High Performance Computing: Concepts, Methods & Means Enabling Technologies 2 : Cluster Networks

Similar documents
Communication has significant impact on application performance. Interconnection networks therefore have a vital role in cluster systems.

BlueGene/L. Computer Science, University of Warwick. Source: IBM

1/5/2012. Overview of Interconnects. Presentation Outline. Myrinet and Quadrics. Interconnects. Switch-Based Interconnects

Infiniband Fast Interconnect

OceanStor 9000 InfiniBand Technical White Paper. Issue V1.01 Date HUAWEI TECHNOLOGIES CO., LTD.

19: Networking. Networking Hardware. Mark Handley

Introduction to High-Speed InfiniBand Interconnect

10-Gigabit iwarp Ethernet: Comparative Performance Analysis with InfiniBand and Myrinet-10G

Lessons learned from MPI

Multifunction Networking Adapters

Why Your Application only Uses 10Mbps Even the Link is 1Gbps?

InfiniBand SDR, DDR, and QDR Technology Guide

Mellanox Technologies Maximize Cluster Performance and Productivity. Gilad Shainer, October, 2007

Goal and Outline. Computer Networking. What Do We Need? Today s Story Lecture 3: Packet Switched Networks Peter Steenkiste

High bandwidth, Long distance. Where is my throughput? Robin Tasker CCLRC, Daresbury Laboratory, UK

High Performance MPI on IBM 12x InfiniBand Architecture

Objectives. Hexadecimal Numbering and Addressing. Ethernet / IEEE LAN Technology. Ethernet

To Infiniband or Not Infiniband, One Site s s Perspective. Steve Woods MCNC

The Link Layer and LANs: Ethernet and Swiches

Data Link Layer. Our goals: understand principles behind data link layer services: instantiation and implementation of various link layer technologies

Implementing Efficient and Scalable Flow Control Schemes in MPI over InfiniBand

Advanced Computer Networks. End Host Optimization

Comparing Server I/O Consolidation Solutions: iscsi, InfiniBand and FCoE. Gilles Chekroun Errol Roberts

Extending the LAN. Context. Info 341 Networking and Distributed Applications. Building up the network. How to hook things together. Media NIC 10/18/10

Adaptive Routing Strategies for Modern High Performance Networks

LAN. CS 4/55231 Internet Engineering. Kent State University Dept. of Computer Science

The NE010 iwarp Adapter

Module 2 Storage Network Architecture

IT 4504 Section 4.0. Network Architectures. 2008, University of Colombo School of Computing 1

CS/ECE 438: Communication Networks for Computers Spring 2018 Midterm Examination Online

Memory Management Strategies for Data Serving with RDMA

Summary of MAC protocols

1. Data Link Layer (Layer 2)

Links Reading: Chapter 2. Goals of Todayʼs Lecture. Message, Segment, Packet, and Frame

Myri-10G Myrinet Converges with Ethernet

6.9. Communicating to the Outside World: Cluster Networking

Low latency, high bandwidth communication. Infiniband and RDMA programming. Bandwidth vs latency. Knut Omang Ifi/Oracle 2 Nov, 2015

b) Diverse forms of physical connection - all sorts of wired connections, wireless connections, fiber optics, etc.

Reduces latency and buffer overhead. Messaging occurs at a speed close to the processors being directly connected. Less error detection

CS 421: COMPUTER NETWORKS SPRING FINAL May 16, minutes

CMSC 611: Advanced. Interconnection Networks

Medium Access Protocols

Principles behind data link layer services

Link Layer and Ethernet

CS 5520/ECE 5590NA: Network Architecture I Spring Lecture 13: UDP and TCP

The Link Layer and LANs. Chapter 6: Link layer and LANs

Internet II. CS10 : Beauty and Joy of Computing. cs10.berkeley.edu. !!Senior Lecturer SOE Dan Garcia!!! Garcia UCB!

Homework 1. Question 1 - Layering. CSCI 1680 Computer Networks Fonseca

Infiniband and RDMA Technology. Doug Ledford

CS61C Machine Structures Lecture 37 Networks. No Machine is an Island!

5105: BHARATHIDASAN ENGINEERING COLLEGE NATTARMPALLI UNIT I FUNDAMENTALS AND LINK LAYER PART A

Chapter 8 LAN Topologies

Direct Link Communication II: Wired Media. Multi-Access Communication

OSI Data Link Layer. Network Fundamentals Chapter 7. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1

RMIT University. Data Communication and Net-Centric Computing COSC 1111/2061/1110. Lecture 8. Medium Access Control Methods & LAN

OSI Model. Teran Subasinghe MBCS, Bsc.(Hons) in Computer Science - University of Greenwich, UK

Links. CS125 - mylinks 1 1/22/14

Link Layer and Ethernet

Data Link Layer, Part 5. Medium Access Control

Study. Dhabaleswar. K. Panda. The Ohio State University HPIDC '09

CPS221 Lecture: Layered Network Architecture

Reminder: Datalink Functions Computer Networking. Datalink Architectures

ECE 650 Systems Programming & Engineering. Spring 2018

Getting Connected (Chapter 2 Part 4) Networking CS 3470, Section 1 Sarah Diesburg

Data Link Layer, Part 3 Medium Access Control. Preface

2. LAN Topologies Gilbert Ndjatou Page 1

High Performance Computing Programming Paradigms and Scalability

Cluster Network Products

SUN CUSTOMER READY HPC CLUSTER: REFERENCE CONFIGURATIONS WITH SUN FIRE X4100, X4200, AND X4600 SERVERS Jeff Lu, Systems Group Sun BluePrints OnLine

2008 International ANSYS Conference

NT1210 Introduction to Networking. Unit 5:

Networking for Data Acquisition Systems. Fabrice Le Goff - 14/02/ ISOTDAQ

Improving Application Performance and Predictability using Multiple Virtual Lanes in Modern Multi-Core InfiniBand Clusters

Fundamentals of Networking Introduction to Networking Devices

Outline: Connecting Many Computers

Communicating over the Network

RDMA Read Based Rendezvous Protocol for MPI over InfiniBand: Design Alternatives and Benefits

Can Memory-Less Network Adapters Benefit Next-Generation InfiniBand Systems?

Module 15: Network Structures

High Performance Computing Programming Paradigms and Scalability Part 2: High-Performance Networks

ECSE 414 Fall 2014 Final Exam Solutions

King Fahd University of Petroleum and Minerals College of Computer Sciences and Engineering Department of Computer Engineering

Cisco - Enabling High Performance Grids and Utility Computing

Local Area Networks. Ethernet LAN

Networks. Distributed Systems. Philipp Kupferschmied. Universität Karlsruhe, System Architecture Group. May 6th, 2009

Layering in Networked computing. OSI Model TCP/IP Model Protocols at each layer

Operating Systems. 16. Networking. Paul Krzyzanowski. Rutgers University. Spring /6/ Paul Krzyzanowski

Typical Network Uses

COSC6376 Cloud Computing Lecture 17: Storage Systems

Network Superhighway CSCD 330. Network Programming Winter Lecture 13 Network Layer. Reading: Chapter 4

CERN openlab Summer 2006: Networking Overview

Key Measures of InfiniBand Performance in the Data Center. Driving Metrics for End User Benefits

NTRDMA v0.1. An Open Source Driver for PCIe NTB and DMA. Allen Hubbe at Linux Piter 2015 NTRDMA. Messaging App. IB Verbs. dmaengine.h ntb.

Performance Evaluation of Soft RoCE over 1 Gigabit Ethernet

Data and Computer Communications

LUSTRE NETWORKING High-Performance Features and Flexible Support for a Wide Array of Networks White Paper November Abstract

CCNA Exploration1 Chapter 7: OSI Data Link Layer

Introduction to Infiniband

Lecture 4b. Local Area Networks and Bridges

Lecture 9: Bridging. CSE 123: Computer Networks Alex C. Snoeren

Transcription:

High Performance Computing: Concepts, Methods & Means Enabling Technologies 2 : Cluster Networks Prof. Amy Apon Department of Computer Science and Computer Engineering University of Arkansas March 15 th, 2007 1 University of Arkansas Introduction to High Performance Computing Cluster Networks

Outline Basics Networks in the Top 500 Details on some cluster networks Gigabit Ethernet Myrinet Infiniband Software stack Low latency messaging MPI implementation 2 University of Arkansas Introduction to High Performance Computing Cluster Networks

A few basics 100Mbps = 100 * 10^6 bits/second 1000Mbps = 1Gbps = 10^9 bits/second Latency (one-way): the time from the source sending a packet to the destination receiving it Throughput: data per unit time that is delivered Networks are built in layers 3 University of Arkansas Introduction to High Performance Computing Cluster Networks

Network Layers Application (e.g., FTP, HTTP, MPI) Transport (e.g., TCP, UDP) Network (e.g., IP) Data Link (e.g., Ethernet) Physical (e.g., cables, etc.) 4 University of Arkansas Introduction to High Performance Computing Cluster Networks

When a message is sent 1. The application constructs a message 2. The message is packaged (encapsulated) with a header from the transport layer (e.g., TCP) and sent to the network layer. TCP provides end-to-end reliable transfer of messages. MPI msg TCP IP Ethernet An Ethernet frame An IP packet 3. The network layer adds a header. IP provides a packet format and address across multiple networks. 4. The data link layer adds a header, and the frame is sent out on the network. The data link layer provides point-to-point transfer of frames. 5 University of Arkansas Introduction to High Performance Computing Cluster Networks

Count 500 450 400 350 300 250 200 150 100 50 0 Interconnect Family, Top 500 Supercomputers since 2003 June, 2003 Nov, 2003 June, 2004 Nov, 2004 June, 2005 Top 500 List Nov, 2005 June, 2006 Nov, 2006 Gigabit Ethernet Myrinet InfiniBand SP Switch Proprietary NUMAlink Quadrics Crossbar Cray Interconnect Mixed RapidArray NUMAflex Fast Ethernet Fireplane HIPPI Giganet SCI PARAMNet N/A 6 University of Arkansas Introduction to High Performance Computing Cluster Networks

Cray XT3 Interconnect http://www.ed-china.com 7 University of Arkansas Introduction to High Performance Computing Cluster Networks

Interconnect Family, Top 500 Supercomputers since 2003 500 (simplified view) Gigabit Ethernet 450 Myrinet 400 350 InfiniBand SP Switch Proprietary 300 Others Count 250 200 150 100 50 0 June, 2003 Nov, 2003 June, 2004 Nov, 2004 June, 2005 Nov, 2005 June, 2006 Nov, 2006 Top 500 List 8 University of Arkansas Introduction to High Performance Computing Cluster Networks

Gigabit Ethernet http://image.compusa.com/prodimages/2/6ba9cda0-2414-47c1-ae29-3b9c14c7b3f8.gif http://www.timbercon.com/gigabit-ethernet/gigabit-ethernet.jpg http://www.sun.com/products/networking/ethernet/sungigabitethernet/ 9 University of Arkansas Introduction to High Performance Computing Cluster Networks

Five important features of Gigabit Ethernet 1. User data rate of 1000Mbps (1Gbps) 2. Free on the node; small switches are inexpensive, too. 3. Is usually a switched network, however, the link from the switch to the node is a collision domain using CSMA-CD 10 University of Arkansas Introduction to High Performance Computing Cluster Networks

3. Carrier Sense Multiple Access with Collision Detection (CSMA-CD) Used in Gigabit Ethernet, Fast Ethernet, Ethernet, and wireless Ethernet To send: listen to wire; if not busy then send, If busy then stay on wire listening until the wire becomes not busy, then send immediately After send, listen long enough to be sure there was no collision, If not, assume it was successful If collision, wait a little while and then try to send same frame again, up to 10 tries, then report a failure Exponential backoff the wait time increases as a power of 2 11 University of Arkansas Introduction to High Performance Computing Cluster Networks

CSMA-CD, continued Handling the carrier sense and collisions takes time Time and latency for messaging is bad in a cluster Good news: On a switch, the CSMA-CD protocol is only used on the link from the node to the switch A C B D Moral: always use switches in clusters - all Gigabit Ethernet products are switched 12 University of Arkansas Introduction to High Performance Computing Cluster Networks

Using a Switched Network Important to notice: One sender gets 100% of the network A collision can only happen when two or more senders send on a common link A B A B C D C X D OK Collision! 13 University of Arkansas Introduction to High Performance Computing Cluster Networks

4. Jumbo Frames Some Gigabit Ethernet products also have a "bulk mode" that bundles frames together before sending This helps to reduce the number of collisions, hurts with latency on clusters If this is an option, disable it for cluster computers if Gigabit Ethernet is used for application messaging 14 University of Arkansas Introduction to High Performance Computing Cluster Networks

5. Source Routing Ethernets also use a source routing algorithm to find a path when there is a loop in the topology The source calculates all paths and stores them prior to any messaging Can't take advantage of multiple paths in switches to increase bandwidth, because only one path is used from one node to another 15 University of Arkansas Introduction to High Performance Computing Cluster Networks

GigE Advantages and Disadvantages Advantages: Inexpensive NICs are free! A 5-port switch is $35.99 after a $10 rebate, 24-port switch for $239.99 (www.newegg.com) easily available, easy to install and use, uses wellunderstood protocols and drivers Disadavantage: performance is not as good as it could be 16 University of Arkansas Introduction to High Performance Computing Cluster Networks

10Gbps Ethernet Optical fiber media only (no copper) Full duplex only no CSMA-CD Up to 40km distance Direct attachment to SONET (a wide area network technology) New encoding scheme More expensive! About $3K now just for the network interface card (NIC) Considering these for connecting to the head node of an HPC cluster 17 University of Arkansas Introduction to High Performance Computing Cluster Networks

Myrinet http://www.myri.com 18 University of Arkansas Introduction to High Performance Computing Cluster Networks

Myrinet Developed and used in the early 1990's by the academic community specifically for supporting message-passing supercomputers (Cal-Tech, Berkeley NOW project, ) Widely used in clusters, especially those on the Top 500 Fast data rate, low error rate Goal: replicate the distinctive characteristics of the interconnect of high-performance message passing computers of the 1980 s: 19 University of Arkansas Introduction to High Performance Computing Cluster Networks

Five important features of Myrinet 1. Regular topologies and multiple data paths Makes the cluster easier to build if the topology is regular Scales to 1000's Can take advantage of multiple data paths using a fat tree to increase the bandwidth between nodes 20 University of Arkansas Introduction to High Performance Computing Cluster Networks

Example Fat Tree (Clos Network) http://www.top500.org/orsc/2006/myrinet.html 21 University of Arkansas Introduction to High Performance Computing Cluster Networks

Another Example Fat Tree Sietz, Recent Advanced in Cluster Networks, Cluster 2001, http://www.myri.com 22 University of Arkansas Introduction to High Performance Computing Cluster Networks

2. Cut-through routing Boden et. al, Myrinet A Gigabit per Second Local Area Network, IEEE Micro, Feb. 1995. 23 University of Arkansas Introduction to High Performance Computing Cluster Networks

3. Flow control on every communication link Point-to-point full duplex links connect hosts and switches Flow control through the use of STOP and GO bits on every link A buffer exists on the receiving side to hold bits. If the buffer gets too full, a STOP message is sent. If the buffer gets too empty, a GO message is sent. 24 University of Arkansas Introduction to High Performance Computing Cluster Networks

Flow control, continued bytes of data Stop or Go control bits Sender Receiver Operation of the Myrinet slack buffer [Boden et. al, Myrinet A Gigabit per Second Local Area Network, IEEE Micro, Feb. 1995.] 25 University of Arkansas Introduction to High Performance Computing Cluster Networks

Flow control, continued The size of the buffer depends on the transmission rate, the rate of the signal in the wire, and the length of the wire, and can be calculated. E.g., suppose the transmission rate is 1Gbps (it's a lot higher on the newest NICs). Suppose the cables is at most 25m long, and suppose the rate that the signal travels in the wire is 200m/usec Then, the number of bits "on the wire" is 26 University of Arkansas Introduction to High Performance Computing Cluster Networks

Flow control, continued 1*10^9 bits/sec * 25m #bits = --------------------------------- = 10^3 *.125 = 125 200m/ 10^(-6)sec This is the number of bits that can fill a buffer on the receiving side while a STOP message is being sent. Times 2 for the bits that enter the wire while the STOP message is on the wire, = 250 bits = 250/8 bytes = 31.25 bytes (about 32 bytes) This matches the figure in the Boden paper, plus some extra bytes for hysteresis. 27 University of Arkansas Introduction to High Performance Computing Cluster Networks

More Myrinet Features 4. Variable length header that holds the route, stripped at each switch and routed 5. DMA engine and processor for implementing a low-latency protocol (and we will see one more disadvantage of Gigabit Ethernet hold this thought!) 28 University of Arkansas Introduction to High Performance Computing Cluster Networks

Current Myrinet Products 29 University of Arkansas Introduction to High Performance Computing Cluster Networks

Summary of Myrinet Advantages of Myrinet very high performance high data rate low probability of blocking fault tolerant supports low-latency messaging scales to very large clusters 10G Myrinet connects to 10GigE Disadvantages of Myrinet http://www.pcpcdirect.com/highperf.html higher cost than GigE $500 Myrinet 2000 NIC, $1000 Myri-10G NIC $4K Myrinet 2000 8-port switch $4K 16-port line card for 10G Myrinet single supplier 30 University of Arkansas Introduction to High Performance Computing Cluster Networks

InfiniBand First, let s look at the storage and file system structure on a typical supercomputer (e.g., Red Diamond) 31 University of Arkansas Introduction to High Performance Computing Cluster Networks

Myrinet or InfiniBand Gigabit Ethernet Fibre Channel 32 University of Arkansas Introduction to High Performance Computing Cluster Networks

InfiniBand Architecture (IBA) Developed by industry and is the result of the merging of two competing standards for I/O and storage Not yet widely adopted by storage industry, but is gaining presence in the Top 500 Fast data rate, low error rate Goal: replace just about every datacenter I/O standard including PCI, Fibre Channel, SCSI, and various networks like Ethernet. 33 University of Arkansas Introduction to High Performance Computing Cluster Networks

Five important features of InfiniBand 1. InfiniBand is both a hardware and software standard, see http://www.infinibandta.org/home 2. Components include: Target Channel Adapter (to devices like RAID disk subsystems) Host Channel Adapters (to nodes, can sit on PCI bus, or on a modified motherboard) Point-to-point switches that create a switched fabric redundant paths are supported 34 University of Arkansas Introduction to High Performance Computing Cluster Networks

Example System Area Network based on InfiniBand http://www.oreillynet.com/pub/a/network/2002/02/04/windows.html 35 University of Arkansas Introduction to High Performance Computing Cluster Networks

More InfiniBand Features 3. Configurable Virtual Lane routing that can support multiple logical channels on the same physical link. A mechanism to avoid Head of Line blocking and to support QoS (as in ATM) 4. Credit-based flow control on every link Receiver tells sender how many bytes to send Sender sends that many, and then waits until it gets more credits Credits can be sent in acks or separately 5. Remote Direct Memory Access (RDMA) and lowlatency protocol support (hold this thought!) 36 University of Arkansas Introduction to High Performance Computing Cluster Networks

InfiniBand Data Rates Effective theoretical throughput in different configurations single double quad 1X 2 Gbit/s 4 Gbit/s 8 Gbit/s 4X 8 Gbit/s 16 Gbit/s 32 Gbit/s 12X 24 Gbit/s 48 Gbit/s 96 Gbit/s 37 University of Arkansas Introduction to High Performance Computing Cluster Networks

InfiniBand Products 38 University of Arkansas Introduction to High Performance Computing Cluster Networks

IB cabling at Sandia on Thunderbird (#6 in Nov. 2006) 39 University of Arkansas Introduction to High Performance Computing Cluster Networks

Summary of InfiniBand Advantages of InfiniBand very high performance low probability of blocking fault tolerant, supports low-latency messaging scales to very large clusters multiple vendors can potentially connect directly to storage devices Disadvantages higher cost than GigE (and Myrinet?) HCA $895, 24 port SDR switch $11,495, 5m cable $200 40 University of Arkansas Introduction to High Performance Computing Cluster Networks

Recall the Network Layers Data Link Physical Application (e.g., MPI) Transport (e.g., TCP) Network (e.g., IP) Flow control on links: CSMA-CD, stop and go, credits routing through switches: source routing, stripped header, VL Point-to-point transfer of frames encoding of bits, signaling, boxes and wires 41 University of Arkansas Introduction to High Performance Computing Cluster Networks

An MPI message over Gigabit Ethernet Application builds message in user memory You only see the communication at THIS LEVEL Message arrives to user memory and the application is notified Message is copied to kernel, checksum and TCP/IP and Ethernet headers are added Message is copied to kernel and TCP/IP and Ethernet headers are stripped Message is sent onto network to receiver All of this copying and kernel intervention takes time and increases latency!! 42 University of Arkansas Introduction to High Performance Computing Cluster Networks

Six low-latency messaging concepts 1. Use buffers in pinned memory on the send and receive side This is direct memory access by the DMA engine on the NIC Pinned memory is not allowed to be paged out to disk Also sometime called kernel bypass 2. Use scatter/gather lists in the specification of the data to be sent, so that data is copied from a list of locations to the NIC directly 43 University of Arkansas Introduction to High Performance Computing Cluster Networks

Scatter/gather in Quadrics W. Yu, D. K. Panda, Benefits of Quadrics Scatter/Gather to PVFS2 Noncontiguous IO,, http://nowlab.cse.ohio-state.edu/publications/conf-papers/2005/yuw-snapi05.pdf 44 University of Arkansas Introduction to High Performance Computing Cluster Networks

3. Hardware support on the NIC for nonblocking sends and receives Non-blocking send requires 2 steps: 1. 'post' a send, notify the NIC that data is available, the NIC gets the data, 2. some time later the program checks to see if the send is complete. The user is responsible for not modifying the buffer before the send completes Non-blocking receive also requires 2 steps: 1. post a receive to tell NIC where to put the data when the message arrives, 2. check later to see if the receive is complete This all can be emulated in software but the work is similar to that of ordinary network protocols. 45 University of Arkansas Introduction to High Performance Computing Cluster Networks

More low-latency messaging concepts 4. Polling by the CPU for receives is allowed, but is (almost) cheating Makes the receive appear to happen faster when a program is doing nothing but waiting for a message But wastes CPU cycles when other activity has to happen at the same time 46 University of Arkansas Introduction to High Performance Computing Cluster Networks

More low-latency messaging concepts 5. If the receive is not posted when the message arrives the message will be dropped Solution: pre-post a number of buffers for messages that arrive unexpectedly This works fine for small messages. An eager protocol puts all small messages into prepared buffers Works badly for large messages Use a rendezvous protocol instead send a message that says a message is coming, receive an ack, then send the message The eager/rendezvous threshold is configurable in Myrinet (and InfiniBand?) See http://www.myri.com/serve/cache/166.html 47 University of Arkansas Introduction to High Performance Computing Cluster Networks

Example of the effect of the eager/rendezvous threshold G. Amerson, A. Apon, Implementation and Design Analysis of a Network Messaging Module Using Virtual Interface Architecture, Cluster 2001, http://comp.uark.edu/~aapon/publications/cluster2004.pdf 48 University of Arkansas Introduction to High Performance Computing Cluster Networks

6. Low-latency messaging is too low a level for user-level programming It requires the ability to pin user memory. This can be dangerous in a multi-user system, and is an expensive operation in a single-user system. Thus, network companies have built their own low-latency messaging systems Myrinet: GM, MX InfiniBand: Sockets Direct Protocol (SDP), Virtual Interface Architecture (VIA) Special MPI implementations are built over these (e.g., MVAPICH over InfiniBand) 49 University of Arkansas Introduction to High Performance Computing Cluster Networks

Network Layers Without TCP/IP Application (e.g., MPICH) Low latency messaging: GM or MX, Sockets Direct Protocol, Network? Data Link Flow control on links: stop and go, credits routing through switches: stripped header, VLanes Point-to-point transfer of frames Physical encoding of bits, signaling, boxes and wires 50 University of Arkansas Introduction to High Performance Computing Cluster Networks

MPICH2 Implementation Structure Liu, et. al, Design and Implementation of MPICH2 over InfiniBand with RDMA Support, PDPS 2004 51 University of Arkansas Introduction to High Performance Computing Cluster Networks

Implementation of MPI Collective Operations Implementation issues include: Segmentation and message size Non-blocking versus blocking messages Virtual topologies This material is from Jelena Pjesivac-Grbovic, Thara Angskun, George Bosilca, Graham E. Fagg, Edgar Gabriel, Jack J. Dongarra, "Performance Analysis of MPI Collective Operations", PMEO-PDS'05, April, 2004. http://www.cs.utk.edu/~pjesa 52 University of Arkansas Introduction to High Performance Computing Cluster Networks

Message Segmentation 53 University of Arkansas Introduction to High Performance Computing Cluster Networks

Barrier Topologies Double Ring Flat Tree 54 University of Arkansas Introduction to High Performance Computing Cluster Networks Recursive Doubling

Barrier Performance 55 University of Arkansas Introduction to High Performance Computing Cluster Networks

Broadcast Topologies Flat Tree Binomial Tree 56 University of Arkansas Introduction to High Performance Computing Cluster Networks

Broadcast Performance 57 University of Arkansas Introduction to High Performance Computing Cluster Networks

Reduce Analysis 58 University of Arkansas Introduction to High Performance Computing Cluster Networks

Reduce Performance 59 University of Arkansas Introduction to High Performance Computing Cluster Networks

Useful Reading Material 1) CSMA-CD http://en.wikipedia.org/wiki/csma-cd 2) Myrinet http://www.myricom.com/myrinet/overview/ 3) InfiniBand http://www.infostor.com/articles/article_displa y.cfm?section=archi&c=newst&article _ID=248655 60 University of Arkansas Introduction to High Performance Computing Cluster Networks

Review Questions Know these acronyms: FTP, HTTP, MPI, TCP, UDP, IP, SP Switch, HIPPI, SCI, CSMA-CD, Berkeley NOW project, NIC, DMA, GigE, IBA, RAID, PCI, TCA, HCA, RDMA, QoS, SDP, VIA, MVAPICH, What, exactly, is 10Gbps? Define latency, throughput Name, in order from bottom to top, the network layers that we talked about in class. Describe in a sentence the primary function of each layer. What are the top three most prominent networks on the Top 500 list? Describe five important features of Gigabit Ethernet. Give the steps of CSMA-CD. Why is CSMA-CD bad for cluster architectures? In what cases will it not be a hindrance? Give four ways that 10Gbps Ethernet is different from Gigabit Ethernet. Compare and contrast Myrinet and InfiniBand on at least three criteria. 61 University of Arkansas Introduction to High Performance Computing Cluster Networks

Review Questions, continued Describe five important features of Myrinet. Suppose that the transmission rate of my network is 2Gbps, that my cables are 50m long, and that the signal travels in the wire at the rate of 200m/usec. How large should the buffers be to support a STOP and GO protocol correctly? Justify your answer. Describe five important features of InfiniBand. Place each of these into the correct network layer, according to the description we used in class: TCP, IP, CSMA-CD, credit-based flow control in InfiniBand, source routing in Ethernet, Virtual Lanes, fiber cable, GM, SDP, MPI Describe six important concepts in low-latency messaging. What is pinned memory? Why don t we want users to do it? Explain how non-blocking sends and receives work. Describe two differences between and eager protocol and a rendezvous protocol in a low-latency messaging application? Suppose you are given $50,000 to purchase a computer cluster. What network do you choose and why? You just justify your answer for credit. What if you are given $500,000? 62 University of Arkansas Introduction to High Performance Computing Cluster Networks

63 University of Arkansas Introduction to High Performance Computing Cluster Networks