory of X-Ray Diffraction

OPTICS MIRRORS AND LENSES

Chemistry Instrumental Analysis Lecture 6. Chem 4631

E x Direction of Propagation. y B y

Metrology and Sensing

LIGHT. Descartes particle theory, however, could not be used to explain diffraction of light.

Specifications: LED Ring Lights. Product Number

f. (5.3.1) So, the higher frequency means the lower wavelength. Visible part of light spectrum covers the range of wavelengths from

Chapter 24 - The Wave Nature of Light

Polarizers. Laser Polarizers Broadband Polarizing Beamsplitting Cubes 78 Narrowband Polarizing Beamsplitting Cubes 79

Rodenstock Products Photo Optics / Digital Imaging

dq dt I = Irradiance or Light Intensity is Flux Φ per area A (W/m 2 ) Φ =

Handbook of Optical Systems

Distortion Correction for Conical Multiplex Holography Using Direct Object-Image Relationship

dq dt I = Irradiance or Light Intensity is Flux Φ per area A (W/m 2 ) Φ =

Draft SPOTS Standard Part III (7)

Unit 9 Light & Optics

Rodenstock Lenses for Professional Photography

Introduction to Computer Vision. Introduction CMPSCI 591A/691A CMPSCI 570/670. Image Formation

LEICA Elmarit-S 45mm f/2.8 ASPH./CS

Lenses & Exposure. Lenses. Exposure. Lens Options Depth of Field Lens Speed Telephotos Wide Angles. Light Control Aperture Shutter ISO Reciprocity

Winmeen Tnpsc Group 1 & 2 Self Preparation Course Physics UNIT 9. Ray Optics. surface at the point of incidence, all lie in the same plane.

of mirror dimension Square mirrors (λ/4)

10.4 Interference in Thin Films

L 32 Light and Optics [3]

History of Light. 5 th Century B.C.

Introduction to Diffraction Gratings

Interference of Light

Transcription:

Applied Photographic Optics Lenses and optical systems for photography, film, video and electronic imaging Second edition Sidney F. Ray BSc, MSc, FBIPP, FMPA, FRPS Focal Press

Acknowledgements Abbreviations 1 Introduction The role of the lens in photography.1 Imaging. Recording.3 Measurement.4 Extension of visual perception.5 Self-expression 3 Optical requirements Optical theory 4 Light and energy 4.1 Dual nature of light 4. Wave nature 4.3 The electromagnetic spectrum 4.3.1 The full spectral range 4.3. The visible spectrum 4.3.3 Spectral power distribution 4.4 4.5 5. 5.3 4.3.4 Particle nature Photometry Effect on detectors 5 Properties of light 5.1 Transmission 5.1.1 Transmittance 5.1. 5.1.3 Colour transmission Optical transmission density Optical path length 5.1.4 Absorption 5..1 Absorption law 5.. Spectrally selective absorption 5..3 Heat filters 5..4 Black filters Reflection 5.3.1 Laws of reflection 5.3. 5.3.3 5.3.4 5.3.5 Types of reflection Laser speckle Reflection from dielectric surfaces Reflection from metal surfaces XV xvi 1 4 9 9 9 11 11 11 11 1 13 14 15 15 15 15 15 16 16 16 16 16 17 18 18 18 18 18 0 5.4 5.5 5.6 5.7 5.8 Refraction 5.4.1 Laws of refraction 5.4. Total internal reflection 5.4.3 Snell's window 5.4.4 Displacement 5.4.5 Deviation 5.4.6 Scratch treatment 5.4.7 Double refraction 5.4.8 Graded refractive index Dispersion 5.5.1 5.5. Scattering 5.6.1 Particle size Interference 5.7.1 5.7. 5.7.3 5.7.4 Diffraction 5.8.1 5.8. 5.8.3 5.8.4 Wavelength dependence Dispersion by diffraction Conditions for interference Producing interference Newton's rings Fringe visibility Fraunhofer diffraction The diffraction grating The zone plate Spatial filtering 5.9 Polarization 5.9.1 Natural light 5.9. Polarized light and polarizers 5.9.3 Elliptically polarized light 5.9.4 Circularly polarized light 5.10 Attenuation 5.10.1 Inverse square law of illumination 5.10. Lambert's cosine law Image formation by simple optical systems 6.1 6. 6.3 6.4 6.5 Types of image The pinhole Simple lenses 6.3.1 Definitions 6.3. Focal length Simple mirrors 6.4.1 Plane mirrors 6.4. Spherical mirrors 6.4.3 Aspherical mirrors Image characteristics 6.5.1 Orientation 6.5. Shape 6.5.3 Magnification 0 0 1 1 1 3 3 3 3 4 4 5 5 5 5 5 5 6 7 7 7 8 8 8 8 8 8 30 30 31 31 31 33 33 33 34 34 34

6.6 Image construction by graphical methods 6.7 Image properties by calculation 6.7.1 Sign convention 6.7. Lens conjugate equation 6.7.3 Newton's equation 6.7.4 Lagrange invariant 6.8 Imaging limitations Image formation by compound lenses 7.1 7. 7.3 7.4 Cardinal planes Rear nodal point The thick lens 7.3.1 Formulae 7.3. Single-element types Thick lens combinations 37 37 37 38 38 38 39 41 41 4 4 4 43 43 10 Thin -layer coatings 10.1 10. 10.3 10.4 10.5 10.6 10.7 9.13. Light emitting diodes (LEDs) 9.13.3 Charge coupled devices (CCDs) Light losses by surface reflections Single anti-reflection layers Double anti-reflection layers Multiple anti-reflection layers Mirror coatings 10.5.1 Metal substrate 10.5. Dielectric substrate Dielectric filters 10.6.1 Dichroic filters 10.6. Gradient index filters Coating methods 64 65 67 67 68 68 69 71 71 71 7 7 7 75 Combinations of elements 8.1 8. 8.3 8.4 8.5 8.6 Thin lens combinations 8.1.1 Effective focal length 8.1. Back focal length and back focal distance 8.1.3 Separation of elements Specific combinations 8..1 Positive-positive systems 8.. Positive-negative systems 8..3 Negative-positive systems 8..4 Varifocal system Telescopes The compound microscope Field flatteners Relay systems Optical components and their imaging roles 9.1 9. 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11 9.1 9.13 Lenses 9.1.1 Spherical lenses 9.1. Aspherical lenses Mirrors 9..1 Curved mirrors 9.. Plane mirrors Beamsplitters Optical flats Cylindrical lenses Lenticular devices Prisms Fresnel lenses and mirrors Optical fibres 9.9.1 Step index fibres 9.9. Graded index fibres, rods and lenses Holographic optical elements Diffractive optical elements Micro lenses Opto-electronic devices 9.13.1 Liquid crystal displays (LCDs) 46 47 48 48 50 50 50 5 5 5 5 53 53 53 53 54 55 55 55 58 58 58 60 61 6 6 63 63 11 Aberrations defects in imaging systems 11.1 Image formation 11.1.1 The perfect lens 11.1. Failure of paraxial optics 11.1.3 Monochromatic aberrations 11. Surface contributions 11..1 Transverse ray aberrations 11.. Wavefront aberrations 11..3 Aberration terms 11..4 Seidel aberration coefficients 11..5 Ray aberrations as Seidel sums 11..6 Other methods 11.3 Spherical aberration 11.3.1 Thin lens imagery 11.3. Aspheric surfaces 11.3.3 Floating elements 11.3.4 Portrait lenses 11.3.5 Additional aberration 11.4 Coma 11.5 Astigmatism 11.6 Field curvature 11.6.1 Petzval curvature 11.6. Film flatness 11.6.3 Field flatteners 11.6.4 Curved field lenses 11.7 Distortion 11.7.1 Types 11.7. Measurement 11.7.3 Calibrated focal length 11.8 Fundamental lens designs 11.9 Aberrations of other systems 11.9.1 Hologram 11.9. Electronic imaging systems 1 Optical materials 1.1 Glasses 77 77 77 77 77 79 79 79 80 80 80 81 81 81 8 8 8 8 8 83 84 84 86 86 87 87 87 88 89 90 91 91 91 93 93

vii 1.1.1 Origins and composition 1.1. Manufacturing methods 1.1.3 Properties 1.1.4 Special glasses 1. Plastics 1..1 Types 1.. Properties 1..3 Hybrid systems 1..4 Constructional plastics 1.3 Other materials 1.3.1 Polarizing and filter materials 1.3. Natural and synthetic quartz 1.3.3 Fluorite and crystals 1.3.4 Germanium and others Colour correction of lenses 13.1 13. 13.3 13.4 13.5 13.6 13.7 13.8 Chromatic errors Transverse chromatic aberration Achromatic combinations 13.3.1 Conventional glasses 13.3. Anomalous dispersion Apochromatic lenses Superachromatic lenses Monochromatic lenses Reflective systems UV and IR photography The speed of a lens 14.1 14. 14.3 14.4 14.5 Stops, pupils and windows 14.1.1 Exposure 14.1. Field stop 14.1.3 Aperture stop 14.1.4 Pupils 14.1.5 Pupil magnification 14.1.6 Entrance window Aperture 14..1 Relative aperture 14.. Aperture calibration 14..3 Effective aperture 14..4 Numerical aperture 14..5 Transmission aperture Photometry of image formation 14.3.1 Theoretical principles 14.3. Cos 4 в law of illumination 14.3.3 Image illuminance in wide-angle lenses 14.3.4 Camera exposure Vignetting 14.4.1 Optical vignetting 14.4. Mechanical vignetting 14.4.3 Graduated neutral density filters Lens covering power Lens and camera flare 15.1 Flare effects 93 94 94 95 96 96 97 99 99 100 100 100 100 101 103 103 104 104 104 106 107 108 109 110 110 11 11 11 11 11 11 113 114 116 116 116 116 118 118 118 118 10 11 1 1 1 1 13 14 17 17 15. 15.3 15.4 15.1.1 Veiling glare 15.1. Types and sources of flare Measurement of flare 15..1 Instrumental methods 15.. Ghost images Reduction of flare 15.3.1 Lens and camera design 15.3. Lens hood systems Applications of flare 16 Resolving power of lenses and imaging systems 16.1 16. 16.3 16.4 Resolving power The diffraction-limited lens 16..1 Resolving power criteria 16.. Practical limits 16..3 The aberration-limited lens Resolving power capabilities 16.3.1 Photographic resolving power 16.3. Silver halide systems 16.3.3 Video imaging tubes and devices Measurement of resolving power 16.4.1 Test targets 16.4. Target optical contrast 16.4.3 Area weighted average resolution 17 Physical optics of lens systems 17.1 17. 17.3 17.4 17.5 Image formation 17.1.1 Spread functions 17.1. Convolution 17.1.3 Modulation Fourier transform techniques 17..1 Fourier transforms 17.. The OTF OTF analysis 17.3.1 Variables 17.3. Spatial frequency 17.3.3 The MTF 17.3.4 Cascading 17.3.5 Graphical presentation Applications of MTF 17.4.1 Lens design and testing 17.4. Imaging systems Coherent optics 17.5.1 Abbe's theory 17.5. Fourier transform plane 17.5.3 Spatial filtering 18 Design, manufacture and testing of a lens 18.1 18. 18.3 18.4 Lens design Computer aided design Stages of production Special fabrication techniques 17 17 17 17 18 130 130 130 131 133 133 133 133 134 1 136 136 136 136 137 137 138 140 14 14 14 14 14 143 143 146 148 148 148 149 149 149 150 150 150 15 15 154 154 157 157 157 158 160

18.4.1 Diamond machining 160 18.4. Electroforming 160 18.4.3 Replication 160 18.4.4 Aspherics 161 18.5 Lens-testing routines 161 18.5.1 Workshop testing 161 18.5. Batch testing 16 18.6 MTF testing routines 16 18.6.1 Determination of lens parameters 16 18.6. Contrast measurements and criteria 16 18.6.3 MTF measurement apparatus 164 Evaluation and calibration Focusing an optical system 168 19.1 The need for testing 168 19. Infinity tests 168 19..1 The collimator 168 19.. The autocollimator 169 19..3 Star testing 169 19.3 Resolution testing 170 19.3.1 Lens-testing charts 170 19.3. Test target design 171 19.3.3 The Sayce chart 171 19.4 Testing by projection 17 19.4.1 Camera lenses 17 19.4. Video diascope projector 17 19.4.3 Slide projectors and enlargers 17 19.4.4 Cine projectors 173 19.5 Test charts for video systems 173 19.6 Field testing 173 19.7 Camera calibration 173 19.7.1 Principal point location 173 19.7. Principal distance 174 19.7.3 Laboratory methods 175 19.8 MTF testing 176 0.1 0. 0.3 0.4 0.5 0.6 0.7 Sharp focus 0.1.1 Photographic space 0.1. Image sharpness Geometry of focusing Mechanical arrangements 0.3.1 Fixed focus 0.3. Symbol focusing 0.3.3 Unit focusing Optical methods 0.4.1 Supplementary lenses 0.4. Front cell focusing 0.4.3 Internal focusing Close focusing Photographic focusing 0.6.1 Focusing with non-visible radiations 0.6. Photographic focus calibration Image sharpness meter 178 178 178 178 178 179 179 180 180 180 180 180 181 18 18 18 183 183 1 Autofocus and focus maintenance methods 186 1.1 Operational needs 186 1. Autofocus enlargers 186 1..1 Cam systems 186 1.. Inverter systems 186 1.3 Slide projection 187 1.4 Autofocus cameras 188 1.4.1 Ranging systems 188 1.4. Image contrast measurement 190 1.4.3 Exit pupil measurements 19 1.5 Autofocus by phase detection 193 1.5.1 Phase detection 193 1.5. Principles 193 1.5.3 The autofocus module 195 1.5.4 Detector arrays 195 1.5.5 Autofocus flash assist 196 1.5.6 Additional AF functions 196 Depth of field and depth of focus 00.1 Depth of field parameters 00.1.1 Sharpness 00.1. Visual acuity 00.1.3 Circle of confusion 01. Depth of field equations 0..1 Derivation of equations 0.. Distribution of depth of field 05.3 Depth of field in practice 05.3.1 Departures from theory 05.3. Hyperfocal distance 06.3.3 Estimating depth of field 07.3.4 Variable field curvature 07.4 Close-up depth of field 07.4.1 Equations 07.4. Background sharpness 08.4.3 Immersion techniques 08.4.4 Holographic techniques 08.5 Depth of focus 08.5.1 Equations 08.5. Relationship to depth of field 09.5.3 Practical considerations 09.5.4 Image surface considerations 09.5.5 Electron microscopy 10.6 Use of movements 11.7 Depth of field scales and calculators 1.7.1 Scales 1.7. Calculators 13.7.3 DOF calculators for large format cameras 13.8 Special techniques 14.8.1 Aerial image relay system 14.8. Multi-plane scanning 15.8.3 Confocal microscopy 15

ix 3 Perspective and projection 3.1 3. 3.3 3.4 3.5 3.6 Concepts of perspective 3.1.1 Viewpoint 3.1. Camera viewpoint 3.1.3 Viewing distance 3.1.4 Perspective distortions Wide-angle perspective Portrait lens perspective Perspective of tilted planes Other perspectives 3.5.1 Orthographic perspective 3.5. Panoramic perspective Projection formulae Lens types and properties 4 Evolution of the photographic lens 4.1 4. 4.3 4.4 4.5 4.6 Introduction Prephotography 1800-1839 4..1 Optical instruments 4.. Optical glass 4..3 Lens manufacture 4..4 Lens design 4..5 The camera obscura 4..6 The Chevalier Landscape lens 4..7 Systematic design of lenses The first camera lenses 4.3.1 Optics of the Daguerreotype camera 4.3. Wolcott mirror camera Astigmatic lenses 4.4.1 Colour correction 4.4. Achromatic doublets 4.4.3 Orthoscopic lenses 4.4.4 The Petzval lens 4.4.5 The astigmatic lens Anastigmatic lenses 4.5.1 The first anastigmats 4.5. Symmetrical anastigmats 4.5.3 The Cooke triplet 4.5.4 Meniscus anastigmats Other types of lenses 17 6 The standard lens 17 17 18 19 19 0 1 1 3 3 7 7 7 7 7 8 9 30 31 31 31 31 3 33 33 34 34 36 37 37 37 37 38 38 6.1 Standard focal length 6. Lens designs 6.3 Lens limitations 7 Large-aperture lenses 7.1 Maximum aperture limits 7. Aperture requirements 7.3 Design features 7.3.1 Standard lenses 7.3. Wide-angle lenses 7.3.3 Long focus lenses 7.3.4 Catadioptric lenses 7.3.5 Image intensifier optics 8 Medium long focus lenses 8.1 Lens parameters 8. Design types 8.3 Focusing 9 Extreme long focus lenses 9.1 Lens parameters 9. Resolving power 9.3 Lens design 9.4 Practical considerations 30 The telephoto lens 30.1 The telephoto principle 30. Design evolution 30..1 Early designs 30.. Distortion-free designs 30..3 Modern designs 30.3 Super telephoto designs 31 Convertible lenses 31.1 Design principles 31. Design variants 31..1 Dual focal length 31.. Interchangeable components 31..3 Other possibilities 56 56 57 60 61 61 6 6 6 63 63 64 64 66 66 66 68 69 69 69 69 70 7 7 7 7 73 73 73 78 78 78 78 79 79 5 General properties of a lens 5.1 Optical properties 5.1.1 Focal length 5.1. Aperture 5.1.3 Field of view 5.1.4 Format 5.1.5 Performance 5. Mechanical properties 5..1 Configuration data 5.. The lens barrel 5..3 The lens mount 5..4 Flange focal distance 5..5 The iris diaphragm 5.3 Cleaning lens surfaces 4 4 4 4 4 43 43 47 49 49 51 54 3 Short focus wide-angle lenses 3.1 Imaging characteristics 3.1.1 Field of view 3.1. Covering power 3.1.3 Distortion 3.1.4 Back focal distance 3. Lens designs 33 Retrofocus wide-angle lenses 33.1 The retrofocus principle 33.1.1 Early designs 33.1. Simple optics 33.1.3 Distortion 80 80 80 80 81 8 83 86 86 86 86 87

x Contents ЪЪ Lens designs 33..1 Configurations 33.. Close focusing 34 The fisheye lens 34.1 Imaging requirements 34. Design development 34.3 Design features Catoptric systems.1 Mirror optics.1.1 Imaging properties.1. Single-mirror systems.1.3 Dual-mirror systems. Contemporary designs 36 Catadioptric systems 38 36.1 36. 36.3 37. 37.3 37.4 37.5 Improvements to mirror systems 36.1.1 Schmidt corrector 36.1. Mangin mirror 36.1.3 Bouwers-Maksutov system Unusual designs Design features 36.3.1 Imaging characteristics 36.3. Aperture 36.3.3 Focusing 37 Zoom lenses 37.1 Design principles 37.1.1 The zoom concept 37.1. 37.1.3 37.1.4 37.1.5 Two-element systems The afocal zoom variator The relay system The compensator Focusing element 37.1.6 Historical development Design features 37.3.1 Aberration correction 37.3. 37.3.3 37.3.4 Variable maximum aperture Zoom ratios and ranges Integration of a viewfinder Ergonomics 37.3.5 Focusing arrangements 37.4.1 Normal range 37.4. Close focusing range Compact zoom lenses Enlarging lenses 38.1 Imaging requirements 38. Resolving power 38.3 Image illumination 38.4 Enlarging calculations 38.5 Features of lenses 38.6 Enlarging lens designs 87 87 88 91 91 91 93 96 96 96 96 97 97 300 300 300 300 300 301 30 30 30 303 307 308 308 308 308 309 310 31 313 314 314 315 316 319 319 31 3 33 33 33 39 Macro lenses 39.1 Terminology 39. Imaging requirements 39.3 Optimum aperture 39.4 Macro lens designs 39.5 Medical macro lenses 39.6 True macro lenses 40 Process lenses 40.1 Imaging requirements 40.1.1 Process cameras 40.1. Aberration correction 40.1.3 Field of view 40.1.4 Resolving power and contrast 40. Lens designs 40..1 Configurations 40.. The iris diaphragm 40..3 Reversing prisms 41 Copying lenses 41.1 Imaging requirements 41.1.1 Field topography 41.1. Subject features 41. Lens design 41..1 Aperture 41.. Other features 41.3 Contemporary designs 41.3.1 Electrophotography 41.3. CRT displays 41.3.3 Relay systems 41.3.4 Cine copying 41.3.5 Camera lenses 4 High-resolution lenses 4.1 Resolving power requirements 4.1.1 Micro-imaging 4.1. Theoretical capabilities 4. Constraints on optical designs 4..1 Imaging geometry 4.. Chromatic correction 4..3 Depth of focus 4.3 Lens designs 4.3.1 Micro-imaging lenses 4.3. Microdocumentation lenses 4.3.3 Optical disc lenses 43 Underwater lenses 43.1 Environmental considerations 43. Refraction effects 43..1 Field of view 43.. Distortion 43.3 Corrective systems 43.3.1 Dome port 43.3. Ivanoff corrector 43.3.3 Retrofocus systems 43.4 Water contact lenses 35 35 35 36 38 330 330 333 333 333 333 334 334 3 3 336 337 339 339 339 340 340 340 341 34 34 34 34 343 343 344 344 344 344 346 347 349 349 349 349 0 0 0 1 1 1

xi 44 46 47 48 49 Aerial lenses 44.1 Environmental considerations 44. Lens designs 44..1 Hand-held cameras 44.. Reconnaissance lenses 44..3 Survey lenses Projection lenses.1 Imaging requirements.1.1 Magnification.1. Field of view.1.3 Curvature of field.1.4 Image orientation.1.5 Image properties. Image photometry.3 Depth of focus.4 Lens types.4.1 Simple and triplet lenses.4. Petzval lens.4.3 Double Gauss lens.4.4 Telephoto and retrofocus.4.5 Varifocal and zoom lenses.4.6 PC lenses.5 Lens attachments.5.1 Zoom attachments.5. Anamorphic attachments.6 Video projection lenses Anamorphic systems 46.1 Optical requirements 46. Optical design principles 46..1 Crossed slits 46.. Cylindrical systems 46..3 Prismatic systems 46..4 Mirror systems 46.3 Anamorphics in practice Soft focus lenses 47.1 Imaging requirements 47. Soft focus methods 47..1 Conventional lenses 47.. Perforated diaphragm plates 47..3 Floating elements Perspective control lenses 48.1 Imaging requirements 48. Tilt and shift lenses 48.3 Mechanical arrangements 48.4 PC projection lenses Ultraviolet lenses 49.1 Spectral considerations 49.1.1 Spectral transmission 49.1. Chromatic correction 49. Contemporary designs 49..1 Catoptric systems 49.. Dioptric systems 4 4 4 4 4 5 9 9 9 9 360 360 360 36 363 363 363 363 364 364 366 366 366 366 367 367 369 369 370 370 370 370 i 371 371 373 373 374 374 375 377 377 377 377 378 378 378 50 Infra-red lenses 50.1 50. Spectral considerations 50.1.1 Imaging regions 50.1. Optical materials Contemporary designs 50..1 Conventional lenses 50.. IR corrected lenses 50..3 Thermal imaging lenses 51 Lenses for cinematography 51.1 51. 51.3 51.4 51.5 5 Video lenses 5.1 5. 5.3 5.4 5.5 Formats Design requirements Operational requirements 8 mm cine lenses 16 mm and mm cine lenses 51.5.1 Large aperture lenses 51.5. Wide-angle lenses 51.5.3 Zoom and anamorphic lenses Video imaging Optical performance Design requirements 5.3.1 Mechanical arrangements 5.3. Colour correction Lens types 5.4.1 Zoom lenses 5.4. Conventional lenses 5.4.3 Special purpose lenses Lens attachments 53 Lens attachments and accessories 53.1 53. 53.3 53.4 53.5 V 53.6 Afocal converters 53.1.1 53.1. Principles Telescopic devices 53.1.3 Applications Teleconverter devices 53..1 Principles 53.. Performance Attachment of optical systems 53.3.1 Microscopes 53.3. Other devices Supplementary lenses 53.4.1 Positive (close-up) lenses 53.4. Negative lenses Optical filters 53.5.1 Spectral properties 53.5. Filter factor 53.5.3 Optical quality 53.5.4 Filter sizes 53.5.5 Focusing 53.5.6 Filter applications Image modification devices 53.6.1 Direction sensitive devices 53.6. Image degradation devices 381 381 384 384 384 384 385 385 385 386 386 388 388 388 389 389 391 39 39 393 394 394 398 398 398 398 398 400 400 401 401 401 40 403 403 403 404 404 404 405 406 406 406 407 407 408

xii Contents 53.7 Reflecting systems 408 53.7.1 Beamsplitters 408 Photographic optical systems 54 Viewfinder systems 413 54.1 Viewfinder functions 54. Human vision 54..1 Anatomy 54.. Refraction 54..3 Resolving power 54..4 Dark adaptation X 54..5 Flicker 54.3 Viewfinder properties 54.3.1 Magnification 54.3. Image orientation 54.3.3 Aberrations 54.4 Viewfinder errors 54.4.1 Aiming errors 54.4. Parallax error 54.5 Interactive viewfinders 55 Direct viewfinder systems 40 55.1 The frame finder 40 55. The brilliant finder 40 55.3 The Newton finder 40 55.4 The reversed Galilean finder 41 55.5 The van Albada 55.6 The universal finder finder 4 43 55.6.1 The zoom finder 43 55.6. The Kepler finder 43 55.6.3 The universal range-viewfinder 45 55.6.4 The director's viewfinder 45 55.7 Viewfinders for autofocus compact cameras 45 56 Screen viewfinder systems 47 56.1 The focusing screen 47 56.1.1 Screen properties 56.1. Screen variants 47 47 56.1.3 The screen image 47 56.1.4 The focusing magnifier 56. Reflex systems 48 49 56..1 Image properties 49 56.. The reflex mirror 56.3 The pentaprism viewfinder 430 434 56.4 The viewfinder eyepiece 4 56.4.1 Optical principles 56.4. The focusing telescope 4 436 56.4.3 Eyepiece dioptric correction 436 56.5 Video viewfinders 437 57 Viewfinder focusing 438 57.1 The human factor 438 57. Simple focusing systems 438 413 413 413 415 415 415 / 415 ^58 416 416 416 417 417 417 418 418 57..1 Focusing by estimation 438 57.. Stadiametric rangefinders 438 57.3 Optical coincidence rangefinders 439 57.3.1 Principles 439 57.3. Coupled rangefinder 439 57.3.3 Rangefinder accuracy 57.4 Screen focusing 441 441 57.4.1 Focusing accuracy 441 57.4. Contrast characteristics 443 57.4.3 Special focusing techniques 443 57.5 Passive focusing aids 443 57.5.1 The split-image rangefinder 443 57.5. Microprism arrays 444 The optics of camera movements 448 58.1 Degrees of freedom 448 58.1.1 View camera design 448 58.1. Translation movements 448 58.1.3 Rotation movements 448 58. Lens covering power 449 58..1 Extra covering power 449 58.. Displacement limits 0 58.3 Control of image sharpness 58.3.1 Tilts and swings 0 0 58.3. Limits 1 58.3.3 The Scheimpflug rule or condition 58.3.4 Yaw-free movements 4 58.4 Control of image shape 5 59 Optics of systems with moving film 7 59.1 Intermittent motion 59.1.1 Framing rate 7 7 59.1. Image quality 7 59.1.3 Limitations 8 59. Continuous motion 8 59..1 Image motion compensation 8 59.. The strip camera 9 59..3 The streak camera 59..4 The periphery camera 9 460 59..5 The panoramic camera } 59.3 Rotating prism compensators 460 46 59.3.1 Image displacement 46 v/ 59.3. Practical systems 46 1\59A Image stabilization 463 59.4.1 Camera shake 463 59.4. Stabilizing systems 464 60 Scanning optics 467 60.1 Scanning systems 467 60.1.1 Mechanical scanning 60.1. Rotating mirror systems 467 467 60.1.3 Nipkov disc system 467 60.1.4 Airborne scanners 468 60. Film scanning 469 60.3 Laser scanning 470 60.3.1 Polygon scanners 60.3. Scanning lenses 470 47 60.3.3 Dot generation 473

хш Optics of close-up photography and photomacrography 61.1 61. 61.3 61.4 61.5 61.6 61.7 Magnification and subject area Optical systems 61..1 Focusing extension 61.. Lens reversal 61..3 Close-up lenses 61..4 Teleconverter devices 61..5 Other lenses Framing and focusing Perspective and working distance Depth of field Illumination systems Exposure considerations Opti< :s of copying systems 6.1 Copying requirements 6.1.1 Subject matter 6.1. Reproduction ratio 6.1.3 Fidelity 6.1.4 Exposure 6. Illumination of the original 6..1 Avoidance of reflexes 6.. Distribution of illumination 6.3 Sizing and alignment 6.3.1 Accurate size images 6.3. Alignment 6.3.3 Framing 6.3.4 Focusing 6.3.5 Depth of field 475 475 475 475 476 478 478 479 480 480 481 481 483 485 Optics of printing systems 493 63.1 Fundamentals 493 63.1.1 Magnification 493 63.1. Printing density 63. Illumination systems 493 493 63..1 Illuminants 493 63.. Diffuser arrangements 494 63..3 Condenser arrangements 495 63.3 Design features 496 63.3.1 Negative carrier 63.3. Filters 496 496 63.4 Printing equipment 497 63.4.1 Enlargers 63.4. Printers 497 497 63.4.3 Movie optical printers 498 63.5 Exposure assessment systems 498 63.6 Rectification printing 500 63.6.1 Camera tilt 500 63.6. Enlarger easel tilt 500 63.6.3 Combined tilts 501 63.6.4 Full correction 501 63.6.5 Rectification in practice 50 Optics of projection systems 504 64.1 The scope of projection 504 64. Choice of lens 504 485 485 485 485 486 486 486 487 488 488 489 490 490 491 65 64.3 Image illumination 505 64.3.1 Self-luminous objects 506 64.3. Illuminated opaque objects 506 64.3.3 Trans-illuminated objects 506 64.4 Projection systems 507 64.4.1 The episcope 507 64.4. The epidiascope 507 64.4.3 The overhead projector 507 64.4.4 The slide projector 64.4.5 The 8 mm cine projector 508 510 64.4.6 The 16 mm cine projector 51 64.4.7 The mm cine projector 51 64.5 Projection screens 513 64.5.1 General requirements 513 64.5. Optical performance 64.5.3 Screen types 513 514 64.6 Rear projection 514 64.6.1 Screen properties 514 64.6. Image orientation 515 64.6.3 Video screen viewing 515 64.7 Backgrounds by front axial projection 515 64.7.1 Imaging geometry 515 64.7. Screen properties 516 64.8 Video projection 517 64.8.1 Imaging requirements 517 64.8. Single lens projection 64.8.3 Triple lens projection 518 518 64.8.4 Light valve systems 519 Optics of stereoscopic systems 5 65.1 Visual perception of space 5 65.1.1 Depth cues 65.1. Stereoscopic ability 5 5 65. Stereoscopic photography 53 65..1 Basic requirements 65.. Image parallax 53 53 65..3 Stereo window 54 65..4 Transposition 65.3 Orthostereoscopy 54 55 65.3.1 Necessary conditions 55 65.3. Shape distortion 65.3.3 Choice of base 55 58 65.4 Stereo projection 59 65.4.1 Theoretical considerations 59 65.4. Image depth control 531 65.5 Stereoscopic systems 531 65.5.1 Cameras 65.5. Cine cameras 531 531 65.5.3 Mirror stereoscopes 53 65.5.4 Lens stereoscopes 65.5.5 Stereo projection 53 533 65.5.6 Anaglyphs 534 65.5.7 Autostereoscopic systems 65.5.8 Stereophotomicrography 5 536 66 Optics of light metering systems 538 66.1 Calibration 538

xiv Contents 67 66. 66.3 Light meters 66..1 The photodetector 66.. Acceptance angle 66..3 Spot meters 66..4 Optical attachments 66..5 Incident light measurements In-camera metering systems 66.3.1 Photocell location 66.3. Photocell optics 66.3.3 Segmented photocells 66.3.4 OTF measurements Optics of lighting systems 67.1 67. 67.3 67.4 Lighting 67.1.1 Attributes 67.1. Illumination 67.1.3 Lighting ratio 67.1.4 Shadows 67.1.5 Artificial sources Daylight Lumin aires 67.3.1 Spotlights 67.3. Floodlights 67.3.3 Fibre optic systems Electronic flash 67.4.1 Optics of flash units 539 539 541 541 541 54 543 543 5 546 546 550 551 553 553 554 554 556 556 67.4. Red eye effects 67.4.3 Flash guide number 68 Optics for video systems 68.1 68. 68.3 68.4 69 Optii cs of holography Index 69.1 69. Video cameras 68.1.1 The colour splitter 68.1. The three-chip camera 68.1.3 Aliasing 68.1.4 Spatial offset 68.1.5 Filter arrays Optical multiplexing Telecine Video disc Outline theory 69.1.1 Wavefront reconstruction 69.1. Mathematical outline 69.1.3 Fringe patterns 69.1.4 Hologram properties Holographic techniques 69..1 Illumination system 69.. Recording requirements 557 557 559 559 559 559 561 56 56 563 564 564 567 567 567 567 568 568 569 569 570 573