Faculty of Electronics and Computer Engineering

Similar documents
IMPROVED IMAGE COMPRESSION SCHEME USING HYBRID OF DISCRETE FOURIER, WAVELETS AND COSINE TRANSFORMATION MOH DALI MOUSTAFA ALSAYYH

COLOUR IMAGE WATERMARKING USING DISCRETE COSINE TRANSFORM AND TWO-LEVEL SINGULAR VALUE DECOMPOSITION BOKAN OMAR ALI

HARDWARE AND SOFTWARE CO-SIMULATION PLATFORM FOR CONVOLUTION OR CORRELATION BASED IMAGE PROCESSING ALGORITHMS SAYED OMID AYAT

OPTIMIZE PERCEPTUALITY OF DIGITAL IMAGE FROM ENCRYPTION BASED ON QUADTREE HUSSEIN A. HUSSEIN

ISOGEOMETRIC ANALYSIS OF PLANE STRESS STRUCTURE CHUM ZHI XIAN

Motion Vector Estimation Search using Hexagon-Diamond Pattern for Video Sequences, Grid Point and Block-Based

SUPERVISED MACHINE LEARNING APPROACH FOR DETECTION OF MALICIOUS EXECUTABLES YAHYE ABUKAR AHMED

IMPLEMENTATION OF DIAMOND SEARCH (DS) ALGORITHM FOR MOTION ESTIMATION USING MATLAB SITI HAJAR BINTI AHMAD

ADAPTIVE ONLINE FAULT DETECTION ON NETWORK-ON-CHIP BASED ON PACKET LOGGING MECHANISM LOO LING KIM UNIVERSITI TEKNOLOGI MALAYSIA

RECOGNITION OF PARTIALLY OCCLUDED OBJECTS IN 2D IMAGES ALMUASHI MOHAMMED ALI UNIVERSITI TEKNOLOGI MALAYSIA

SEMANTICS ORIENTED APPROACH FOR IMAGE RETRIEVAL IN LOW COMPLEX SCENES WANG HUI HUI

IMPLEMENTATION OF UNMANNED AERIAL VEHICLE MOVING OBJECT DETECTION ALGORITHM ON INTEL ATOM EMBEDDED SYSTEM

DETECTION OF WORMHOLE ATTACK IN MOBILE AD-HOC NETWORKS MOJTABA GHANAATPISHEH SANAEI

BLOCK-BASED NEURAL NETWORK MAPPING ON GRAPHICS PROCESSOR UNIT ONG CHIN TONG UNIVERSITI TEKNOLOGI MALAYSIA

Signature :.~... Name of supervisor :.. ~NA.lf... l.?.~mk.. :... 4./qD F. Universiti Teknikal Malaysia Melaka

Enhanced Hexagon with Early Termination Algorithm for Motion estimation

INTEGRATION OF CUBIC MOTION AND VEHICLE DYNAMIC FOR YAW TRAJECTORY MOHD FIRDAUS BIN MAT GHANI

MAC PROTOCOL FOR WIRELESS COGNITIVE NETWORK FARAH NAJWA BINTI MOKHTAR

AUTOMATIC APPLICATION PROGRAMMING INTERFACE FOR MULTI HOP WIRELESS FIDELITY WIRELESS SENSOR NETWORK

ENHANCEMENT OF UML-BASED WEB ENGINEERING FOR METAMODELS: HOMEPAGE DEVELOPMENT CASESTUDY KARZAN WAKIL SAID

A LEVY FLIGHT PARTICLE SWARM OPTIMIZER FOR MACHINING PERFORMANCES OPTIMIZATION ANIS FARHAN BINTI KAMARUZAMAN UNIVERSITI TEKNOLOGI MALAYSIA

FINGERPRINT DATABASE NUR AMIRA BINTI ARIFFIN THESIS SUBMITTED IN FULFILMENT OF THE DEGREE OF COMPUTER SCIENCE (COMPUTER SYSTEM AND NETWORKING)

An Adaptive Cross Search Algorithm for Block Matching Motion Estimation

HARDWARE/SOFTWARE SYSTEM-ON-CHIP CO-VERIFICATION PLATFORM BASED ON LOGIC-BASED ENVIRONMENT FOR APPLICATION PROGRAMMING INTERFACING TEO HONG YAP

DYNAMIC TIMESLOT ALLOCATION TECHNIQUE FOR WIRELESS SENSOR NETWORK OON ERIXNO

International Journal of Emerging Technology and Advanced Engineering Website: (ISSN , Volume 2, Issue 4, April 2012)

HARDWARE-ACCELERATED LOCALIZATION FOR AUTOMATED LICENSE PLATE RECOGNITION SYSTEM CHIN TECK LOONG UNIVERSITI TEKNOLOGI MALAYSIA

STUDY OF FLOATING BODIES IN WAVE BY USING SMOOTHED PARTICLE HYDRODYNAMICS (SPH) HA CHEUN YUEN UNIVERSITI TEKNOLOGI MALAYSIA

OPTIMIZED BURST ASSEMBLY ALGORITHM FOR MULTI-RANKED TRAFFIC OVER OPTICAL BURST SWITCHING NETWORK OLA MAALI MOUSTAFA AHMED SAIFELDEEN

AN ADJUSTABLE BLOCK MOTION ESTIMATION ALGORITHM BY MULTIPATH SEARCH

THE COMPARISON OF IMAGE MANIFOLD METHOD AND VOLUME ESTIMATION METHOD IN CONSTRUCTING 3D BRAIN TUMOR IMAGE

PRIVACY FRIENDLY DETECTION TECHNIQUE OF SYBIL ATTACK IN VEHICULAR AD HOC NETWORK (VANET) SEYED MOHAMMAD CHERAGHI

Redundancy and Correlation: Temporal

CAMERA CALIBRATION FOR UNMANNED AERIAL VEHICLE MAPPING AHMAD RAZALI BIN YUSOFF

Semi-Hierarchical Based Motion Estimation Algorithm for the Dirac Video Encoder

IMPLEMENTATION AND PERFORMANCE ANALYSIS OF IDENTITY- BASED AUTHENTICATION IN WIRELESS SENSOR NETWORKS MIR ALI REZAZADEH BAEE

This item is protected by original copyright

Directional Cross Diamond Search Algorithm for Fast Block Motion Estimation

ENHANCING TIME-STAMPING TECHNIQUE BY IMPLEMENTING MEDIA ACCESS CONTROL ADDRESS PACU PUTRA SUARLI

FUZZY NEURAL NETWORKS WITH GENETIC ALGORITHM-BASED LEARNING METHOD M. REZA MASHINCHI UNIVERSITI TEKNOLOGI MALAYSIA

MODELLING AND REASONING OF LARGE SCALE FUZZY PETRI NET USING INFERENCE PATH AND BIDIRECTIONAL METHODS ZHOU KAIQING

ENHANCING SRAM PERFORMANCE OF COMMON GATE FINFET BY USING CONTROLLABLE INDEPENDENT DOUBLE GATES CHONG CHUNG KEONG UNIVERSITI TEKNOLOGI MALAYSIA

Fast Block-Matching Motion Estimation Using Modified Diamond Search Algorithm

ADAPTIVE LOOK-AHEAD ROUTING FOR LOW LATENCY NETWORK ON-CHIP NADERA NAJIB QAID AL AREQI UNIVERSITI TEKNOLOGI MALAYSIA

LIST OF TABLES. Table 5.1 Specification of mapping of idx to cij for zig-zag scan 46. Table 5.2 Macroblock types 46

HERMAN. A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Computer Science)

SOLUTION AND INTERPOLATION OF ONE-DIMENSIONAL HEAT EQUATION BY USING CRANK-NICOLSON, CUBIC SPLINE AND CUBIC B-SPLINE WAN KHADIJAH BINTI WAN SULAIMAN

Prediction-based Directional Search for Fast Block-Matching Motion Estimation

ADAPTIVE VIDEO STREAMING FOR BANDWIDTH VARIATION WITH OPTIMUM QUALITY

IMPROVED IMPLEMENTATION OF DIGITAL WATERMARKING TECHNIQUES AHMED SABEEH YOUSIF UNIVERSITI TEKNOLOGI MALAYSIA

SMART AQUARJUM (A UTOMATIC FEEDING MACHINE) SY AFINAZ ZURJATI BINTI BAHARUDDIN

Joint Adaptive Block Matching Search (JABMS) Algorithm

SECURE-SPIN WITH HASHING TO SUPPORT MOBILITY AND SECURITY IN WIRELESS SENSOR NETWORK MOHAMMAD HOSSEIN AMRI UNIVERSITI TEKNOLOGI MALAYSIA

A SEED GENERATION TECHNIQUE BASED ON ELLIPTIC CURVE FOR PROVIDING SYNCHRONIZATION IN SECUERED IMMERSIVE TELECONFERENCING VAHIDREZA KHOUBIARI

LOGICAL OPERATORS AND ITS APPLICATION IN DETERMINING VULNERABLE WEBSITES CAUSED BY SQL INJECTION AMONG UTM FACULTY WEBSITES NURUL FARIHA BINTI MOKHTER

EE 5359 Low Complexity H.264 encoder for mobile applications. Thejaswini Purushotham Student I.D.: Date: February 18,2010

Fast Motion Estimation Algorithm using Hybrid Search Patterns for Video Streaming Application

Module 7 VIDEO CODING AND MOTION ESTIMATION

ANOMALY DETECTION IN WIRELESS SENSOR NETWORK (WSN) LAU WAI FAN

MICRO-SEQUENCER BASED CONTROL UNIT DESIGN FOR A CENTRAL PROCESSING UNIT TAN CHANG HAI

POWER CONSUMPTION AND MEMORY AWARE VLSI ARCHITECTURE FOR MOTION ESTIMATION

AMBA AXI BUS TO NETWORK-ON-CHIP BRIDGE NG KENG YOKE UNIVERSITI TEKNOLOGI MALAYSIA

LINK QUALITY AWARE ROUTING ALGORITHM IN MOBILE WIRELESS SENSOR NETWORKS RIBWAR BAKHTYAR IBRAHIM UNIVERSITI TEKNOLOGI MALAYSIA

PROBLEMS ASSOCIATED WITH EVALUATION OF EXTENSION OF TIME (EOT) CLAIM IN GOVERNMENT PROJECTS

SLANTING EDGE METHOD FOR MODULATION TRANSFER FUNCTION COMPUTATION OF X-RAY SYSTEM FARHANK SABER BRAIM UNIVERSITI TEKNOLOGI MALAYSIA

Tunnelling-based Search Algorithm for Block-Matching Motion Estimation

MultiFrame Fast Search Motion Estimation and VLSI Architecture

AN IMPROVED PACKET FORWARDING APPROACH FOR SOURCE LOCATION PRIVACY IN WIRELESS SENSORS NETWORK MOHAMMAD ALI NASSIRI ABRISHAMCHI

SYSTEMATIC SECURE DESIGN GUIDELINE TO IMPROVE INTEGRITY AND AVAILABILITY OF SYSTEM SECURITY ASHVINI DEVI A/P KRISHNAN

EEE 428 SISTEM KOMPUTER

DESIGN AND IMPLEMENTATION OF A MUSIC BOX USING FPGA TAN KIAN YIAK

THREE BIT SUBTRACTION CIRCUIT VIA FIELD PROGRAMMABLE GATE ARRAY (FPGA) NOORAISYAH BINTI ARASID B

REVIEW ON IMAGE COMPRESSION TECHNIQUES AND ADVANTAGES OF IMAGE COMPRESSION

A NEW STEGANOGRAPHY TECHNIQUE USING MAGIC SQUARE MATRIX AND AFFINE CIPHER WALEED S. HASAN AL-HASAN UNIVERSITI TEKNOLOGI MALAYSIA

HIGH SPEED SIX OPERANDS 16-BITS CARRY SAVE ADDER AWATIF BINTI HASHIM

PERFOMANCE ANALYSIS OF SEAMLESS VERTICAL HANDOVER IN 4G NETWOKS MOHAMED ABDINUR SAHAL

BORANG PENGESAHAN STATUS TESIS

UNIVERSITI PUTRA MALAYSIA RELIABILITY PERFORMANCE EVALUATION AND INTEGRATION OF ROUTING ALGORITHM IN SHUFFLE EXCHANGE WITH MINUS ONE STAGE

A New Fast Motion Estimation Algorithm. - Literature Survey. Instructor: Brian L. Evans. Authors: Yue Chen, Yu Wang, Ying Lu.

Design and Implementation of I2C BUS Protocol on Xilinx FPGA. Meenal Pradeep Kumar

DETERMINING THE MULTI-CURRENT SOURCES OF MAGNETOENCEPHALOGRAPHY BY USING FUZZY TOPOGRAPHIC TOPOLOGICAL MAPPING

DYNAMIC MOBILE SERVER FOR LIVE CASTING APPLICATIONS MUHAMMAD SAZALI BIN HISHAM UNIVERSITI TEKNOLOGI MALAYSIA

International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July ISSN

Star Diamond-Diamond Search Block Matching Motion Estimation Algorithm for H.264/AVC Video Codec

A Quantized Transform-Domain Motion Estimation Technique for H.264 Secondary SP-frames

LOCALIZING NON-IDEAL IRISES VIA CHAN-VESE MODEL AND VARIATIONAL LEVEL SET OF ACTIVE CONTOURS WITHTOUT RE- INITIALIZATION QADIR KAMAL MOHAMMED ALI

FUZZY LOGIC CONTROL OF AN AUTONOMOUS MOBILE ROBOT WAN NOR SYAHIRA BINTI WAN ALI

Faculty of Manufacturing Engineering

A Novel Hexagonal Search Algorithm for Fast Block Matching Motion Estimation

ENERGY-EFFICIENT DUAL-SINK ALGORITHMS FOR SINK MOBILITY IN EVENT-DRIVEN WIRELESS SENSOR NETWORKS

Lecture 5: Compression I. This Week s Schedule

A High Sensitive and Fast Motion Estimation for One Bit Transformation Using SSD

Fobe Algorithm for Video Processing Applications

RGB COLOR IMAGE WATERMARKING USING DISCRETE WAVELET TRANSFORM DWT TECHNIQUE AND 4-BITS PLAN BY HISTOGRAM STRETCHING KARRAR ABDUL AMEER KADHIM

ONTOLOGY-BASED SEMANTIC HETEROGENEOUS DATA INTEGRATION FRAMEWORK FOR LEARNING ENVIRONMENT

COMPARISON STUDY OF SORTING TECHNIQUES IN STATIC DATA STRUCTURE ANWAR NASER FRAK UNIVERSITI TUN HUSSEIN ONN MALAYSIA

Module 7 VIDEO CODING AND MOTION ESTIMATION

UNIVERSITI PUTRA MALAYSIA EFFECTS OF DATA TRANSFORMATION AND CLASSIFIER SELECTIONS ON URBAN FEATURE DISCRIMINATION USING HYPERSPECTRAL IMAGERY

DYNAMIC TIMETABLE GENERATOR USING PARTICLE SWARM OPTIMIZATION (PSO) METHOD TEH YUNG CHUEN UNIVERSITY MALAYSIA PAHANG

ARM PROCESSOR EMULATOR MOHAMAD HASRUZAIRIN B MOHD HASHIM

Transcription:

Faculty of Electronics and Computer Engineering VARIABLE BLOCK BASED MOTION ESTIMATION USING HEXAGON DIAMOND FULL SEARCH ALGORITHM (HDFSA) VIA BLOCK SUBTRACTION TECHNIQUE Jitvinder Dev Singh a/l Hardev Singh Master of Science in Electronic Engineering 2015

VARIABLE BLOCK BASED MOTION ESTIMATION USING HEXAGON DIAMOND FULL SEARCH ALGORITHM (HDFSA) VIA BLOCK SUBTRACTION TECHNIQUE JITVINDER DEV SINGH A/L HARDEV SINGH A thesis submitted in fulfilment of the requirements for the degree of Master of Science in Electronic Engineering Faculty of Electronics and Computer Engineering UNIVERSITI TEKNIKAL MALAYSIA MELAKA 2015

DECLARATION I declare that this thesis entitle Variable Block Based Motion Estimation Using Hexagon Diamond Full Search Algorithm (HDFSA) Via Block Subtraction Technique is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree. Signature : Name : Date :

APPROVAL I hereby declare that I have read this report and in my opinion this report is sufficient in terms of scope and quality for the award of Master of Science in Electronic Engineering. Signature : Name : Date :

ABSTRACT Motion estimation is a technique to reduce high information redundancy which exists between successive frames in a video sequences. There are many types of motion estimation method but the most used method is the block matching method which is the fixed block matching and the variable block matching. The fixed block matching uses the same block size throughout the motion estimation process while the variable block matching uses different block size. The variable block matching developed based on four stages which is the video and frame selection, threshold calculation, block size selection and search pattern. In the video and frame selection, pre-defined video which have different type of motion and size is used for the algorithm evaluation purpose. The threshold calculation is based on the video selected. Each video selected will have its own threshold which is used for the block size selection. There is three block size selection which is 16 16 pixels block size (uniform motion), 8 8 pixels block size (moderate motion) and 4 4 pixels block size (complex motion). In order to calculate the threshold and block size selection, the block subtraction technique is implemented. The concept of the block subtraction technique is based on the changes of pixels value between successive frames which represent the existence of motion. The next stage of algorithm development is the search pattern which is the hexagon diamond (16 16 and 8 8 pixels block size) and full search pattern (4 4 pixels block size). To evaluate the performance of the developed algorithm, the average PSNR value, average search point and average elapsed processing time is calculated. Overall, the developed algorithms have similar PSNR value and lower average search point compared to superior algorithms. The average elapsed processing time have increased due to the implementation of the block subtraction technique and the variable block matching.. i

ABSTRAK Anggaran pergerakan adalah satu teknik yang digunakan untuk mengurangkan pertindihan maklumat yang tinggi wujud di antara bingkai berturutturut dalam urutan video. Terdapat pelbagai teknik anggaran pergerakan yang digunakan tetapi kaedah yang paling banyak digunakan ialah kaedah blok sepadan iaitu padanan blok tetap dan padanan blok berubah-ubah. Padanan blok tetap menggunakan saiz blok yang sama sepanjang proses anggaran gerakan manakala padanan blok berubah-ubah menggunakan saiz blok yang berbeza. Padanan blok berubah-ubah dibangunkan berdasarkan kepada empat peringkat iaitu pemilihan video dan bingkai, pengiraan ambang, pemilihan saiz blok dan corak carian. Dalam peringkat pemilihan video dan bingkai, video yang digunakan mempunyai berlainan jenis gerakan dan saiz untuk tujuan penilaian algoritma yang dibangunkan. Peringkat pengiraan ambang pula adalah berdasarkan kepada video yang dipilih. Setiap video yang dipilih akan mempunyai ambang sendiri yang digunakan untuk pemilihan saiz blok. Terdapat tiga saiz blok pemilihan iaitu 16 16 piksel saiz blok (gerakan seragam), 8 8 piksel saiz blok (pergerakan sederhana) dan 4 4 piksel saiz blok (pergerakan kompleks). Dalam usaha untuk mengira ambang dan pemilihan saiz blok, teknik blok penolakan dilaksanakan. Konsep teknik blok penolakan adalah berdasarkan perubahan nilai piksel antara bingkai berturut-turut yang mewakili kewujudan gerakan. Peringkat seterusnya pembangunan algoritma adalah corak carian yang mempunyai dua jenis corak carian yang digunakan iaitu "Hexagon Diamond Search" (16 16 piksel saiz blok dan 8 8 piksel saiz besar) dan "Full Search" (4 4 piksel saiz besar). Untuk menilai prestasi algoritma yang dibangunkan, nilai purata PSNR, purata titik carian dan purata masa pemprosesan berlalu dikira. Secara keseluruhan, ia menunjukkan bahawa algoritma yang dibangunkan mempunyai nilai PSNR yang sama dan purata titik carian yang lebih rendah berbanding dengan algoritma yang telah dibangunkan. Purata masa pemprosesan berlalu meningkat kerana pelaksanaan teknik penolakan blok dan padanan blok berubah-ubah. ii

ACKNOWLEDGEMENT First of all I would like to thank the Almighty God for being always being there guiding me and blessing me towards the completion of thesis. My sincere appreciation and gratitude are dedicated to my honorable supervisor and co-supervisor, Dr. Lim Kim Chuan and Engr. Ranjit Singh Sarban Singh for guiding me through the whole process in completing this project. My gratitude also goes to my friends which gave a lot of ideas which enable me to complete this project. I also would like to give my special thanks to my parents who gave me support in financial and also moral support. They have helped me a lot and I would not achieve a great success without them Once again, I would like to give a million thanks to all. iii

TABLE OF CONTENT DECLARATION APPROVAL ABSTRACT ABSTRAK ACKNOWLEDGEMENT TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS LIST OF ABBREVIATIONS LIST OF PUBLICATIONS PAGE i ii iii iv vi vii xi xii xv CHAPTER 1. INTRODUCTION 1 1.1 Introduction 1 1.2 Problem Statement 3 1.3 1.4 Objective Contribution 4 4 1.5 Methodology 5 1.6 1.7 Scope of Work Organization of Thesis 8 8 2. LITERATURE REVIEW 10 2.1 Video Compression 10 2.1.1 Fundamental of Lossy Compression 10 2.1.2 Fundamental of Lossless Compression 11 2.2 2.3 2.4 2.5 2.6 2.7 Motion Estimation Block Based Motion Estimation Peak Signal to Noise Ratio Mean Absolute Difference and Sum Absolute Difference Fast Fixed Block Matching Algorithms 2.6.1 Full Search Algorithm 2.6.2 Three Step Search Algorithm 2.6.3 New Three Step Search Algorithm 2.6.4 Four Step Search Algorithm 2.6.5 Diamond Search Algorithm 2.6.6 Hexagon-Based Search Algorithm 2.6.7 Hexagon Diamond Search Algorithm 2.6.8 Advantages and Disadvantages of Fast Block Matching Algorithm Variable Block Matching Algorithm 2.7.1 Image Segmentation Technique 2.7.2 Content-Based Technique 2.7.3 Phase Correlation-Based Technique 2.7.4 H.264 / MPEG-4 AVC 2.7.5 Advantages and Disadvantage of Variable Block Matching Algorithm iv 11 13 15 16 17 17 18 20 21 23 24 26 28 31 32 32 33 33 37

2.8 Summary 38 3. RESEARCH METHODOLOGY 39 3.1 Video and Frame Selection 40 3.2 3.3 3.4 3.5 3.6 Threshold Calculation Block Size Selection Search Pattern 3.4.1 Hexagon Diamond Search Algorithm 3.4.2 Full Search Algorithm Full Flowchart Process Summary 4. RESULTS AND DISCUSSIONS 67 4.1 Results 67 4.1.1 Akiyo Video Sequence 67 4.1.2 Claire Video Sequence 69 4.1.3 Coastguard Video Sequences 71 4.1.4 4.1.5 4.1.6 4.1.7 Foreman Video Sequences News Video Sequences Salesman Video Sequences Table Tennis Video Sequences 73 75 77 79 4.2 Discussion 81 4.2.1 Predicted Image 81 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 Block Subtraction Technique Threshold Search Pattern Block Size Comparison with Fixed Sized Block Matching 83 84 86 87 89 4.3 Summary 97 5. CONCLUSION AND FUTURE WORK RECOMMENDATION 98 5.1 5.2 Conclusion Future Work Recommendation 98 100 REFERENCES 101 42 53 57 57 61 63 66 v

LIST OF TABLES TABLE TITLE PAGE 2.1 Motion Estimation Techniques 13 2.2 2.3 Search Algorithms Advantages and Disadvantages Variable Search Algorithms Advantages and Disadvantages 28 37 3.1 Video Sequences and Frame Resolution 40 3.2 Max and Min Value of Each Pre-Defined Video Sequences 50 3.3 Threshold of Each Pre-Defined Video Sequences 52 4.1 Akiyo Performance Analysis Results 69 4.2 Claire Performance Analysis Results 71 4.3 Coastguard Performance Analysis Results 73 4.4 Foreman Performance Analysis Results 75 4.5 News Performance Analysis Results 77 4.6 Salesman Performance Analysis Results 79 4.7 Table Tennis Performance Analysis Results 81 4.8 Video Sequence Characteristic 82 4.9 Average PSNR Value for All Superior and Developed Algorithms 90 4.10 4.11 Average Search Point for All Superior and Developed Algorithms Average Elapsed Processing Time for All Superior and Developed Algorithms 92 95 vi

LIST OF FIGURES FIGURE TITLE PAGE 1.1 Flowchart of Research Methodology 7 2.1 Motion Vector Representations 12 2.2 Block Based Motion Estimation 14 2.3 FS Motion Vector Search Methodologies 18 2.4 TSS Motion Vector Search Methodologies 19 2.5 NTSS Motion Vector Search Methodologies 21 2.6 FSS Motion Vector Search Methodologies 22 2.7 LDSP and SDSP Search Pattern 23 2.8 DS Motion Vector Search Methodologies 24 2.9 LHBSP and SHBSP Search Pattern 25 2.10 HEXBS Motion Vector Search Methodologies 26 2.11 Hexagon and Diamond Search Pattern 27 2.12 HEXDS Motion Vector Search Methodologies 28 2.13 Variable Block Size and Their Respective Mode Introduced by the 35 H.624 Standard 3.1 Variable Block Based Motion Estimation Process Flow 39 3.2 Frame Selection Range 41 3.3 Flowchart of Video and Frame Selection 41 vii

3.4 Block Division of 16 16 pixels Block Size 43 3.5 16 16 Pixels Block Subtraction Technique 44 3.6(a) Pixel Values in Block 79 of the First Frame 45 3.6(b) Pixel Values in Block 79 of the Second Frame 46 3.7 Subtracted Pixel Values of Block 79 for the First Frame and Second 47 Frame (Akiyo Video Sequence) 3.8 Scanning to Calculate the Total Non-Zero Elements 48 3.9 Non-Zero Element Arrangements 49 3.10 Threshold Point for Block Size Selection 51 3.11 Flowchart of Threshold Calculation 53 3.12 Block Size of 4 4 pixels 55 3.13 Block Size of 8 8 pixels 55 3.14 Flowchart of Block Size Selection 56 3.15 Hexagon and Diamond Search Pattern 57 3.16 Search Points in Hexagon Diamond Pattern 58 3.17 Hexagon Diamond Search Algorithm 59 3.18 Flowchart of Hexagon Diamond Search Algorithm 60 3.19 Full Search Algorithm 61 3.20 Flowchart of Full Search Algorithm 62 3.21 Full Flowchart Process 63 4.1 Akiyo Original and Predicted Image 68 4.2 Akiyo Average PSNR 68 4.3 Akiyo Average Search Point 69 4.4 Claire Original and Predicted Image 70 4.5 Claire Average PSNR 70 viii

4.6 Claire Average Search Point 71 4.7 Coastguard Original and Predicted Image 72 4.8 Coastguard Average PSNR 72 4.9 Coastguard Average Search Point 73 4.10 Foreman Original and Predicted Image 74 4.11 Foreman Average PSNR 74 4.12 Foreman Average Search Point 75 4.13 News Original and Predicted Image 76 4.14 News Average PSNR 76 4.15 News Average Search Point 77 4.16 Salesman Original and Predicted Image 78 4.17 Salesman Average PSNR 78 4.18 Salesman Average Search Point 79 4.19 Table Tennis Original and Predicted Image 80 4.20 Table Tennis Average PSNR 80 4.21 Table Tennis Average Search Point 81 4.22 Surveillance Image 84 4.23(a) Akiyo Non-Zero Elements 85 4.23(b) Claire Non-Zero Elements 85 4.24 Missing Search Points 87 4.25 Block Size Selection in Frame 1 of Akiyo Video Sequences 88 4.26 Block Size Selection in Frame 1 of Claire Video Sequences 89 4.27 Average PSNR Value for All Superior and Developed Algorithms 91 4.28 Average Search Point for All Superior and Developed Algorithms 93 4.29 Average PSNR Value is Directly Proportional to Average Search Point 94 ix

4.30 Average Elapsed Processing Time for All Superior and Developed Algorithms 96 x

LIST OF SYMBOLS log - Logarithm db λ - - Decibel Lambda - Summation xi

LIST OF ABBREVIATIONS AVC BMA BMP BMME BDM - Advance Video Coding - Block Matching Algorithm - Bitmap Image File - Block Based Motion Estimation - Block Distortion Measure DS DFT FS - - - Diamond Search Discrete Fourier Transform Full Search FSS FSBM - Four Step Search - Fixed Size Block Matching FFBMA - Fast Fixed Block Matching Algorithms FME FMV GIF HEXBS HEXDS - Fractional Motion Estimation - Fractional Motion Vector - Graphics Interchange Format - Hexagon Based Search - Hexagon Diamond Search ITU-T - International Telecommunication Union Telecommunication Standardization Sector ISO - International Organization for Standardization xii

IEC IME - International Electrotechnical Commission - Integer Motion Estimation IMV JPEG JVT - - Integer Motion Vector Joint Photographic Expert Group Joint Video Team LDSP LHBSP MV MSE MAD MAE MPEG MVP NTSS PSNR - Large Diamond Search Pattern - Large Hexagon Based Search Pattern - Motion Vector - Mean Squared Error - Mean Absolute Difference - Mean Absolute Error - Moving Picture Experts Group - Motion Vector Predictor - New Three Step Search - Peak Signal to Noise Ratio PNG RDO - - Portable Network Graphics Rate-Distortion Optimization SAD SDSP SHBSP SATD TSS TIFF VBMA VCEG - Sum of Absolute Differences - Small Diamond Search Pattern - Small Hexagon Diamond Search Pattern - Sum of Absolute Transformed Difference - Three Step Search - Tagged Image File Format - Variable Block Matching Algorithm - Video Coding Expert Group xiii

3DRS - 3D Recursive Search xiv

LIST OF PUBLICATIONS Journals: [1] Jitvinder, S.H.D.S., Ranjit, S.S.S., Lim, K.C., Salim, M.D., and Salim, A.J., 2011. A Theoretical Study of Fast Motion Estimation Search Algorithms. International Journal of Latest Trends in Computing, 2(1), E-ISSN:2045-5364, pp. 207-211. [2] Ranjit, S. S. S., Jitvinder, H. S. D. S., Lim, K. C., and Anas, S. A., 2013. Medical Images Inter Frame Motion Analysia via Block Positioning Pixel Subtraction Technique. International Journal of Computer and Information Technology (ISSN: 2279-0764), 2(1), pp. 172-175. Conference papers: [1] Jitvinder, S.H.D.S., Ranjit, S.S.S., Lim, K.C., and Salim, A.J. Image Pixel Comparison Using Block Based Positioning Subtraction Technique for Motion Estimation, Proceeding of the 2011 5th Asia Modelling Symposium, Kuala Lumpur, Malaysia, 26-27 May 2011, IEEE Computer Society Publisher. [2] Ranjit, S.S.S., Jitvinder, H.S.D.S, Lim, K.C., and Salim, A.J. Motion Analysis for Real- Time Surveillance Video via Block Pixel Analysis Technique, Proceeding of the 2011 International Conference on Signal, Image Processing and Applications, IPCSIT vol. 2. xv

[3] Jitvinder, H.S.D.S., Ranjit, S.S.S., Anas, S.A., Lim, K.C., and Salim, A.J. Medical Image Pixel Extraction via Block Positioning Subtraction Technique for Motion Analysis, Proceeding of the 5th Kuala Lumpur International Conference on Biomedical Engineering (BIOMED), Kuala Lumpur, Malaysia, 20-23 June 2011, Springer Publisher. xvi

CHAPTER 1 INTRODUCTION This chapter briefly explain about the motion estimation using the block-matching technique. The problem statement, objectives, scope of work, methodology and contribution of this research are presented subsequently. The outline of this thesis is presented at the end of this chapter. 1.1 Introduction In a video series, high intensity of temporal redundancy is exist in between successive frames. Due to these circumstances, video compression is achieved by reducing the temporal redundancy for data storage and transfer of the video series (Shenolikar and Narote, 2009b). In order to achieve it, motion estimation plays an important role in video compression due to the ability to exploit and reduce the temporal redundancy that is exists between the video frames (Jing and Chau, 2004). Motion estimation extracts information from the video series in order to find the motion vector coordinate which is the new coordinate of the similar pixels of the previous frame in the current frame (Phadtare, 2007). 1

There are two foremost techniques used for motion estimation which is the pixel recursive algorithms and the Block Matching Algorithm (BMA) (Dhahri et. al., 2009). The pixel recursive algorithm technique estimates motion based on pixel to pixel basis while the BMA perform on block by block basis (Dhahri et. al., 2009). The motion estimation technique use the widely adopted block matching technique due to its simplicity; less computational complexity and practical approach in determining the motion vector coordinate (Tao et. al., 2008). The block matching technique has been adopted and implemented into the international video coding standard, such as MPEG-1, MPEG-2, H.261, H.263 and H.264 (Tu et. al., 2005). The block matching technique employs different types of superior search pattern which have been developed to determine the best matched blocks. The superior search patterns which have been developed are the Full Search (FS) (Paramkusam and Reddy, 2011), Three Step Search (TSS) (Koga et. al., 1981), New Three Step Search (NTSS) (Li et. al., 1994), Four Step Search (FSS) (Po and Ma, 1996), Diamond Search (DS) (Zhu and Ma, 2000), Hexagon Based Search (HEXBS) (Zhu et. al., 2002) and Hexagon Diamond Search (HEXDS) (Ranjit et. al., 2009). Each of the superior search patterns employs different type of search strategies to determine and capture motion vector coordinate. The idea of block matching technique is, each frame is divided into non-overlapping small square shape blocks size 16 16 pixels (Ahmad et. al., 2006).The small square shape blocks of 16 16 pixels in the current frame is then compared with the small square shape blocks of 16 16 pixels in the previous frame to search for the matching motion vector coordinate (Ezhilarasan and Thambidurai, 2008). In this thesis, a new variable block size motion vector estimation technique algorithm is presented. The aim of this algorithm is to find the optimum motion vector with minimal 2

number of search points along the algorithm search process. The performance of this algorithm is compared to other superior algorithms in terms of average Peak Signal to Noise Ratio (PSNR), average search point and average elapsed processing time. 1.2 Problem Statement In video transmission especially for low bit rate video, predictive coding is used to predict the content of frames in the next sequences. Generally, the changes of objects from one frame to another frame are minimal which allows prediction of next frame from previous frames. In order to get the predicted frames, motion estimation plays an important role in measuring and producing that frames. Conventional motion estimation algorithms use Fixed Sized Block Matching (FSBM) which is employed by international standards such as the MPEG-1, MPEG-2, H.261 and H.263 (Tu et. al., 2003). FSBM divides frames of video into non-intersection fixed square blocks of equal size 16 16 pixels, 8 8 pixels or 4 4 pixels. Each of the blocks in the frame undergoes a search to find the best matching block in the reference frame. The displacement of the block is denoted with a vector known as motion vector (MV) (Gohokar and Gohokar, 2011). In FSBM, flexibility is a setback whereby the block size being used is constant which does not take account the size characteristic of the object (Chang et. al., 1998). Each of the objects in a frame is processed in the equal block size. FSBM also have a disadvantage in selection of the block size. Small block size selection also introduces noise interference (Gohokar and Gohokar, 2011) and increases the transmission rate due to the increase of the 3

MV which need to be encoded (Verma and Pandit, 2008). Increasing the block size leads to inaccuracy of obtaining the best match block for the prediction frame which leads to poor video compression (Gohokar and Gohokar, 2011). In the year 2010, Ranjit Singh Sarban Singh completed master research entitled Hexagon Diamond Search for Motion Estimation: Implementation and Performance (Ranjit, 2010). The master research used FSBM for the Hexagon-Diamond search pattern. In order to expand the research done by Ranjit Singh Sarban Singh, variable block based motion estimation is proposed to detect motion according to the size and complexity using the Hexagon-Diamond search pattern to overcome setback from the FSBM. 1.3 Objective Motion estimation has become an important tool for video compression. Although many algorithms have been proposed and developed to reduce the search points, computational complexity and increase the compression quality, though it still do not achieve the optimal results. Thus, the objective of the research is to develop a new variable block-based motion estimation technique. 1.4 Contribution In this research, a variable block based Hexagon-Diamond search pattern is developed based on previous master research done by Ranjit Singh Sarban Singh in the year 2010(Ranjit, 4