Research Article Image Segmentation Using Gray-Scale Morphology and Marker-Controlled Watershed Transformation

Similar documents
MEDICAL IMAGE SEGMENTATION BY MARKER- CONTROLLED WATERSHED AND MATHEMATICAL MORPHOLOGY

11/10/2011 small set, B, to probe the image under study for each SE, define origo & pixels in SE

Image Segmentation Based on Watershed and Edge Detection Techniques

Mathematical Morphology and Distance Transforms. Robin Strand

ORDER-INVARIANT TOBOGGAN ALGORITHM FOR IMAGE SEGMENTATION

Morphological Image Processing

Morphology-form and structure. Who am I? structuring element (SE) Today s lecture. Morphological Transformation. Mathematical Morphology

Studies on Watershed Segmentation for Blood Cell Images Using Different Distance Transforms

Detection of Edges Using Mathematical Morphological Operators

Bioimage Informatics

ECEN 447 Digital Image Processing

Morphological Image Processing

09/11/2017. Morphological image processing. Morphological image processing. Morphological image processing. Morphological image processing (binary)

Morphological Image Processing

C E N T E R A T H O U S T O N S C H O O L of H E A L T H I N F O R M A T I O N S C I E N C E S. Image Operations II

Digital Image Processing

Binary Shape Characterization using Morphological Boundary Class Distribution Functions

Digital Image Processing Lecture 7. Segmentation and labeling of objects. Methods for segmentation. Labeling, 2 different algorithms

EE 584 MACHINE VISION

Computer-aided detection of clustered microcalcifications in digital mammograms.

A Case Study on Mathematical Morphology Segmentation for MRI Brain Image

An Alternative Graph Cut Algorithm for Morphological Edge Detection

Biomedical Image Analysis. Mathematical Morphology

Lecture: Segmentation I FMAN30: Medical Image Analysis. Anders Heyden

EE795: Computer Vision and Intelligent Systems

Comparison between Various Edge Detection Methods on Satellite Image

OCR For Handwritten Marathi Script

DTM GENERATION AND FEATURE EXTRACTION FROM SATELLITE IMAGES OF HILLY TERRAINS USING WAVELETS AND WATERSHEDS

COMPUTER AND ROBOT VISION

TEXT DETECTION AND RECOGNITION IN CAMERA BASED IMAGES

Mathematical morphology for grey-scale and hyperspectral images

Knowledge-driven morphological approaches for image segmentation and object detection

Introduction. Computer Vision & Digital Image Processing. Preview. Basic Concepts from Set Theory

Image Enhancement Using Fuzzy Morphology

International Journal of Advance Engineering and Research Development. Applications of Set Theory in Digital Image Processing

K-Means Clustering Using Localized Histogram Analysis

Fuzzy Inference System based Edge Detection in Images

APPLICATION OF FLOYD-WARSHALL LABELLING TECHNIQUE: IDENTIFICATION OF CONNECTED PIXEL COMPONENTS IN BINARY IMAGE. Hyunkyung Shin and Joong Sang Shin

Quantitative analysis of watershed segmentation

Ulrik Söderström 16 Feb Image Processing. Segmentation

Adaptive Wavelet Image Denoising Based on the Entropy of Homogenus Regions

Introduction to Medical Imaging (5XSA0) Module 5

Morphological Technique in Medical Imaging for Human Brain Image Segmentation

Image Analysis Image Segmentation (Basic Methods)

Image Processing (IP) Through Erosion and Dilation Methods

Fuzzy Soft Mathematical Morphology

Morphological Image Processing

MORPHOLOGICAL EDGE DETECTION AND CORNER DETECTION ALGORITHM USING CHAIN-ENCODING

A Novel Approach of Watershed Segmentation of Noisy Image Using Adaptive Wavelet Threshold

EE368 Project Report CD Cover Recognition Using Modified SIFT Algorithm

Gesture based PTZ camera control

Chapter 3. Image Processing Methods. (c) 2008 Prof. Dr. Michael M. Richter, Universität Kaiserslautern

REGION & EDGE BASED SEGMENTATION

Towards the completion of assignment 1

Fundamentals of Digital Image Processing

Morphological Image Processing GUI using MATLAB

Image Segmentation Techniques for Object-Based Coding

EDGE BASED REGION GROWING

Image Processing. Bilkent University. CS554 Computer Vision Pinar Duygulu

Hyperspectral Image Segmentation using Homogeneous Area Limiting and Shortest Path Algorithm

Histogram and watershed based segmentation of color images

RESTORATION OF DEGRADED DOCUMENTS USING IMAGE BINARIZATION TECHNIQUE

An Extended Fuzzy Logic Method for Watershed Ling Zhang 1, Ming Zhang 2,H.D. Cheng 2

Modified Watershed Segmentation with Denoising of Medical Images

Today INF How did Andy Warhol get his inspiration? Edge linking (very briefly) Segmentation approaches

A Modified Spline Interpolation Method for Function Reconstruction from Its Zero-Crossings

A Quantitative Approach for Textural Image Segmentation with Median Filter

Image Types int, double, char,... Morphological Algorithms. Data Structures

Leaf vein segmentation using Odd Gabor filters and morphological operations

VC 10/11 T9 Region-Based Segmentation

EDGE DETECTION IN MEDICAL IMAGES USING THE WAVELET TRANSFORM

CLASSIFICATION OF BOUNDARY AND REGION SHAPES USING HU-MOMENT INVARIANTS

A MORPHOLOGY-BASED FILTER STRUCTURE FOR EDGE-ENHANCING SMOOTHING

Image Analysis. Morphological Image Analysis

N.Priya. Keywords Compass mask, Threshold, Morphological Operators, Statistical Measures, Text extraction

What will we learn? What is mathematical morphology? What is mathematical morphology? Fundamental concepts and operations

EDGE DETECTION-APPLICATION OF (FIRST AND SECOND) ORDER DERIVATIVE IN IMAGE PROCESSING

Image Processing, Analysis and Machine Vision

Looming Motion Segmentation in Vehicle Tracking System using Wavelet Transforms

Digital Image Processing

Introduction to grayscale image processing by mathematical morphology

Texture Segmentation and Classification in Biomedical Image Processing

Towards Knowledge-Based Extraction of Roads from 1m-resolution Satellite Images

Chapter 9 Morphological Image Processing

Available online at ScienceDirect. Procedia Computer Science 89 (2016 )

Moving Object Segmentation Method Based on Motion Information Classification by X-means and Spatial Region Segmentation

CHAPTER 6 DETECTION OF MASS USING NOVEL SEGMENTATION, GLCM AND NEURAL NETWORKS

Erosion, dilation and related operators

MORPHOLOGICAL BOUNDARY BASED SHAPE REPRESENTATION SCHEMES ON MOMENT INVARIANTS FOR CLASSIFICATION OF TEXTURES

Application of mathematical morphology to problems related to Image Segmentation

Edges and Binary Images

Pictures at an Exhibition

Filters. Advanced and Special Topics: Filters. Filters

[ ] Review. Edges and Binary Images. Edge detection. Derivative of Gaussian filter. Image gradient. Tuesday, Sept 16

A New Technique of Extraction of Edge Detection Using Digital Image Processing

Babu Madhav Institute of Information Technology Years Integrated M.Sc.(IT)(Semester - 7)

Lecture 7: Most Common Edge Detectors

2D Grey-Level Convex Hull Computation: A Discrete 3D Approach

DILATION AND EROSION OF GRAY IMAGES WITH SPHERICAL MASKS

Digital Image Processing. Image Enhancement - Filtering

Transcription:

Discrete Dynamics in Nature and Society Volume 2008, Article ID 384346, 8 pages doi:10.1155/2008/384346 Research Article Image Segmentation Using Gray-Scale Morphology and Marker-Controlled Watershed Transformation K. Parvati, 1 B. S. Prakasa Rao, 2 and M. Mariya Das 3 1 Department of Electronics and Communication Engineering (ECE), Jagannath Institute for Technology and Management (JITM), Parlakhemundi, Gajapati 761 211, Orissa, India 2 Department of Geo-Engineering, Andhra University, Visakhapatnam 530 003, India 3 Department of Instrument Technology, Andhra University, Visakhapatnam 530 003, India Correspondence should be addressed to K. Parvati, parvathi kodimela@yahoo.com Received 20 August 2008; Accepted 26 November 2008 Recommended by B. Sagar Segmentation, a new method, for color, gray-scale MR medical images, and aerial images, is proposed. The method is based on gray-scale morphology. Edge detection algorithm includes function edge and marker-controlled watershed segmentation. It features the simple algorithm implemented in MATLAB. The watershed segmentation has been proved to be a powerful and fast technique for both contour detection and region-based segmentation. In principle, watershed segmentation depends on ridges to perform a proper segmentation, a property that is often fulfilled in contour detection where the boundaries of the objects are expressed as ridges. For region-based segmentation, it is possible to convert the edges of the objects into ridges by calculating an edge map of the image. Watershed is normally implemented by region growing, based on a set of markers to avoid oversegmentation. Copyright q 2008 K. Parvati et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 1. Introduction and background Mathematical morphology MM 1 is a nonlinear branch of the signal processing field and concerns the application of set theory concepts to image analysis. Morphology refers to the study of shapes and structures from a general scientific perspective. Morphological filters or operators are nonlinear transformations, which modify geometric features of images. These operators transform the original image into another image through the iteration with other image of a certain shape and size which is known as structuring element. A systematic introduction of theoretical foundations of mathematical morphology, its main image operations, and their applications can be found in 2 4. In general, the structuring element is a set that describes a simple shape that probes an input image. The basic morphological filters are morphological opening and morphological closing with

2 Discrete Dynamics in Nature and Society structuring elements. These present filters present several inconveniences in some situations. In general, if undesirable features are eliminated, the remaining structures will be changed. On the other hand, an image by reconstruction 5 7 has become a powerful tool that enables us to eliminate undesirable features without necessarily affecting desirable ones. From a practical point of view, images by reconstruction are built by means of a reference image and foreground and background markers. The morphological image reconstruction-based algorithm used in this paper enables us to obtain the results better than general opening resp., closing by reconstruction and to avoid some of the inconveniences. 2. Gray-scale morphology The binary morphology can be easily extended to gray-scale morphology. The only differences result from the definitions of dilation and erosion because other operations basically depend on them. 2.1. Gray-scale dilation and erosion A gray-scale image can be considered as a three-dimensional set where the first two elements are the x and y coordinates of a pixel and the third element is gray-scale value. It can be also applied to the gray-scale structuring element. With this concept, gray-scale dilation can be defined as follows. Gray-scale dilation of f by b, denoted by f b, is defined as { } b x, y f b s, t max f s x, t y s x, t y D f; s, y D b, 2.1 where D f and D b are the domains of f and b, respectively. Gray-scale erosion, denoted by fθb, is defined as { } b x, y fθb s, t max f s x, t y s x, t y D f; s, y D b, 2.2 where D f and D b are the domains of each image or function. Gray-scale dilation and erosion are duals with respect to function completion and reflection. That is the relation is fθb c s, t ( f c b ) s, t, 2.3 where f c f x, y and b b x, y ; the minimum operator 2.2 will interrogate a neighborhood with a certain domain and select the smallest pixel value to become the output value. This has the effect of causing the bright areas of an image to shrink or erode. Similarly, gray-scale dilation is performed in 2.1 to select the greatest value in a neighborhood. 2.2. Gray-scale opening and closing The opening of a gray image f by a structuring element b, denoted by f b, is defined as f b fθb b, 2.4

K. Parvati et al. 3 and closing can be defined as f b f b Θb. 2.5 2.3. Morphological gradient The original image is transformed into a gradient image, which represents the edge strength of each pixel. A threshold is applied to classify each pixel to the edge point or nonedge point. Multiscale edge detector. For greater robustness to noise, a multiscale gradient algorithm can be considered. The term multiscale means analysis of the image with structuring elements of different sizes. The combination of the morphological gradients in different scales is insensitive not only to noise but also to extract various finenesses of the edges. The applicable multiscale edge detector is introduced in 8 to find the gradient of the image: MG f 1 n n [(( ) ( )) ] f bi fθbi bi 1, 2.6 i 1 where n is scale and b i denotes the group of square structuring elements where sizes are 2i 1 2i 1 pixels. 2.4. Watershed transformation The watersheds concept is one of the classic tools in the field of topography. It is the line that determines where a drop of water will fall into particular region. In mathematical morphology, gray-scale images are considered as topographic relieves. In the topographic representation of a given image I, the intensity value of each pixel stands for the elevation at this point. The initial concept of the watersheds transformation as a morphological tool was introduced by Digabel and Lantuéjoul 9. Later, a joint work of Lantuéjoul and Beuche led to the immersion of this original algorithm in order to extend it to the more general framework of gray-scale images. Later, watersheds were studied by many other researchers and used in numerous gray-scale segmentation problems. The efficient algorithm for watersheds suggested by Vincent 8, 10 was reviewed briefly and used throughout the entire simulation. Oversegmentation is the embedded problem of watersheds. The transformation makes a number of regions as an output. This problem comes mostly from the noise and quantization error. To eliminate the effect of local minima from noise or quantization error in the final results, first the gradient of the original image is computed as a preprocessing and then watershed transformation is applied. Noise has a quite different value relative to its neighbor hence it shows a high gradient value. Another approach to eliminate noise and error effects is to apply efficient algorithm as a past processing. 3. Marker-controlled watershed segmentation 3.1. Creating markers The marker-controlled watershed segmentation has been shown to be a robust and flexible method for segmentation of objects with closed contours, where the boundaries are expressed

4 Discrete Dynamics in Nature and Society as ridges. The marker image used for watershed segmentation is a binary image consisting of either single marker points or larger marker regions, where each connected marker is placed inside an object of interest. Each initial marker has a one-to-one relationship to a specific watershed region, thus the number of markers will be equal to the final number of watershed regions. After segmentation, the boundaries of the watershed regions are arranged on the desired ridges, thus separating each object from its neighbors. The markers can be manually or automatically selected, but high throughput experiments often employ automatically generated markers to save human time and resources. 3.2. Morphological image reconstruction 3.2.1. Dilation-based gray-scale image reconstruction Let I, J be the two images defined on the same domain and J I. The reconstruction of I from J, denoted as γ rec I J, is obtained by iterating elementary geodesic dilations of J under I until stability is reached, γ rec I J n 1δ n J, 3.1 where δ I J can be obtained by iterating an elementary geodesic dilation and the geodesic dilation is defined as δ I J J b I 3.2 b is the flat structuring element of size I and stands for pointwise minimum. 3.2.2. Erosion-based gray-scale reconstruction Let I, J be two gray-scale images defined on the same domain and J I. The reconstruction of I from J, denoted as φ rec I J, is obtained by iterating elementary geodesic erosions of J above I until stability is reached, φ rec I J n 1ε n J, 3.3 where ε n J can be obtained by iterating n elementary geodesic dilation and the geodesic dilation is defined as ε I J JΘb I, 3.4 b is flat structuring element of size I and stands for pointwise maximum. Local minima consist of a small number of pixels or have a low contrast with respect to their neighbors. The procedure to eliminate local minima adopted is in 10, 11. The morphological reconstruction transformation is well known in the binary case, where it

K. Parvati et al. 5 a u a b c d Figure 1: Top original images and below their respective gradients. i iii a b c d Figure 2: Top erosion-based reconstruction applied on gradient images. Below dilation-based reconstruction applied on top images. simply extracts the connected components of an image, which are marked by another image. Extending it to gray-scale reconstruction, it can accomplish several tasks such as image filtering, domes, and basin extraction. In this paper, we used improvised image reconstruction algorithm. 4. Method overview The developed segmentation method gives a resultant image, whose foreground and background markers are the objects we are trying to segment. The method is applicable to gray-scale images. Color images were first converted into gray scale. Finding the gradient image using multiscale edge detector 2.6 is shown in Figure 1. Direct application of watershed transformation on the gradient images producing typically severe segmentation of the image, because of numerous minima, exists in real gradient images due to inherent noise. One possibility to get rid of the false regions is the so-called marker image to mark those regions that require segmentation, but it is generally difficult to obtain relevant markers automatically without any interaction by the user.

6 Discrete Dynamics in Nature and Society h a b c d Figure 3: Foreground markers objects. l a b c d Figure 4: Background objects. In this paper, we used simple algorithm to create foreground and background markers using morphological image reconstructions. We used erosion-based gray-scale reconstruction 3.3 and 3.4 followed by dilation-based gray-scale reconstruction 3.1 and 3.2 to trace the foreground objects selecting structuring element as per the desired objects. The results are shown in Figure 2. Calculating the regional maxima of these reconstructed images is done to get smooth edge foreground objects. Later, we superimposed these markers on the original images as shown in Figure 3. The background markers are created by calculating the Euclidean distance of binary version of above superimposed image. The gradient image is modified by morphological reconstruction with foreground and background markers. Application of watershed transform gives final segmented images of desired objects. The final results are shown in Figures 4 and 5. Algorithm 4.1. i Read the color image and convert it to gray-scale. ii Develop gradient images using appropriate edge detection function. iii Mark the foreground objects using morphological reconstruction (better than the opening image with a closing). iv Calculating the regional maxima and minima to obtain the good forward markers. v Superimpose the foreground marker image on the original image. vi Clean the edges of the markers using edge reconstruction. vii Compute the background markers. viii Compute the watershed transform of the function.

K. Parvati et al. 7 a b c d Figure 5: Final segmented images. a b c d Figure 6: Standard watershed segmentation on the gradient images of Figure 1. 5. Experimental results The proposed algorithm applied on the MR medical images grey, color, aerial image, and a high-resolution satellite image is shown in Figures 1 a, 1 b, 1 c,and1 d, respectively. The algorithm is helpful to segment the objects that touch each other in an image. We extracted the tumor-like objects from MR brain images. The results are shown in Figures 5 a and 5 b. From high-resolution satellite images, man-made objects like buildings have been extracted and shown in Figure 5 c. From an aerial image, the river network can be extracted as shown in Figure 5 d. The standard watershed segmentation algorithm is also applied on the gradient images after imposing local minima. The results are shown in Figure 6. The proposed algorithm results gave better identification of desired objects tumor, buildings, and river than the standard algorithm. 6. Conclusions and future work This study shows that the proposed watershed by foreground markers is able to segment real images containing severe irregularities in a better way than the standard watershed segmentation. The formulation is based on markers and simple morphology, which easily allows a regularization of the watersheds, and is a flexible approach for further optimization parameters. The algorithm is able to segment or extract desired parts of only gray-scale images. The technique can possibly be merged with advanced techniques like wavelet transforms to improve the results especially in the case of high-resolution images. Acknowledgments The authors thank the Department of Geo-Engineering, Andhra University for providing the high-resolution satellite data. The MR images are downloaded from Google.com/images.

8 Discrete Dynamics in Nature and Society References 1 J. Serra, Mathematical Morphology, vol. 1, Academic Press, London, UK, 1982. 2 J. Serra, Image Analysis and Mathematical Morphology, Academic Press, London, UK, 1982. 3 C. R. Giardina and E. R. Dougherty, Morphological Methods in Image and Signal Processing, Prentice-Hall, Upper Saddle River, NJ, USA, 1988. 4 R. C. Gonzalez and R. E. Woods, Digital Image Processing, Prentice-Hall, Upper Saddle River, NJ, USA, 2nd edition, 2002. 5 J. Crespo, J. Serra, and R. W. Schafer, Theoretical aspects of morphological filters by reconstruction, Signal Processing, vol. 47, no. 2, pp. 201 225, 1995. 6 J. Serra, Connectivity on complete lattices, Mathematical Imaging and Vision, vol. 9, no. 3, pp. 231 251, 1998. 7 J. Serra and P. Salembier, Connected operators and pyramids, in Image Algebra and Morphological Image Processing IV, vol. 2030 of Proceedings of SPIE, pp. 65 76, San Diego, Calif, USA, July 1993. 8 L. Vincent and P. Soille, Watersheds in digital spaces: an efficient algorithm based on immersion simulations, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13, no. 6, pp. 583 598, 1991. 9 H. Digabel and C. Lantuéjoul, Iterative algorithms, in Proceedings of the 2nd European Symposium on Quantitative Analysis of Microstructures in Materials Sciences, Biology and Medicine, pp. 85 99, Caen, France, October 1977. 10 L. Vincent, Morphological grayscale reconstruction in image analysis: applications and efficient algorithms, IEEE Transactions on Image Processing, vol. 2, no. 2, pp. 176 201, 1993. 11 D. Wang, A multiscale gradient algorithm for image segmentation using watersheds, Pattern Recognition, vol. 30, no. 12, pp. 2043 2052, 1997.

Advances in Operations Research Advances in Decision Sciences Applied Mathematics Algebra Probability and Statistics The Scientific World Journal International Differential Equations Submit your manuscripts at International Advances in Combinatorics Mathematical Physics Complex Analysis International Mathematics and Mathematical Sciences Mathematical Problems in Engineering Mathematics Discrete Mathematics Discrete Dynamics in Nature and Society Function Spaces Abstract and Applied Analysis International Stochastic Analysis Optimization