System-Level I/O. William J. Taffe Plymouth State University. Using the Slides of Randall E. Bryant Carnegie Mellon University

Similar documents
System-Level I/O. Topics Unix I/O Robust reading and writing Reading file metadata Sharing files I/O redirection Standard I/O

System-Level I/O Nov 14, 2002

A Typical Hardware System The course that gives CMU its Zip! System-Level I/O Nov 14, 2002

File I/O. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

System-Level I/O March 31, 2005

File I/O. Dong-kun Shin Embedded Software Laboratory Sungkyunkwan University Embedded Software Lab.

System-Level I/O April 6, 2006

The course that gives CMU its Zip! I/O Nov 15, 2001

Contents. Programming Assignment 0 review & NOTICE. File IO & File IO exercise. What will be next project?

Introduction to Computer Systems , fall th Lecture, Oct. 19 th

All the scoring jobs will be done by script

Contents. NOTICE & Programming Assignment 0 review. What will be next project? File IO & File IO exercise

All the scoring jobs will be done by script

Hyo-bong Son Computer Systems Laboratory Sungkyunkwan University

System- Level I/O. Andrew Case. Slides adapted from Jinyang Li, Randy Bryant and Dave O Hallaron

System-Level I/O : Introduction to Computer Systems 16 th Lecture, March 23, Instructors: Franz Franchetti & Seth Copen Goldstein

Lecture 23: System-Level I/O

CS 201. Files and I/O. Gerson Robboy Portland State University

Unix programming interface for file I/O operations and pipes

File Input and Output (I/O)

Foundations of Computer Systems

System- Level I/O. CS 485 Systems Programming Fall Instructor: James Griffioen

System- Level I/O /18-243: Introduc3on to Computer Systems 16 th Lecture, Mar. 15, Instructors: Gregory Kesden and Anthony Rowe

UNIX I/O. Computer Systems: A Programmer's Perspective, Randal E. Bryant and David R. O'Hallaron Prentice Hall, 3 rd edition, 2016, Chapter 10

Contents. NOTICE & Programming Assignment #1. QnA about last exercise. File IO exercise

Important Dates. October 27 th Homework 2 Due. October 29 th Midterm

15213 Recitation Section C

Logistics. Recitation 11: I/O Problems. Today s Plan. Why Use Robust I/O. Andrew Faulring Section A 18 November 2002

structs as arguments

Pipes and FIFOs. Woo-Yeong Jeong Computer Systems Laboratory Sungkyunkwan University

UNIX System Calls. Sys Calls versus Library Func

Contents. IPC (Inter-Process Communication) Representation of open files in kernel I/O redirection Anonymous Pipe Named Pipe (FIFO)

Contents. PA1 review and introduction to PA2. IPC (Inter-Process Communication) Exercise. I/O redirection Pipes FIFOs

Operating System Labs. Yuanbin Wu

I/O OPERATIONS. UNIX Programming 2014 Fall by Euiseong Seo

Memory Mapped I/O. Michael Jantz. Prasad Kulkarni. EECS 678 Memory Mapped I/O Lab 1

I/O OPERATIONS. UNIX Programming 2014 Fall by Euiseong Seo

File Descriptors and Piping

Accessing Files in C. Professor Hugh C. Lauer CS-2303, System Programming Concepts

File System (FS) Highlights

What Is Operating System? Operating Systems, System Calls, and Buffered I/O. Academic Computers in 1983 and Operating System

Operating System Labs. Yuanbin Wu

CSE 333 SECTION 3. POSIX I/O Functions

Outline. OS Interface to Devices. System Input/Output. CSCI 4061 Introduction to Operating Systems. System I/O and Files. Instructor: Abhishek Chandra

UNIX System Programming

628 Lecture Notes Week 4

Process Management! Goals of this Lecture!

Ricardo Rocha. Department of Computer Science Faculty of Sciences University of Porto

CSC 271 Software I: Utilities and Internals

File Systems. q Files and directories q Sharing and protection q File & directory implementation

Naked C Lecture 6. File Operations and System Calls

Design Choices 2 / 29

Unix File and I/O. Outline. Storing Information. File Systems. (USP Chapters 4 and 5) Instructor: Dr. Tongping Liu

Files and Directories Filesystems from a user s perspective

System Calls. Library Functions Vs. System Calls. Library Functions Vs. System Calls

CS , Spring Sample Exam 3

OS COMPONENTS OVERVIEW OF UNIX FILE I/O. CS124 Operating Systems Fall , Lecture 2

File Systems. Today. Next. Files and directories File & directory implementation Sharing and protection. File system management & examples

CSE 333 Lecture 6 - system calls, intro to file I/O

CSE 333 SECTION 3. POSIX I/O Functions

CSE 333 Lecture 8 - system calls, intro to file I/O

CS240: Programming in C

everything is a file main.c a.out /dev/sda1 /dev/tty2 /proc/cpuinfo file descriptor int

Sistemas Operativos /2016 Support Document N o 1. Files, Pipes, FIFOs, I/O Redirection, and Unix Sockets

Systems Programming. 08. Standard I/O Library. Alexander Holupirek

Introduction to Operating Systems (Part III)

ECE 650 Systems Programming & Engineering. Spring 2018

CSE 410: Systems Programming

프로세스간통신 (Interprocess communication) i 숙명여대창병모

OPERATING SYSTEMS: Lesson 2: Operating System Services

CSE 410: Systems Programming

Ricardo Rocha. Department of Computer Science Faculty of Sciences University of Porto

17: Filesystem Examples: CD-ROM, MS-DOS, Unix

Goals of this Lecture

I/O Management! Goals of this Lecture!

I/O Management! Goals of this Lecture!

UNIX input and output

CSci 4061 Introduction to Operating Systems. Input/Output: High-level

Programming in C. Session 8. Seema Sirpal Delhi University Computer Centre

Advanced Systems Security: Ordinary Operating Systems

ELEC-C7310 Sovellusohjelmointi Lecture 3: Filesystem

CSci 4061 Introduction to Operating Systems. File Systems: Basics

39. File and Directories

Basic OS Progamming Abstrac7ons

Basic OS Progamming Abstrac2ons

Preview. Interprocess Communication with Pipe. Pipe from the Parent to the child Pipe from the child to the parent FIFO popen() with r Popen() with w

CS246 Spring14 Programming Paradigm Files, Pipes and Redirection

System Calls and I/O Appendix. Copyright : University of Illinois CS 241 Staff 1

Inside ptmalloc2. Peng Xu Sep 14, 2013

Lecture 3. Introduction to Unix Systems Programming: Unix File I/O System Calls

The link() System Call. Preview. The link() System Call. The link() System Call. The unlink() System Call 9/25/2017

System Calls & Signals. CS449 Spring 2016

Recitation 8: Tshlab + VM

Files and the Filesystems. Linux Files

CSC209H Lecture 7. Dan Zingaro. February 25, 2015

Linux Forensics. Newbug Tseng Oct

System Calls and Signals: Communication with the OS. System Call. strace./hello. Kernel. Context Switch

IPC and Unix Special Files

CMSC 216 Introduction to Computer Systems Lecture 17 Process Control and System-Level I/O

Operating System Labs. Yuanbin Wu

Transcription:

System-Level I/O William J. Taffe Plymouth State University Using the Slides of Randall E. Bryant Carnegie Mellon University Topics Unix I/O Robust reading and writing Reading file metadata Sharing files I/O redirection Standard I/O

A Typical Hardware System CPU chip register file ALU system bus memory bus bus interface I/O bridge main memory USB controller graphics adapter I/O bus disk controller Expansion slots for other devices such as network adapters. mouse keyboard monitor 2 CS 4310 Computer Operating Systems disk

Reading a Disk Sector: Step 1 CPU chip register file ALU CPU initiates a disk read by writing a command, logical block number, and destination memory address to a port (address) associated with disk controller. bus interface main memory I/O bus USB controller graphics adapter disk controller mouse keyboard monitor disk 3 CS 4310 Computer Operating Systems

Reading a Disk Sector: Step 2 CPU chip register file ALU Disk controller reads the sector and performs a direct memory access (DMA) transfer into main memory. bus interface main memory I/O bus USB controller graphics adapter disk controller mouse keyboard monitor disk 4 CS 4310 Computer Operating Systems

Reading a Disk Sector: Step 3 CPU chip register file ALU When the DMA transfer completes, the disk controller notifies the CPU with an interrupt (i.e., asserts a special interrupt pin on the CPU) bus interface main memory I/O bus USB controller graphics adapter disk controller mouse keyboard monitor disk 5 CS 4310 Computer Operating Systems

Unix Files A Unix file is a sequence of m bytes: B 0, B 1,., B k,., B m-1 All I/O devices are represented as files: /dev/sda2 /dev/tty2 (/usr disk partition) (terminal) Even the kernel is represented as a file: /dev/kmem (kernel memory image) /proc (kernel data structures) 6 CS 4310 Computer Operating Systems

Unix File Types Regular file Binary or text file. Unix does not know the difference! Directory file A file that contains the names and locations of other files. Character special and block special files Terminals (character special) and disks ( block special) FIFO (named pipe) A file type used for interprocess comunication Socket A file type used for network communication between processes 7 CS 4310 Computer Operating Systems

Unix I/O The elegant mapping of files to devices allows kernel to export simple interface called Unix I/O. Key Unix idea: All input and output is handled in a consistent and uniform way. Basic Unix I/O operations (system calls): Opening and closing files open()and close() Changing the current file position (seek) lseek (not discussed) Reading and writing a file read() and write() 8 CS 4310 Computer Operating Systems

Opening Files Opening a file informs the kernel that you are getting ready to access that file. int fd; /* file descriptor */ if ((fd = open( /etc/hosts, O_RDONLY)) < 0) { perror( open ); exit(1); } Returns a small identifying integer file descriptor fd == -1 indicates that an error occurred Each process created by a Unix shell begins life with three open files associated with a terminal: 0: standard input 1: standard output 2: standard error 9 CS 4310 Computer Operating Systems

Closing Files Closing a file informs the kernel that you are finished accessing that file. int fd; /* file descriptor */ int retval; /* return value */ if ((retval = close(fd)) < 0) { perror( close ); exit(1); } Closing an already closed file is a recipe for disaster in threaded programs (more on this later) Moral: Always check return codes, even for seemingly benign functions such as close() 10 CS 4310 Computer Operating Systems

Reading Files Reading a file copies bytes from the current file position to memory, and then updates file position. char buf[512]; int fd; /* file descriptor */ int nbytes; /* number of bytes read */ /* Open file fd */ /* Then read up to 512 bytes from file fd */ if ((nbytes = read(fd, buf, sizeof(buf))) < 0) { perror( read ); exit(1); } Returns number of bytes read from file fd into buf nbytes < 0 indicates that an error occurred. short counts (nbytes < sizeof(buf) ) are possible and are not errors! 11 CS 4310 Computer Operating Systems

Writing Files Writing a file copies bytes from memory to the current file position, and then updates current file position. char buf[512]; int fd; /* file descriptor */ int nbytes; /* number of bytes read */ /* Open the file fd */ /* Then write up to 512 bytes from buf to file fd */ if ((nbytes = write(fd, buf, sizeof(buf)) < 0) { perror( write ); exit(1); } Returns number of bytes written from buf to file fd. nbytes < 0 indicates that an error occurred. As with reads, short counts are possible and are not errors! Transfers up to 512 bytes from address buf to file fd 12 CS 4310 Computer Operating Systems

Unix I/O Example Copying standard input to standard output one byte at a time. #include "csapp.h" int main(void) { char c; } while(read(stdin_fileno, &c, 1)!= 0) Write(STDOUT_FILENO, &c, 1); exit(0); Note the use of error handling wrappers for read and write (Appendix B). 13 CS 4310 Computer Operating Systems

Dealing with Short Counts Short counts can occur in these situations: Encountering (end-of-file) EOF on reads. Reading text lines from a terminal. Reading and writing network sockets or Unix pipes. Short counts never occur in these situations: Reading from disk files (except for EOF) Writing to disk files. How should you deal with short counts in your code? Use the RIO (Robust I/O) package from your textbook s csapp.c file (Appendix B). 14 CS 4310 Computer Operating Systems

The RIO Package RIO is a set of wrappers that provide efficient and robust I/O in i applications such as network programs that are subject to short counts. RIO provides two different kinds of functions Unbuffered input and output of binary data rio_readn and rio_writen Buffered input of binary data and text lines rio_readlineb and rio_readnb Cleans up some problems with Stevens s readline and readn functions. Unlike the Stevens routines, the buffered RIO routines are thread-safe and can be interleaved arbitrarily on the same descriptor. Download from csapp.cs.cmu.edu/public/ics/code/src/csapp.c csapp.cs.cmu.edu/public/ics/code/include/csapp.h 15 CS 4310 Computer Operating Systems

Unbuffered RIO Input and Output Same interface as Unix read and write Especially useful for transferring data on network sockets #include csapp.h ssize_t rio_readn(int fd, void *usrbuf, size_t n); ssize_t rio_writen(nt fd, void *usrbuf, size_t n); Return: num. bytes transferred if OK, 0 on EOF (rio_readn only), -1 on error rio_readn returns short count only it encounters EOF. rio_writen never returns a short count. Calls to rio_readn and rio_writen can be interleaved arbitrarily on the same descriptor. 16 CS 4310 Computer Operating Systems

Implementation of rio_readn /* * rio_readn - robustly read n bytes (unbuffered) */ ssize_t rio_readn(int fd, void *usrbuf, size_t n) { size_t nleft = n; ssize_t nread; char *bufp = usrbuf; } while (nleft > 0) { if ((nread = read(fd, bufp, nleft)) < 0) { if (errno == EINTR) /* interrupted by sig handler return */ nread = 0; /* and call read() again */ else return -1; /* errno set by read() */ } else if (nread == 0) break; /* EOF */ nleft -= nread; bufp += nread; } return (n - nleft); /* return >= 0 */ 17 CS 4310 Computer Operating Systems

Buffered RIO Input Functions Efficiently read text lines and binary data from a file partially cached in an internal memory buffer #include csapp.h void rio_readinitb(rio_t *rp, int fd); ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen); ssize_t rio_readnb(rio_t *rp, void *usrbuf, size_t n); Return: num. bytes read if OK, 0 on EOF, -1 on error rio_readlineb reads a text line of up to maxlen bytes from file fd and stores the line in usrbuf. Especially useful for reading text lines from network sockets. rio_readnb reads up to n bytes from file fd. Calls to rio_readlineb and rio_readnb can be interleaved arbitrarily on the same descriptor. Warning: Don t interleave with calls to rio_readn 18 CS 4310 Computer Operating Systems

RIO Example Copying the lines of a text file from standard input to standard output. #include "csapp.h" int main(int argc, char **argv) { int n; rio_t rio; char buf[maxline]; } Rio_readinitb(&rio, STDIN_FILENO); while((n = Rio_readlineb(&rio, buf, MAXLINE))!= 0) Rio_writen(STDOUT_FILENO, buf, n); exit(0); 19 CS 4310 Computer Operating Systems

File Metadata Metadata is data about data, in this case file data. Maintained by kernel, accessed by users with the stat and fstat functions. /* Metadata returned by the stat and fstat functions */ struct stat { dev_t st_dev; /* device */ ino_t st_ino; /* inode */ mode_t st_mode; /* protection and file type */ nlink_t st_nlink; /* number of hard links */ uid_t st_uid; /* user ID of owner */ gid_t st_gid; /* group ID of owner */ dev_t st_rdev; /* device type (if inode device) */ off_t st_size; /* total size, in bytes */ unsigned long st_blksize; /* blocksize for filesystem I/O */ unsigned long st_blocks; /* number of blocks allocated */ time_t st_atime; /* time of last access */ time_t st_mtime; /* time of last modification */ time_t st_ctime; /* time of last change */ }; 20 CS 4310 Computer Operating Systems

Example of Accessing File Metadata /* statcheck.c - Querying and manipulating a file s meta data */ #include "csapp.h" int main (int argc, char **argv) { struct stat stat; char *type, *readok; Stat(argv[1], &stat); if (S_ISREG(stat.st_mode)) /* file type*/ type = "regular"; else if (S_ISDIR(stat.st_mode)) type = "directory"; else type = "other"; if ((stat.st_mode & S_IRUSR)) /* OK to read?*/ readok = "yes"; else readok = "no"; bass>./statcheck statcheck.c type: regular, read: yes bass> chmod 000 statcheck.c bass>./statcheck statcheck.c type: regular, read: no } printf("type: %s, read: %s\n", type, readok); exit(0); 21 CS 4310 Computer Operating Systems

How the Unix Kernel Represents Open Files Two descriptors referencing two distinct open disk files. Descriptor 1 (stdout( stdout) ) points to terminal, and descriptor 4 points to open disk file. Descriptor table [one table per process] stdin stdout stderr fd 0 fd 1 fd 2 fd 3 fd 4 Open file table [shared by all processes] File A (terminal) File pos refcnt=1 v-node table [shared by all processes] File access File size File type Info in stat struct File B (disk) File pos refcnt=1 File access File size File type 22 CS 4310 Computer Operating Systems

File Sharing Two distinct descriptors sharing the same disk file through two distinct open file table entries E.g., Calling open twice with the same filename argument Descriptor table (one table per process) fd 0 fd 1 fd 2 fd 3 fd 4 Open file table (shared by all processes) File A File pos refcnt=1 v-node table (shared by all processes) File access File size File type File B File pos refcnt=1 23 CS 4310 Computer Operating Systems

How Processes Share Files A child process inherits its parent s s open files. Here is the situation immediately after a fork fd 0 fd 1 fd 2 fd 3 fd 4 Descriptor tables Parent's table Child's table fd 0 fd 1 fd 2 fd 3 fd 4 Open file table (shared by all processes) File A File pos refcnt=2 File B File pos refcnt=2 v-node table (shared by all processes) File access File size File type File access File size File type 24 CS 4310 Computer Operating Systems

I/O Redirection Question: How does a shell implement I/O redirection? unix> ls > foo.txt Answer: By calling the dup2(oldfd, newfd) function Copies (per-process) descriptor table entry oldfd to entry newfd Descriptor table before dup2(4,1) Descriptor table after dup2(4,1) fd 0 fd 0 fd 1 a fd 1 b fd 2 fd 2 fd 3 fd 3 fd 4 b fd 4 b 25 CS 4310 Computer Operating Systems

I/O Redirection Example Before calling dup2(4,1), stdout (descriptor 1) points to a terminal and descriptor 4 points to an open disk file. Descriptor table (one table per process) Open file table (shared by all processes) v-node table (shared by all processes) stdin stdout stderr fd 0 fd 1 fd 2 fd 3 fd 4 File A File pos refcnt=1 File access File size File type File B File pos refcnt=1 26 CS 4310 Computer Operating Systems File access File size File type

I/O Redirection Example (cont) After calling dup2(4,1), stdout is now redirected to the disk file pointed at by descriptor 4. Descriptor table (one table per process) fd 0 fd 1 fd 2 fd 3 fd 4 Open file table (shared by all processes) File A File pos refcnt=0 v-node table (shared by all processes) File access File size File type File B File pos refcnt=2 File access File size File type 27 CS 4310 Computer Operating Systems

Standard I/O Functions The C standard library (libc.a( libc.a) ) contains a collection of higher-level standard I/O functions Documented in Appendix B of K&R. Examples of standard I/O functions: Opening and closing files (fopen and fclose) Reading and writing bytes (fread and fwrite) Reading and writing text lines (fgets and fputs) Formatted reading and writing (fscanf and fprintf) 28 CS 4310 Computer Operating Systems

Standard I/O Streams Standard I/O models open files as streams Abstraction for a file descriptor and a buffer in memory. C programs begin life with three open streams (defined in stdio.h) stdin (standard input) stdout (standard output) stderr (standard error) #include <stdio.h> extern FILE *stdin; /* standard input (descriptor 0) */ extern FILE *stdout; /* standard output (descriptor 1) */ extern FILE *stderr; /* standard error (descriptor 2) */ int main() { fprintf(stdout, Hello, world\n ); } 29 CS 4310 Computer Operating Systems

Buffering in Standard I/O Standard I/O functions use buffered I/O buf printf( h ); printf( e ); printf( l ); printf( l ); printf( o ); printf( \n ); h e l l o \n.. fflush(stdout); write(1, buf += 6, 6); 30 CS 4310 Computer Operating Systems

Standard I/O Buffering in Action You can see this buffering in action for yourself, using the always fascinating Unix strace program: #include <stdio.h> int main() { printf("h"); printf("e"); printf("l"); printf("l"); printf("o"); printf("\n"); fflush(stdout); exit(0); } linux> strace./hello execve("./hello", ["hello"], [/* */]). write(1, "hello\n", 6) = 6 _exit(0) =? 31 CS 4310 Computer Operating Systems

execve("./hello", ["hello"], [/* 29 vars */]) = 0 uname({sys="linux", node="wilkes.cs.plymouth.edu", }) = 0 brk(0) = 0x8517000 open("/etc/ld.so.preload", O_RDONLY) = -1 ENOENT (No such file or directory) open("/etc/ld.so.cache", O_RDONLY) = 3 fstat64(3, {st_mode=s_ifreg 0644, st_size=70912, }) = 0 old_mmap(null, 70912, PROT_READ, MAP_PRIVATE, 3, 0) = 0xb75e3000 close(3) = 0 open("/lib/tls/libc.so.6", O_RDONLY) = 3 read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0\200X\1", 512) = 512 fstat64(3, {st_mode=s_ifreg 0755, st_size=1571692, }) = 0 old_mmap(null, 1275340, PROT_READ PROT_EXEC, MAP_PRIVATE, 3, 0) = 0x61d000 old_mmap(0x74f000, 12288, PROT_READ PROT_WRITE, MAP_PRIVATE MAP_FIXED, 3, 0x132000) = 0x74f000 old_mmap(0x752000, 9676, PROT_READ PROT_WRITE, MAP_PRIVATE MAP_FIXED MAP_ANONYMOUS, -1, 0) = 0x752000 close(3) = 0 old_mmap(null, 4096, PROT_READ PROT_WRITE, MAP_PRIVATE MAP_ANONYMOUS, -1, 0) = 0xb75e2000 set_thread_area({entry_number:-1 -> 6, base_addr:0xb75e24e0, limit:1048575, seg_32bit:1, contents:0, read_exec_only:0, limit_in_pages:1, seg_not_present:0, useable:1}) = 0 munmap(0xb75e3000, 70912) = 0 fstat64(1, {st_mode=s_ifchr 0620, st_rdev=makedev(136, 3), }) = 0 mmap2(null, 4096, PROT_READ PROT_WRITE, MAP_PRIVATE MAP_ANONYMOUS, -1, 0) = 0xb75f4000 write(1, "hello\n", 6) = 6 munmap(0xb75f4000, 4096) = 0 exit_group(0) =? 32 CS 4310 Computer Operating Systems

Unix I/O vs. Standard I/O vs. RIO Standard I/O and RIO are implemented using low-level level Unix I/O. fopen fdopen fread fwrite fscanf fprintf sscanf sprintf fgets fputs fflush fseek fclose open read write lseek stat close Standard I/O functions C application program RIO functions Unix I/O functions (accessed via system calls) rio_readn rio_writen rio_readinitb rio_readlineb rio_readnb Which ones should you use in your programs? 33 CS 4310 Computer Operating Systems

Pros and Cons of Unix I/O Pros Cons Unix I/O is the most general and lowest overhead form of I/O. All other I/O packages are implemented using Unix I/O functions. Unix I/O provides functions for accessing file metadata. Dealing with short counts is tricky and error prone. Efficient reading of text lines requires some form of buffering, also tricky and error prone. Both of these issues are addressed by the standard I/O and RIO packages. 34 CS 4310 Computer Operating Systems

Pros and Cons of Standard I/O Pros: Cons: Buffering increases efficiency by decreasing the number of read and write system calls. Short counts are handled automatically. Provides no function for accessing file metadata Standard I/O is not appropriate for input and output on network sockets There are poorly documented restrictions on streams that interact badly with restrictions on sockets 35 CS 4310 Computer Operating Systems

Pros and Cons of Standard I/O (cont) Restrictions on streams: Restriction 1: input function cannot follow output function without intervening call to fflush, fseek, fsetpos, or rewind. Latter three functions all use lseek to change file position. Restriction 2: output function cannot follow an input function with intervening call to fseek, fsetpos, or rewind. Restriction on sockets: You are not allowed to change the file position of a socket. 36 CS 4310 Computer Operating Systems

Pros and Cons of Standard I/O (cont) Workaround for restriction 1: Flush stream after every output. Workaround for restriction 2: Open two streams on the same descriptor, one for reading and one for writing: FILE *fpin, *fpout; fpin = fdopen(sockfd, r ); fpout = fdopen(sockfd, w ); However, this requires you to close the same descriptor twice: fclose(fpin); fclose(fpout); Creates a deadly race in concurrent threaded programs! 37 CS 4310 Computer Operating Systems

Choosing I/O Functions General rule: Use the highest-level I/O functions you can. Many C programmers are able to do all of their work using the standard I/O functions. When to use standard I/O? When working with disk or terminal files. When to use raw Unix I/O When you need to fetch file metadata. In rare cases when you need absolute highest performance. When to use RIO? When you are reading and writing network sockets or pipes. Never use standard I/O or raw Unix I/O on sockets or pipes. 38 CS 4310 Computer Operating Systems

For Further Information The Unix bible: W. Richard Stevens, Advanced Programming in the Unix Environment, Addison Wesley, 1993. Somewhat dated, but still useful. Stevens is arguably the best technical writer ever. Produced authoritative works in: Unix programming TCP/IP (the protocol that makes the Internet work) Unix network programming Unix IPC programming. Tragically, Stevens died Sept 1, 1999. 39 CS 4310 Computer Operating Systems