Link Layer. w/ credit to Rick Graziani (Cabrillo) for some of the anima<ons

Similar documents
Link Layer. w/ much credit to Cisco CCNA and Rick Graziani (Cabrillo)

Objectives. Hexadecimal Numbering and Addressing. Ethernet / IEEE LAN Technology. Ethernet

Hubs. twisted pair. hub. 5: DataLink Layer 5-1

Switched Ethernet Virtual LANs

EITF25 Internet- - Techniques and Applica8ons Stefan Höst. L5 Data link (part 2)

Principles behind data link layer services

Ethernet Hub. Campus Network Design. Hubs. Sending and receiving Ethernet frames via a hub

Switching & ARP Week 3

Layer 2 functionality bridging and switching

Chapter 9 Ethernet Part 1

Principles behind data link layer services:

Principles behind data link layer services:

Data Link Layer. Our goals: understand principles behind data link layer services: instantiation and implementation of various link layer technologies

CSC 4900 Computer Networks: Link Layer (2)

Summary of MAC protocols

Address and Switching in the Link Layer

Chapter 6 Connecting Device

Interface The exit interface a packet will take when destined for a specific network.

CS 455/555 Intro to Networks and Communications. Link Layer Addressing, Ethernet, and a Day in the Life of a Web Request

Communication Networks ( ) / Spring 2011 The Blavatnik School of Computer Science, Tel-Aviv University. Allon Wagner

Switching and Forwarding Reading: Chapter 3 1/30/14 1

CS 43: Computer Networks Switches and LANs. Kevin Webb Swarthmore College December 5, 2017

Medium Access Protocols

Review. Error Detection: CRC Multiple access protocols. LAN addresses and ARP Ethernet. Slotted ALOHA CSMA/CD

Chapter 3 Part 2 Switching and Bridging. Networking CS 3470, Section 1

Computer Networks Principles LAN - Ethernet

CCNA Exploration Network Fundamentals. Chapter 09 Ethernet

Lecture 9: Switched Ethernet Features: STP and VLANs

Network Security Fundamentals. Network Security Fundamentals. Roadmap. Security Training Course. Module 2 Network Fundamentals

CSCI-1680 Link Layer Wrap-Up Rodrigo Fonseca

Link layer: introduction

CSCI-1680 Link Layer Wrap-Up Rodrigo Fonseca

Chapter 2. Switch Concepts and Configuration. Part I

Hands-On Network Security: Practical Tools & Methods

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 18

- Hubs vs. Switches vs. Routers -

Chapter 9. Ethernet. Part II

Full file at

A. ARPANET was an early packet switched network initially connecting 4 sites (Stanford, UC Santa Barbara, UCLA, and U of Utah).

CSC 401 Data and Computer Communications Networks

CSCI-1680 Link Layer Wrap-Up Rodrigo Fonseca

Extending the LAN. Context. Info 341 Networking and Distributed Applications. Building up the network. How to hook things together. Media NIC 10/18/10

Conges'on. Last Week: Discovery and Rou'ng. Today: Conges'on Control. Distributed Resource Sharing. Conges'on Collapse. Conges'on

Communication Networks

Image courtesy Cisco Systems, Inc. Illustration of a Cisco Catalyst switch

Chapter 4 NETWORK HARDWARE

CS 3516: Advanced Computer Networks

CSCI-1680 Link Layer Wrap-Up Rodrigo Fonseca

The Link Layer and LANs: Ethernet and Swiches

Switching and bridging

King Fahd University of Petroleum & Minerals Electrical Engineering Department EE 400, Experiment # 2

Computer Networks Medium Access Control. Mostafa Salehi Fall 2008

Some portions courtesy Srini Seshan or David Wetherall

Link Layer Review. CS244A Winter 2008 March 7, 2008 Ben Nham

Lecture 4b. Local Area Networks and Bridges

Packet Switching. Guevara Noubir Fundamentals of Computer Networks. Computer Networks: A Systems Approach, L. Peterson, B. Davie, Morgan Kaufmann

Network layer overview

Cisco Cisco Certified Network Associate (CCNA)

Part3. Local Area Networks (LAN)

CSCI Computer Networks

Lecture 9 The Data Link Layer part II. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it

VLANs Level 3 Unit 9 Computer Networks

LAN PROTOCOLS. Beulah A AP/CSE

Chapter 5 Reading Organizer After completion of this chapter, you should be able to:

Lecture 5 The Data Link Layer. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it

Computer Networking. December 2004 CEN CN

Lecture 6 The Data Link Layer. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it

7010INT Data Communications Lecture 7 The Network Layer

Introducing Campus Networks

Underlying Technologies -Continued-

Links Reading: Chapter 2. Goals of Todayʼs Lecture. Message, Segment, Packet, and Frame

Distributed Queue Dual Bus

ECE 158A: Lecture 13. Fall 2015

Chapter 4 Configuring Switching

CSE 123A Computer Networks

Unit A - Connecting to the Network

Data Link Layer, Part 3 Medium Access Control. Preface

Principles behind data link layer services:

Internetworking is connecting two or more computer networks with some sort of routing device to exchange traffic back and forth, and guide traffic on

Lecture 7. Reminder: Homework 2, Programming Project 1 due today. Homework 3, Programming Project 2 out, due Thursday next week. Questions?

Computer Networks. Wenzhong Li. Nanjing University

1: Review Of Semester Provide an overview of encapsulation.

Additional Slides (Basics) Intermediate Systems

Antonio Cianfrani. Virtual LAN (VLAN)

Top-Down Network Design

Chapter 6: Network Communications and Protocols

High Level View. EE 122: Ethernet and Random Access protocols. Medium Access Protocols

Missing pieces + Putting the pieces together

Introduction. High Speed LANs. Emergence of High-Speed LANs. Characteristics of High Speed LANS. Text ch. 6, High-Speed Networks and

Internetworking Part 1

CSE/ISE 311: Systems Administra5on Basic Network Organiza5on

Networking Technologies and Applications

Chapter 3: Industrial Ethernet

Internetwork Expert s CCNP Bootcamp. Hierarchical Campus Network Design Overview

Ethernet Basics. based on Chapter 4 of CompTIA Network+ Exam Guide, 4 th ed., Mike Meyers

Redes de Computadores. Medium Access Control

LAN Interconnection and Other Link Layer Protocols

2. LAN Topologies Gilbert Ndjatou Page 1

Gigabit Networks, VLANs & Wireless LANs

Growth. Individual departments in a university buy LANs for their own machines and eventually want to interconnect with other campus LANs.

Transcription:

Link Layer w/ credit to Rick Graziani (Cabrillo) for some of the anima<ons

Logis<cs Thursday IPv4/Link Layer exercise IPv4 quiz Sunday IPv4 Sta<c Rou<ng lab due Tuesday IPv6 lecture Project proposal due in 3 weeks (5/2) Link layer reading - Chapter 2 (except 2.5-7) of Dordal book Spring 2017 CE 151 - Advanced Networks 2

Recall IP designed to interconnect diverse networks Local Area Networks Packet radio networks Satellite networks Anything else people might dream up (cup and string!) Communica<on across a set of Interconnected Networks (an InterNet!) While making minimal assump<ons about the networks IP dis<lled from monolithic TCP due to insight that reliability was to be implemented in the hosts (due to minimal assump<ons of networks) not a service needed by all network applica<ons We now study the requirements of a subnet in the Internet Architecture This is the Link Layer Spring 2017 CE 151 - Advanced Networks 3

Role of Link Layer Internet is composed of subnets Subnets are composed of channels or segments The Link Layer manages communica<on across a subnet Framing Sharing channels that compose the subnet ( media access control ) Rou<ng across the subnet Examples Ethernet, 802.11, ATM, etc. Following focuses on Ethernet as the classic subnet technology it is everywhere, if you understand Ethernet can figure out others Spring 2017 CE 151 - Advanced Networks 4

Review The Internet is composed of subnets. Subnets are composed of channels or segments. The Link Layer manages communica<on across a subnet: Framing, Sharing channels that compose the subnet ( media access control ), Rou<ng across the subnet. Spring 2017 CE 151 - Advanced Networks 5

Ethernet Media Access Control CSMA/CD Problems with original Ethernet Maximum channel length << slot <me (maximum network size) Only one sta<on can transmit at a <me (half-duplex) Maximum 50-60% bandwidth u<liza<on Solu+ons: Repeaters/hubs, bridges, and switches Problem: one broadcast domain per switch. Solu+on: Virtual LANs (VLANs) Problem: loops in the topology. Solu+on: spanning-tree protocol (STP) Spring 2017 CE 151 - Advanced Networks 6

Original Ethernet CSMA/CD When an Ethernet frame is sent all devices on the bus receive it. What do they do with it? 1111 2222 3333 nnnn Abbreviated MAC Addresses 3333 1111 Spring 2017 CE 151 - Advanced Networks 7

Original Ethernet CSMA/CD When informa<on (frame) is transmiged, every PC/NIC on the shared media copies part of the transmiged frame to see if the des+na+on address matches the address of the NIC. If there is a match, the rest of the frame is copied If there is NOT a match the rest of the frame is ignored. Nope Hey, that s me! Nope 1111 2222 3333 nnnn Abbreviated MAC Addresses 3333 1111 Spring 2017 CE 151 - Advanced Networks 8

Original Ethernet CSMA/CD What happens when mul<ple computers try to transmit at the same <me? 1111 2222 3333 nnnn Abbreviated MAC Addresses 3333 1111 Spring 2017 CE 151 - Advanced Networks 9

Original Ethernet CSMA/CD Collision! 1111 2222 3333 nnnn Abbreviated MAC Addresses X Spring 2017 CE 151 - Advanced Networks 10

CSMA/CD CSMA/CD Let everyone have access whenever they want and we will work it out somehow. Spring 2017 CE 151 - Advanced Networks 11

CSMA/CD Carrier Sense Mul+ple Access/Collision Detec+on 1. Listen for transmission ( carrier ). 2. If no transmission is sensed, transmit data immediately. 3. Monitor channel for collision. Sta<ons sense the collision by being unable to deliver the en<re frame. (This is why there are minimum frame lengths, cable distance and speed limita<ons. This includes the 5-4-3 rule.) 4. If collision detected, transmit a jamming signal. 5. Back off a random, exponen<ally increasing amount of <me. 6. Go back to Step 1. Spring 2017 CE 151 - Advanced Networks 12

CSMA/CD - Minimum Frame Size For CSMA/CD to work, sending sta<on must detect collision before sending last bit in frame Minimum transmission <me must be twice maximum propaga<on <me. Minimum Ethernet frame size (called slot +me): 512 bits (64 bytes) Slot <me determines (and is determined by) the maximum LAN size. Slot <me is minimum frame size such that, if Sta<ons R and S are at the maximum distance from each other allowed in the LAN Sta<on S starts to send a frame. Sta<on R starts to send frame just before the first bit of S s frame arrives. S is able to detect R s transmission just before it s transmission completes Slot Time S R Spring 2017 CE 151 - Advanced Networks 13

CSMA/CD Slot Time For Ethernet and Fast Ethernet, 512 bits is 2800m @ 10Mbps 205m @ 100Mbps (10baseT cabling limit is 100m) Aker 512bits sender assumes no collision Minimum payload of 46bytes (368bits) 512 48 (Src) 48 (Dst) 16 (Type) 32 (FCS) Why maximum frame size? Spring 2017 CE 151 - Advanced Networks 14

Collision Domain Collision Domain: a set of ports interconnected at the physical layer (are a part of the same signal <ming domain ). Simultaneous transmissions will result in a collision. Bandwidth is shared by all sta<ons in the domain. Transmission is half-duplex. Wikipedia: A logical network segment where data packets can "collide" with one another for being sent on a shared medium. Only implemented in Ethernet (10Mb) and Fast Ethernet (100Mb) Original Ethernet supports only 1 collision domain/subnet Spring 2017 CE 151 - Advanced Networks 15

Original Ethernet CSMA/CD One shared collision domain (subnet = collision domain) Problems Channel length limita<ons far short of slot <me Only one sta<on can transmit at a <me Shared collision domain (CSMA/CD) limited to 50-60% bandwidth u<liza<on Spring 2017 CE 151 - Advanced Networks 16

Channel Length Limita<ons Channel technologies had limited range Original Ethernet (10Mbps) 1980 to 1995 500 meters for 10base5 200 meters for 10base2 (really 185 meters) 100 meters for 10baseT Fast Ethernet (100Mbps) 1995 to 1998 100 meters for 100baseTX Far short of slot <mes 2800m for Ethernet 205m for Fast Ethernet Solu<on was repeaters/hubs, and the 5/4/3 rule Spring 2017 CE 151 - Advanced Networks 17

Review Slot <me Guarantees sending sta<on detects collision before sending last bit in frame Twice maximum propaga<on <me Determines Minimum Ethernet frame size Maximum LAN size Collision Domain A logical network segment where data packets can "collide" with one another simultaneous transmissions will result in a collision. Bandwidth is shared by all sta<ons in the domain. Transmission is half-duplex. Spring 2017 CE 151 - Advanced Networks 18

Review Original Ethernet (10Mbps) and Fast Ethernet (100Mbps) CSMA/CD Shared collision domains Problems 500m & 100m segment limita<ons vs. 2800m & 205m slot <mes Only one sta<on can transmit at a <me Inefficient use of bandwidth - shared collision domain (CSMA/CD) limited to 50-60% bandwidth u<liza<on Spring 2017 CE 151 - Advanced Networks 19

Ethernet Media Access Control CSMA/CD Problems with original Ethernet Maximum channel length << slot +me (maximum network size) Only one sta<on can transmit at a <me (half-duplex) Maximum 50-60% bandwidth u<liza<on Solu+ons: Repeaters/hubs, bridges, and switches Problem: one broadcast domain per switch. Solu+on: Virtual LANs (VLANs) Problem: loops in the topology. Solu+on: spanning-tree protocol (STP) Spring 2017 CE 151 - Advanced Networks 20

Repeaters Repeaters are Layer 1 devices used to combat agenua<on. They do NOT look at Layer 2 (MAC, Ethernet) or Layer 3 (IP) addresses. CSMA/CD. Repeaters: take in weakened signals clean them up or regenerate them send them on their way along the network Repeaters Increase the distance a LAN can reach Introduce delay Spring 2017 CE 151 - Advanced Networks 21

5/4/3 Rule Enforce slot <me limit on Ethernet subnet in presence of repeaters. The rule mandates that between any two nodes on the network, there can only be a maximum of five segments, connected through four repeaters, or concentrators, and only three of the five segments may contain user connec+ons. Webopedia.com Alterna<vely, specified algorithms for custom network configura<ons Spring 2017 CE 151 - Advanced Networks 22

5/4/3 Rule Ethernet and IEEE 802.3 implement a rule, known as the 5-4-3 rule, for the number of repeaters and segments on shared access Ethernet backbones in a tree topology. The 5-4-3 rule divides the network into two types of physical segments: populated (user) segments, and unpopulated (link) segments. User segments have users' systems connected to them. Link segments are used to connect the network's repeaters together. The rule mandates that between any two nodes on the network, there can only be a maximum of five segments, connected through four repeaters, or concentrators, and only three of the five segments may contain user connec<ons. The Ethernet protocol requires that a signal sent out over the LAN reach every part of the network within a specified length of?me. The 5-4-3 rule ensures this. Each repeater that a signal goes through adds a small amount of?me to the process, so the rule is designed to minimize transmission?mes of the signals. The 5-4-3 rule -- which was created when Ethernet, 10Base5, and 10Base2 were the only types of Ethernet network available -- only applies to shared-access Ethernet backbones. A switched Ethernet network should be exempt from the 5-4-3 rule because each switch has a buffer to temporarily store data and all nodes can access a switched Ethernet LAN simultaneously. Spring 2017 CE 151 - Advanced Networks 23

Hubs Hub is a repeater with more than 2 ports. Layer 1 device. Signals receved on one port are regenerated and sent out all other. CSMA/CD. Hubs were also called Ethernet concentrators Mul<port repeaters Spring 2017 CE 151 - Advanced Networks 24

Problem with hubs s<ll CSMA/CD 2222 1111 1111 2222 For me! The hub will flood it out all ports (except for the incoming port) of all interconnected hubs in the subnet! 5555 Nope 3333 Nope 4444 Nope Spring 2017 CE 151 - Advanced Networks 25

Problem with hubs s<ll CSMA/CD 2222 1111 1111 2222 For me! 5555 Nope The hub will flood it out all ports (except for the incoming port) of all interconnected hubs in the subnet! This may result in wasted bandwidth! Wasted bandwidth 3333 Nope 4444 Nope Spring 2017 CE 151 - Advanced Networks 26

Problem with hubs s<ll CSMA/CD 2222 1111 1111 2222 Collision X 5555 The hub will flood it out all ports (except for the incoming port) of all interconnected hubs in the subnet! This may result in wasted bandwidth! Or collisions when sta<ons transmit at the same <me. 4444 3333 3333 4444 Spring 2017 CE 151 - Advanced Networks 27

Review Repeaters and hubs Physical layer - regenerate signal Solve Range limita<on - extend range (5/4/3 rule for 10Mbps) to support full slot <me Remaining problems Only one sta<on can transmit at a <me Inefficient use of bandwidth - shared collision domain (CSMA/CD) limited to 50-60% bandwidth u<liza<on Spring 2017 CE 151 - Advanced Networks 28

Ethernet Media Access Control CSMA/CD Problems with original Ethernet Maximum channel length << slot <me (maximum network size) Only one sta+on can transmit at a +me (half-duplex) Maximum 50-60% bandwidth u<liza<on Solu+ons: Repeaters/hubs, bridges, and switches Problem: one broadcast domain per switch. Solu+on: Virtual LANs (VLANs) Problem: loops in the topology. Solu+on: spanning-tree protocol (STP) Spring 2017 CE 151 - Advanced Networks 29

Original Ethernet Par<al Solu<on Problem: only one sta<on can transmit at a <me. Solu<on: Buffering and selec+ve forwarding Introduce a device that Buffers frames Only forwards on interfaces it needs to More efficient use of bandwidth Allows simultaneous transmissions Splits a collision domain Called a bridge Spring 2017 CE 151 - Advanced Networks 30

Bridges A bridge is a Layer 2 device Collects frames. Selec<vely forwards frames through the network. CSMA/CD on each interface Bridges implement selec<ve forwarding by Learning the MAC address of all devices on connected segments. Builds a bridging table and forwards frames based on this table. Called address learning Spring 2017 CE 151 - Advanced Networks 31

Address Learning: Learn Source Address Source Address Table Port Source MAC Add. 1 1111 Port Source MAC Add. 3333 1111 bridge A bridge has a source address table (or MAC Address Table) in cache (RAM) where it stores a source MAC address aker it learns about them. 1111 Abbreviated MAC addresses 3333 How does it learn source MAC addresses? When a frame enters a bridge, the switch first checks if the source address (1111) is in it s source address table. If it is, it resets the +mer. If it is NOT in the table it adds it, with the port number. 2222 4444 Spring 2017 CE 151 - Advanced Networks 32

Address Learning: Filter or Flood Source Address Table Port Source MAC Add. 1 1111 Port Source MAC Add. 3333 1111 bridge The bridge then examines the source address table for the des+na+on MAC address. 1111 Abbreviated MAC addresses 3333 If it finds a match, it forwards the frame by only sending it out that port. If there is not a match if floods it out all ports. In this scenario, the bridge will flood the frame out all other ports, because the des<na<on address is not in the source address table. 2222 4444 Spring 2017 CE 151 - Advanced Networks 33

Address Learning: Learn, Filter or Flood Source Address Table Port Source MAC Add. Port Source MAC Add. 1 1111 6 3333 1111 3333 bridge Most communica<ons involve some sort of client-server rela<onship or exchange. 1111 Abbreviated MAC addresses 2222 3333 4444 Now 3333 responds to 1111. The bridge sees if it has the source address stored. It does NOT so it adds it. Next, it checks the des+na+on address and in our case it can forward the frame, by sending it only out port 1. Future traffic between 1111 and 3333 is forwarded on correct port. Spring 2017 CE 151 - Advanced Networks 34

No Collisions in Switch, Buffering Source Address Table Port Source MAC Add. Port Source MAC Add. 1 1111 6 3333 3333 1111 3333 4444 bridge Unlike a hub, a collision does NOT occur, which would cause the two PCs to have to retransmit the frames. Collision domains end at the bridge Instead the bridgebuffers the frames and sends them out port #6 one at a <me. 1111 3333 Abbreviated MAC addresses 2222 4444 Spring 2017 CE 151 - Advanced Networks 35

Address Learning Parameters Source Address Table Port Source MAC Add. bridge Port Source MAC Add. 1 1111 6 3333 9 4444 How long are addresses kept in the Source Address Table? 5 minutes is common on most vendor switches. How many addresses can be kept in the table? Depends on the size of the cache, but 1,024 addresses is common. 1111 Abbreviated MAC addresses 3333 What about Layer 2 broadcasts? Layer 2 broadcasts (DA = all 1 s) and mul<casts are flooded out all ports. 2222 4444 Spring 2017 CE 151 - Advanced Networks 36

Receive Packet Transparent Bridge Process - Jeff Doyle Learn source address or refresh aging <mer Is the des<na<on a broadcast, mul<cast or unknown unicast? No Yes Flood Packet Are the source and des<na<on on the same interface? No Yes Filter Packet Forward unicast to correct port Spring 2017 CE 151 - Advanced Networks 37

Review Address Learning Purpose is to avoid the need to flood packets, thereby par<<oning collision domains Remember source of frames seen on a port MAC Address Table or Source Address Table On receipt of a frame Always flood broadcast and mul<cast If des<na<on previously seen as source on a port, use that port Otherwise flood What happens if host moves? Timeout Or it sends a frame (switch re-learns sta<on s loca<on) Spring 2017 CE 151 - Advanced Networks 38

Broadcast Domain Broadcast Domain: a set of ports interconnected at the link layer. A broadcast will reach all sta<ons in the domain. Equivalent to (defines) a subnet in the Internet Architecture. Wikipedia: a logical division of a computer network, in which all nodes can reach each other by broadcast at the data link layer. Without bridges, broadcast domain = collision domain Bridges segment collision domains! Don t forward collision signals. Bridges do not restrict broadcast or mul<cast traffic. Therefore broadcast domains are not affected. Result is fewer collisions and therefore improved bandwidth u<liza<on. Spring 2017 CE 151 - Advanced Networks 39

Broadcast Domain Bridges allow a broadcast domain to be segmented into many collision domains; however shared collision domains (CSMA/CD) are limited to at most 50-60% u<liza<on of the channel Elimina<on of shared collision domains enables 100% channel u<liza<on. To eliminate CSMA/CD requires elimina<ng the sharing of a medium Accomplish this by moving from half-duplex to full-duplex communica+on Spring 2017 CE 151 - Advanced Networks 40

Review Broadcast Domain A logical division of a computer network, in which all nodes can reach each other by broadcast at the data link layer. Equivalent to (defines) a subnet in the Internet Architecture. Bridges Link layer buffer frames Selec<ve forwarding Mul<ple collision domains per broadcast domain Solves Mul<ple sta<ons can transmit at the same <me Remaining problem Shared collision domain (CSMA/CD) limited to 50-60% bandwidth u<liza<on Spring 2017 CE 151 - Advanced Networks 41

Ethernet Media Access Control CSMA/CD Problems with original Ethernet Maximum channel length << slot <me (maximum network size) Only one sta<on can transmit at a <me (half-duplex) Maximum 50-60% bandwidth u+liza+on Solu+ons: Repeaters/hubs, bridges, and switches Problem: one broadcast domain per switch. Solu+on: Virtual LANs (VLANs) Problem: loops in the topology. Solu+on: spanning-tree protocol (STP) Spring 2017 CE 151 - Advanced Networks 42

Duplex Transmissions Half-duplex Transmission: Either way, but only one way at a <me. Two way street, but only one way at a <me Full-duplex Transmission: Both ways at the same <me. Two way street Spring 2017 CE 151 - Advanced Networks 43

Half-Duplex In half-duplex transmission only one end can send at a <me. CSMA/CD transmissions are, by defini<on, half-duplex. All ports in a collision domain must be in half-duplex mode Original Ethernet is half-duplex. Half-duplex Spring 2017 CE 151 - Advanced Networks 44

Full-Duplex In full-duplex transmission both ends can send simultaneously. CSMA/CD is not needed for full-duplex transmission. Full-duplex Ethernet specified in IEEE 802.3x in March 1997 Original (half-duplex) Ethernet usually can only use 50%-60% of the available 10 Mbps of bandwidth due to collisions. Full-duplex Ethernet offers 100% of the bandwidth in both direc<ons. Spring 2017 CE 151 - Advanced Networks 45

Full-Duplex Ethernet IEEE 802.3x full-duplex standard requires: The medium must have independent transmit and receive data paths that can operate simultaneously. There are exactly two sta+ons connected w/ a full-duplex point-to-point link. There is no CSMA/CD mul<ple access algorithm, since there is no conten<on for a shared medium. Both sta<ons on the LAN are capable of, and have been configured to use, the full-duplex mode of opera<on. Handling carrier detec<on and collision detect In half-duplex a sta<on will not transmit if carrier is detected, and will abort if a collision is detected. In full-duplex a sta<on ignores the carrier sense and collision detect signals. Spring 2017 CE 151 - Advanced Networks 46

Switches Latest step in evolu<on of link layer. A full-duplex bridge Operates at link layer on frames. Selec<ve forwarding. Full-duplex transmission. Poten<ally no CSMA/CD! Mul<ple devices on a switch can communicate simultaneously. Benefits of a switch Fewer (poten<ally no!) collisions. Improved (poten<ally 100%!) bandwidth u<liza<on (limited by buffer space). Spring 2017 CE 151 - Advanced Networks 47

Review Switches Full duplex No CSMA/CD Solves Limit of 50-60% bandwidth u<liza<on allows up to 100% bandwidth u<liza<on Spring 2017 CE 151 - Advanced Networks 48

Summary of Devices Repeaters and hubs Forward bits within a collision domain using regenera?on. Physical layer. Forward regenerated bits. Half-duplex, CSMA/CD transmission. Single collision domain. Bridges Divide collision domains using buffering. Link layer. Selec<vely forward frames. Half-duplex, CSMA/CD transmission. Collision domain per port. Switches Eliminate collision domains using full-duplex channels. Link layer. Selec<vely forward frames Full duplex transmission over dedicated medium. Collision domain per port. Spring 2017 CE 151 - Advanced Networks 49

Summary of Devices Switches provide the opportunity to Eliminate distance limita<ons (subnets span the whole campus) All sta<ons can transmit simultaneously (limit is switch buffering) No CSMA/CD so full channel bandwidth can be used Spring 2017 CE 151 - Advanced Networks 50

Cut-through Switching Store-and-forward The en<re frame is received before any forwarding takes place. CRC Check done Cut-through The frame is forwarded before the en<re frame is received. Decreases the latency of the transmission, but also reduces error detec<on. Spring 2017 CE 151 - Advanced Networks 51

Cut-through Switching Cut-through Fast-forward Offers the lowest level of latency. Fast-forward switching immediately forwards a packet aker reading the des<na<on address. There may be <mes when packets are relayed with errors. Although this occurs infrequently and the des<na<on network adapter will discard the faulty packet upon receipt. Spring 2017 CE 151 - Advanced Networks 52

Cut-through Switching Cut-through Fragment-free Fragment-free switching filters out collision fragments before forwarding begins. Collision fragments are the majority of packet errors. Collision fragments must be smaller than 64 bytes (512 bits slot <me). Greater than 64 bytes is a valid packet and is usually received without error. Fragment-free switching confirms not a collision fragment before forwarding. Spring 2017 CE 151 - Advanced Networks 53

Routers vs. Switches Routers - forward packets between broadcast domains. Network layer Forward packets Interconnect broadcast domains Un<l early 1990s: most LANs were interconnected by routers Since mid 1990s: LAN switches replace most routers Spring 2017 CE 151 - Advanced Networks 54

A Routed Enterprise Network Internet Router Hub FDDI FDDI Spring 2017 CE 151 - Advanced Networks 55

A Switched Enterprise Network Internet Router Switch Spring 2017 CE 151 - Advanced Networks 56

Switches/Bridges versus Routers Performance Ease of administra<on Routers Each host s IP address must be configured If network is reconfigured, IP addresses may need to be reassigned Rou<ng done via RIP or OSPF Each router manipulates packet header (e.g., reduces TTL field) Switches/Bridges MAC addresses are hardwired No network configura<on needed No rou<ng protocol needed (sort of) learning bridge algorithm spanning tree algorithm Bridges do not manipulate frames Spring 2017 CE 151 - Advanced Networks 57

Ethernet Media Access Control CSMA/CD Problems with original Ethernet Maximum channel length << slot <me (maximum network size) Only one sta<on can transmit at a <me (half-duplex) Maximum 50-60% bandwidth u<liza<on Solu+ons: Repeaters/hubs, bridges, and switches Problem: one broadcast domain per switch. Solu+on: Virtual LANs (VLANs) Problem: loops in the topology. Solu+on: spanning-tree protocol (STP) Spring 2017 CE 151 - Advanced Networks 58

Virtual LANs (802.1q) How do we avoid separate hardware infrastructure per subnet?

Why Virtual LANs? The basic bridge/switch concept would have all ports on a switch belong to the same broadcast domain To support mul<ple broadcast domains need mul<ple switches Not scalable IEEE 802.1Q Spring 2017 CE 151 - Advanced Networks 60

VLANs VLANs support mul+ple broadcast domains/switch Assign ports to broadcast domains. VLAN = Subnet VLANs can logically segment switched networks based on: Physical loca<on (Example: Building) Organiza<on (Example: Marke<ng) Func<on (Example: Staff) Default vlan 1 vlan 10 Default vlan 1 Spring 2017 CE 151 - Advanced Networks 61

VLANs VLANs are created to provide segmenta<on services tradi<onally provided by physical routers in LAN configura<ons. VLANs address scalability, security, and network management. Spring 2017 CE 151 - Advanced Networks 62

VLANs and Broadcast Domains A VLAN is a broadcast domain created by one or more switches. Ports on the switch are assigned to VLANs. Each switch port can be assigned to a different VLAN. Port 1 VLAN 10 Port 4 VLAN 20 Port 9 VLAN 10 Port 12 VLAN 20 10.1.0.10/16 DG: 10.1.0.1 10.2.0.20/16 DG: 10.2.0.1 10.1.0.30/16 DG: 10.1.0.1 10.2.0.40/16 DG: 10.2.0.1 Spring 2017 CE 151 - Advanced Networks 63

VLAN Trunking/Tagging VLAN Tagging is used when a link carries traffic for more than one VLAN. Trunk link: As packets are received by the switch from any agached endsta<on, a unique packet iden+fier is added in each header. This iden<fies designates the VLAN membership of each packet. Spring 2017 CE 151 - Advanced Networks 64

VLAN Trunking/Tagging The packet is then forwarded to the appropriate switches or routers based on the VLAN iden<fier and MAC address. Upon reaching the des<na<on node (Switch) the VLAN ID is removed from the packet by the adjacent switch and forwarded to the agached device. Spring 2017 CE 151 - Advanced Networks 65

VLAN Trunking/Tagging VLAN Tagging is used when a single link needs to carry traffic for more than one VLAN. No VLAN Tagging VLAN Tagging Spring 2017 CE 151 - Advanced Networks 66

802.1q Frame Format Preamble Start of frame delimiter MAC destination 7 octets 1 octet 6 octets MAC source 6 octets 802.3 Ethernet frame structure 802.1Q tag (optional) Ethertype (Ethernet II) or length (IEEE 802.3) Payload Frame check sequence (32- bit CRC) Interframe gap (4 octets) 2 octets 42 [note 2] 1500 octets 4 octets 12 octets 72 1530 octets 64 1522 octets 84 1542 octets Wikipedia For Ethernet, VLAN tags are part of frame same type field loca<on Minimum frame size = 64 bytes w/ or w/o VLAN tag Minimum payload size = 42 bytes w/ VLAN tag, 46 bytes w/o By Arkrishna (Own work) [Public domain], via Wikimedia Commons Standard defined for up to one nes<ng (two tags) some implementa<ons all 3 Spring 2017 CE 151 - Advanced Networks 67

Review VLAN (802.1q) technology allows mul<ple broadcast domains to be supported on a single switch or link. For Ethernet, VLAN tags are embedded in Ethernet frame VLANs on a switch allows ports to be assigned to a VLAN VLAN trunking allows mul<ple VLAN s to be carried on single network segment VLAN trunking can be supported on host interfaces A VLAN ID corresponds to a broadcast domain, which corresponds to an IP subnet Spring 2017 CE 151 - Advanced Networks 68

Ethernet Media Access Control CSMA/CD Problems with original Ethernet Maximum channel length << slot <me (maximum network size) Only one sta<on can transmit at a <me (half-duplex) Maximum 50-60% bandwidth u<liza<on Solu+ons: Repeaters/hubs, bridges, and switches Problem: one broadcast domain per switch. Solu+on: Virtual LANs (VLANs) Problem: loops in the topology. Solu+on: spanning-tree protocol (STP) Spring 2017 CE 151 - Advanced Networks 69

STP in future lecture.

Ques<ons?