Chapter III: Transport Layer

Similar documents
CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 8

Chapter 3 outline. 3.5 connection-oriented transport: TCP segment structure reliable data transfer flow control connection management

Rdt2.0: channel with packet errors (no loss!)

Chapter 3 Transport Layer

rdt2.0 has a fatal flaw!

CMSC 332 Computer Networks Reliable Data Transfer

CSC 4900 Computer Networks: Reliable Data Transport

CS 3516: Advanced Computer Networks

CSC 401 Data and Computer Communications Networks

Data Communications & Networks. Session 6 Main Theme Reliable Data Transfer. Dr. Jean-Claude Franchitti

Transport services and protocols. Chapter 3 outline. Internet transport-layer protocols Chapter 3 outline. Multiplexing/demultiplexing

Transport layer: Outline

Transport layer. Our goals: Understand principles behind transport layer services: Learn about transport layer protocols in the Internet:

Chapter 3 Transport Layer

TDTS06: Computer Networks

Chapter 3 Transport Layer

CSCE 463/612 Networks and Distributed Processing Spring 2018

Chapter 3 Transport Layer

Lecture 07 The Transport Layer (TCP & UDP) Dr. Anis Koubaa

CSC 8560 Computer Networks: Transport Layer

Chapter 3 Transport Layer

Chapter 3 outline. TDTS06 Computer networks. Principles of Reliable data transfer. Reliable data transfer: getting started

Lecture 10: Transpor Layer Principles of Reliable Data Transfer

Lecture 11: Transport Layer Reliable Data Transfer and TCP

Chapter 2: outline. 2.1 principles of network applications app architectures app requirements

CS 655 System and Network Architectures and Implementation. Module 3 - Transport

Internet transport-layer protocols. Transport services and protocols. Sending and receiving. Connection-oriented (TCP) Connection-oriented

CSC 401 Data and Computer Communications Networks

CC451 Computer Networks

CS 3516: Computer Networks

CSCE 463/612 Networks and Distributed Processing Spring 2018

CSC358 Week 4. Adapted from slides by J.F. Kurose and K. W. Ross. All material copyright J.F Kurose and K.W. Ross, All Rights Reserved

COSC4377. Useful Linux Tool: screen

Chapter 3 outline. Chapter 3: Transport Layer. Transport vs. network layer. Transport services and protocols. Internet transport-layer protocols

Computer Networks & Security 2016/2017

Last time. Mobility in Cellular networks. Transport Layer. HLR, VLR, MSC Handoff. Introduction Multiplexing / demultiplexing UDP 14-1

Chapter 3: Transport Layer

Distributed Systems. 5. Transport Protocols

-% % ($) % % % * % + & ' ! $ % $ $. / 0$! /1 2! /3 = >? A = ! " #!! $ %! $ $! $ % " #, * % " # % $ " $ 4 5$6 /778 $6 4 5

Transport Layer. CMPS 4750/6750: Computer Networks

Distributed Systems. 5. Transport Protocols. Werner Nutt

Chapter 3: Transport Layer

Chapter 3: Transport Layer

COMP211 Chapter 3 Transport Layer

The Transport Layer Multiplexing, Error Detection, & UDP

CSCD 330 Network Programming

Chapter 3 Transport Layer

Chapter 3 Transport Layer

EC441 Fall 2018 Introduction to Computer Networking Chapter 3: Transport Layer

Chapter 3 Transport Layer

Reliable Transport : Fundamentals of Computer Networks Bill Nace

Chapter 3: Transport Layer. Chapter 3 Transport Layer. Chapter 3 outline. Transport services and protocols

Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ

CS/ECE 438: Communication Networks Fall Transport Layer

Transport Layer. Chapter 3. Computer Networking: A Top Down Approach

Chapter 3: Transport Layer Part A

Chapter 3 Transport Layer

Chapter 3 Transport Layer

Chapter 3 Transport Layer

Chapter 3 Transport Layer

Lecture 5. Transport Layer. Transport Layer 1-1

Chapter 3 Transport Layer

Architettura di Reti

Chapter 3 Transport Layer

Chapter 3: Transport Layer

Chapter 3: Transport Layer. Computer Networks. Transport Layer. Transport services and protocols. Chapter 3 outline. Bu-Ali Sina University, Hamedan

Computer Networks. Transport Layer

Chapter 3 Transport Layer

Chapter 3 Transport Layer. Chapter 3: Transport Layer. Chapter 3 outline. Our goals: understand principles behind transport layer services:

Chapter 3: Transport Layer. Chapter 3 Transport Layer. Chapter 3 outline. Transport services and protocols

Chapter 3: Transport Layer

Chapter 3 Transport Layer

CSC358 Week 5. Adapted from slides by J.F. Kurose and K. W. Ross. All material copyright J.F Kurose and K.W. Ross, All Rights Reserved

Course on Computer Communication and Networks. Lecture 4 Chapter 3; Transport Layer, Part A

Chapter 3: Transport Layer

Chapter 3 Transport Layer. Chapter 3: Transport Layer. Chapter 3 outline

Course on Computer Communication and Networks. Lecture 4 Chapter 3; Transport Layer, Part A

CSCI Computer Networks Spring 2017

Chapter 3. Transport Layer. Computer Networking: A Top Down Approach 5th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.

Transport services and protocols. Chapter 3 Transport Layer. Chapter 3: Transport Layer. Transport vs. network layer

CSCI Computer Networks Fall 2016

Chapter 3 Transport Layer

CSE 461: Introduction to Computer Communication Networks. Chunjong Park

Chapter 3 Transport Layer

internet technologies and standards

Chapter 3 Transport Layer

Chapter 3. Kultida Rojviboonchai, Ph.D. Dept. of Computer Engineering Faculty of Engineering Chulalongkorn University

Chapter 3 Transport Layer

The Transport Layer Reliability

Chapter 3: Transport Layer. Chapter 3 Transport Layer. Transport layer. Position of transport layer. Transport layer.

Chapter 3: Transport Layer. Chapter 3 Transport Layer. Transport Services and Protocols. Chapter 3 Outline

Sliding Window Protocols, Connection Management, and TCP Reliability

Go-Back-N. Pipelining: increased utilization. Pipelined protocols. GBN: sender extended FSM

Chapter 3 Transport Layer

3.4 Principles of Reliable Data Transfer

Chapter 3: Transport Layer

Computer Networks. 3.Transport Layer. Transport Layer - 1

Chapter 3: Transport Layer

Chapter 3 Transport Layer

Chapter 3 Transport Layer

Transcription:

Chapter III: Transport Layer UG3 Computer Communications & Networks (COMN) Myungjin Lee myungjin.lee@ed.ac.uk Slides copyright of Kurose and Ross

rdt2.0 has a fatal flaw! what happens if ACK/NAK corrupted? sender doesn t know what happened at receiver! can t just retransmit: possible duplicate handling duplicates: sender retransmits current pkt if ACK/NAK corrupted sender adds sequence number to each pkt stop and wait sender sends one packet, then waits for receiver response receiver discards (doesn t deliver up) duplicate pkt 28

rdt2.1: sender, handles garbled ACK/NAKs rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isack(rcvpkt) L rdt_rcv(rcvpkt) && ( corrupt(rcvpkt) isnak(rcvpkt) ) rdt_send(data) sndpkt = make_pkt(0, data, checksum) call 0 from NAK 1 rdt_send(data) NAK 0 call 1 from rdt_rcv(rcvpkt) && ( corrupt(rcvpkt) isnak(rcvpkt) ) rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isack(rcvpkt) sndpkt = make_pkt(1, data, checksum) L 29

rdt2.1: receiver, handles garbled ACK/NAKs rdt_rcv(rcvpkt) && corrupt(rcvpkt) sndpkt = make_pkt(nak, chksum) rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && has_seq1(rcvpkt) sndpkt = make_pkt(ack, chksum) rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && has_seq0(rcvpkt) extract(rcvpkt,data) deliver_data(data) sndpkt = make_pkt(ack, chksum) 0 from 1 from rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && has_seq1(rcvpkt) extract(rcvpkt,data) deliver_data(data) sndpkt = make_pkt(ack, chksum) rdt_rcv(rcvpkt) && corrupt(rcvpkt) sndpkt = make_pkt(nak, chksum) rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && has_seq0(rcvpkt) sndpkt = make_pkt(ack, chksum) 30

rdt_send(data) sndpkt = make_pkt(0, data, checksum) rdt2.1 Example 1 call 0 from NAK 0 NAK 1 call 1 from 0 from 1 from 31

rdt2.1 Example 1 call 0 from NAK 0 NAK 1 call 1 from rdt_rcv(rcvpkt) && corrupt(rcvpkt) sndpkt = make_pkt(nak, chksum) 0 from 1 from 32

rdt2.1 Example 1 call 0 from NAK 0 rdt_rcv(rcvpkt) && ( corrupt(rcvpkt) isnak(rcvpkt) ) NAK 1 call 1 from 0 from 1 from 33

rdt2.1 Example 1 call 0 from NAK 0 NAK 1 call 1 from rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && has_seq0(rcvpkt) extract(rcvpkt,data) deliver_data(data) sndpkt = make_pkt(ack, chksum) 0 from 1 from 34

rdt2.1 Example 1 call 0 from NAK 1 NAK 0 call 1 from rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isack(rcvpkt) L 0 from 1 from 35

rdt2.1 Example 1 call 0 from NAK 0 NAK 1 call 1 from 0 from 1 from 36

rdt2.1 Example 2 call 0 from NAK 0 NAK 1 call 1 from rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && has_seq0(rcvpkt) extract(rcvpkt,data) deliver_data(data) sndpkt = make_pkt(ack, chksum) 0 from 1 from 37

rdt2.1 Example 2 call 0 from NAK 0 rdt_rcv(rcvpkt) && ( corrupt(rcvpkt) isnak(rcvpkt) ) NAK 1 call 1 from 0 from 1 from 38

rdt2.1 Example 2 call 0 from NAK 0 NAK 1 call 1 from 0 from 1 from rdt_rcv(rcvpkt) && not corrupt(rcvpkt) && has_seq0(rcvpkt) sndpkt = make_pkt(ack, chksum) 39

rdt2.1 Example 2 call 0 from NAK 1 NAK 0 call 1 from rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isack(rcvpkt) L 0 from 1 from 40

rdt2.1 Example 2 call 0 from NAK 0 NAK 1 call 1 from 0 from 1 from 41

rdt2.1: discussion sender: seq # added to pkt two seq. # s (0,1) will suffice. Why? must check if received ACK/NAK corrupted twice as many states state must remember whether expected pkt should have seq # of 0 or 1 receiver: must check if received packet is duplicate state indicates whether 0 or 1 is expected pkt seq # note: receiver can not know if its last ACK/NAK received OK at sender 42

rdt2.2: a NAK-free protocol same functionality as rdt2.1, using ACKs only instead of NAK, receiver sends ACK for last pkt received OK receiver must explicitly include seq # of pkt being ACKed duplicate ACK at sender results in same action as NAK: retransmit current pkt 43

rdt2.2: sender, receiver fragments rdt_rcv(rcvpkt) && (corrupt(rcvpkt) has_seq1(rcvpkt)) rdt_send(data) sndpkt = make_pkt(0, data, checksum) call 0 from 0 from sender FSM fragment receiver FSM fragment ACK 0 rdt_rcv(rcvpkt) && ( corrupt(rcvpkt) isack(rcvpkt,1) ) rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isack(rcvpkt,0) L rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && has_seq1(rcvpkt) extract(rcvpkt,data) deliver_data(data) sndpkt = make_pkt(ack1, chksum) 44

rdt3.0: channels with errors and loss new assumption: underlying channel can also lose packets (data, ACKs) checksum, seq. #, ACKs, retransmissions will be of help but not enough approach: sender waits reasonable amount of time for ACK retransmits if no ACK received in this time if pkt (or ACK) just delayed (not lost): retransmission will be duplicate, but seq. # s already handles this receiver must specify seq # of pkt being ACKed requires countdown timer 45

call 0 from rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isack(rcvpkt,1) stop_timer timeout rdt_rcv(rcvpkt) L start_timer rdt_rcv(rcvpkt) && ( corrupt(rcvpkt) isack(rcvpkt,0) ) L Wait for ACK1 rdt3.0 sender rdt_send(data) sndpkt = make_pkt(0, data, checksum) start_timer rdt_send(data) Wait for ACK0 call 1 from sndpkt = make_pkt(1, data, checksum) start_timer rdt_rcv(rcvpkt) && ( corrupt(rcvpkt) isack(rcvpkt,1) ) L timeout start_timer rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isack(rcvpkt,0) stop_timer rdt_rcv(rcvpkt) L 46

rdt3.0 in action sender receiver sender receiver send pkt0 rcv ack0 send pkt1 rcv ack1 send pkt0 pkt0 ack0 pkt1 ack1 pkt0 ack0 (a) no loss rcv pkt0 send ack0 rcv pkt1 send ack1 rcv pkt0 send ack0 send pkt0 rcv ack0 send pkt1 timeout resend pkt1 rcv ack1 send pkt0 pkt0 ack0 pkt1 X loss pkt1 ack1 pkt0 ack0 rcv pkt0 send ack0 rcv pkt1 send ack1 rcv pkt0 send ack0 (b) packet loss 47

sender send pkt0 rcv ack0 send pkt1 timeout resend pkt1 rcv ack1 send pkt0 pkt0 ack0 pkt1 ack1 X loss pkt1 ack1 pkt0 ack0 rdt3.0 in action receiver rcv pkt0 send ack0 rcv pkt1 send ack1 rcv pkt1 (detect duplicate) send ack1 rcv pkt0 send ack0 sender send pkt0 rcv ack0 send pkt1 timeout resend pkt1 rcv ack1 send pkt0 rcv ack1 do nothing rcv ack0 send pkt1 pkt0 ack0 pkt1 ack1 pkt1 pkt0 ack1 ack0 pkt1 receiver rcv pkt0 send ack0 rcv pkt1 send ack1 rcv pkt1 (detect duplicate) send ack1 rcv pkt0 send ack0 (c) ACK loss (d) premature timeout/ delayed ACK 48

Performance of rdt3.0 rdt3.0 is correct, but performance stinks e.g.: 1 Gbps link, 15 ms prop. delay, 8000 bit packet: D trans = L R U sender : utilization fraction of time sender busy sending U sender = 8000 bits = 10 9 = 8 microsecs bits/sec L / R RTT + L / R =.008 30.008 = 0.00027 if RTT=30 msec, 1KB pkt every 30 msec: 33kB/sec throughput over 1 Gbps link v network protocol limits use of physical resources! 49

rdt3.0: stop-and-wait operation first packet bit transmitted, t = 0 last packet bit transmitted, t = L / R sender receiver RTT first packet bit arrives last packet bit arrives, send ACK ACK arrives, send next packet, t = RTT + L / R U sender = L / R RTT + L / R =.008 30.008 = 0.00027 50

Pipelined protocols pipelining: sender allows multiple, in-flight, yet-to-beacknowledged pkts range of sequence numbers must be increased buffering at sender and/or receiver two generic forms of pipelined protocols: go-back-n, selective repeat 51

Pipelining: increased utilization first packet bit transmitted, t = 0 last bit transmitted, t = L / R sender receiver RTT ACK arrives, send next packet, t = RTT + L / R first packet bit arrives last packet bit arrives, send ACK last bit of 2 nd packet arrives, send ACK last bit of 3 rd packet arrives, send ACK 3-packet pipelining increases utilization by a factor of 3! U sender = 3L / R RTT + L / R =.0024 30.008 = 0.00081 52

Pipelined protocols: overview Go-back-N: sender can have up to N unacked packets in pipeline receiver only sends cumulative ack doesn t ack packet if there s a gap sender has timer for oldest unacked packet when timer expires, retransmit all unacked packets Selective Repeat: sender can have up to N unack ed packets in pipeline rcvr sends individual ack for each packet sender maintains timer for each unacked packet when timer expires, retransmit only that unacked packet 53

Go-Back-N: sender k-bit seq # in pkt header window of up to N, consecutive unack ed pkts allowed v v v ACK(n): ACKs all pkts up to, including seq # n - cumulative ACK may receive duplicate ACKs (see receiver) timer for oldest in-flight pkt timeout(n): retransmit packet n and all higher seq # pkts in window 54

GBN: sender extended FSM rdt_send(data) L base=1 nextseqnum=1 rdt_rcv(rcvpkt) && corrupt(rcvpkt)? if (nextseqnum < base+n) { sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum) udt_send(sndpkt[nextseqnum]) if (base == nextseqnum) start_timer nextseqnum++ } else refuse_data(data) Wait rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) base = getacknum(rcvpkt)+1 If (base == nextseqnum) stop_timer else start_timer timeout start_timer udt_send(sndpkt[base]) udt_send(sndpkt[base+1]) udt_send(sndpkt[nextseqnum-1]) 55

GBN: sender extended FSM rdt_send(data) L base=1 nextseqnum=1 rdt_rcv(rcvpkt) && corrupt(rcvpkt)? if (nextseqnum < base+n) { sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum) udt_send(sndpkt[nextseqnum]) if (base == nextseqnum) start_timer nextseqnum++ } else refuse_data(data) Wait rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) base = getacknum(rcvpkt)+1 If (base == nextseqnum) stop_timer else start_timer timeout start_timer udt_send(sndpkt[base]) udt_send(sndpkt[base+1]) udt_send(sndpkt[nextseqnum-1]) 56

L GBN: receiver extended FSM default expectedseqnum=1 sndpkt = make_pkt(0,ack,chksum) Wait rdt_rcv(rcvpkt) && notcurrupt(rcvpkt) && hasseqnum(rcvpkt,expectedseqnum) extract(rcvpkt,data) deliver_data(data) sndpkt = make_pkt(expectedseqnum,ack,chksum) expectedseqnum++ ACK-only: always send ACK for correctly-received pkt with highest in-order seq # may generate duplicate ACKs need only remember expectedseqnum out-of-order pkt: discard (don t buffer): no receiver buffering! re-ack pkt with highest in-order seq # 57

L GBN: receiver extended FSM default expectedseqnum=1 sndpkt = make_pkt(0,ack,chksum) Wait rdt_rcv(rcvpkt) && notcurrupt(rcvpkt) && hasseqnum(rcvpkt,expectedseqnum) extract(rcvpkt,data) deliver_data(data) sndpkt = make_pkt(expectedseqnum,ack,chksum) expectedseqnum++ ACK-only: always send ACK for correctly-received pkt with highest in-order seq # may generate duplicate ACKs need only remember expectedseqnum out-of-order pkt: discard (don t buffer): no receiver buffering! re-ack pkt with highest in-order seq # 58

GBN in action sender window (N=4) sender send pkt0 send pkt1 send pkt2 send pkt3 (wait) rcv ack0, send pkt4 rcv ack1, send pkt5 ignore duplicate ACK pkt 2 timeout send pkt2 send pkt3 send pkt4 send pkt5 Xloss receiver receive pkt0, send ack0 receive pkt1, send ack1 receive pkt3, discard, (re)send ack1 receive pkt4, discard, (re)send ack1 receive pkt5, discard, (re)send ack1 rcv pkt2, deliver, send ack2 rcv pkt3, deliver, send ack3 rcv pkt4, deliver, send ack4 rcv pkt5, deliver, send ack5 59

GBN in action sender window (N=4) sender send pkt0 send pkt1 send pkt2 send pkt3 (wait) rcv ack0, send pkt4 rcv ack1, send pkt5 ignore duplicate ACK pkt 2 timeout send pkt2 send pkt3 send pkt4 send pkt5 Xloss receiver receive pkt0, send ack0 receive pkt1, send ack1 receive pkt3, discard, (re)send ack1 receive pkt4, discard, (re)send ack1 receive pkt5, discard, (re)send ack1 rcv pkt2, deliver, send ack2 rcv pkt3, deliver, send ack3 rcv pkt4, deliver, send ack4 rcv pkt5, deliver, send ack5 60

Selective repeat receiver individually acknowledges all correctly received packets buffers packets, as needed, for eventual in-order delivery to upper layer sender only resends packets for which ACK not received sender timer for each unacked packet sender window N consecutive seq # s limits seq #s of sent, unacked packets 61

Selective repeat: sender, receiver windows 62

sender data from : if next available seq # in window, send pkt timeout(n): resend pkt n, restart timer ACK(n) in [sendbase, sendbase+n-1]: mark pkt n as received if n smallest unacked pkt, advance window base to next unacked seq # Selective repeat receiver pkt n in [rcvbase, rcvbase+n-1] v v v send ACK(n) out-of-order: buffer in-order: deliver (also deliver buffered, in-order pkts), advance window to next not-yet-received pkt pkt n in [rcvbase-n, rcvbase-1] v ACK(n) otherwise: v ignore 63

Selective repeat in action sender window (N=4) sender send pkt0 send pkt1 send pkt2 send pkt3 (wait) rcv ack0, send pkt4 rcv ack1, send pkt5 record ack3 arrived pkt 2 timeout send pkt2 record ack4 arrived record ack5 arrived Xloss receiver receive pkt0, send ack0 receive pkt1, send ack1 receive pkt3, buffer, send ack3 receive pkt4, buffer, send ack4 receive pkt5, buffer, send ack5 rcv pkt2; deliver pkt2, pkt3, pkt4, pkt5; send ack2 Q: what happens when ack2 arrives? 64

Selective repeat in action sender window (N=4) sender send pkt0 send pkt1 send pkt2 send pkt3 (wait) rcv ack0, send pkt4 rcv ack1, send pkt5 record ack3 arrived pkt 2 timeout send pkt2 record ack4 arrived record ack5 arrived Xloss receiver receive pkt0, send ack0 receive pkt1, send ack1 receive pkt3, buffer, send ack3 receive pkt4, buffer, send ack4 receive pkt5, buffer, send ack5 rcv pkt2; deliver pkt2, pkt3, pkt4, pkt5; send ack2 Q: what happens when ack2 arrives? 65

Selective repeat: dilemma example: seq # s: 0, 1, 2, 3 window size=3 v receiver sees no difference in two scenarios! v duplicate data accepted as new in (b) Q: what relationship between seq # size and window size to avoid problem in (b)? sender window (after receipt) 0 1 2 3 0 1 2 0 1 2 3 0 1 2 0 1 2 3 0 1 2 0 1 2 3 0 1 2 0 1 2 3 0 1 2 0 1 2 3 0 1 2 0 1 2 3 0 1 2 timeout retransmit pkt0 pkt0 pkt1 pkt2 X X X 0 1 2 3 0 1 2 pkt0 (b) oops! pkt0 pkt1 pkt2 0 1 2 3 0 1 2 pkt3 (a) no problem pkt0 X receiver window (after receipt) 0 1 2 3 0 1 2 0 1 2 3 0 1 2 0 1 2 3 0 1 2 will accept packet with seq number 0 receiver can t see sender side. receiver behavior identical in both cases! something s (very) wrong! 0 1 2 3 0 1 2 0 1 2 3 0 1 2 0 1 2 3 0 1 2 will accept packet with seq number 0 66