WiMAX Overview. Parviz Yegani Cisco Systems IETF-64 Nov. 7-11, 2005 Vancouver, Canada. Session Number Presentation_ID

Similar documents
Mobile WiMAX Security

WiMAX Networking Paradigms Base for heterogeneous networking in IEEE802?

WiMAX Network Architecture and Emergency Service Support

Overview of the Cisco Mobile Wireless Home Agent

Overview of the Cisco Mobile Wireless Home Agent

Mobile WiMAX EPL 657. Panayiotis Kolios

WiMAX End-to-End Network Systems Architecture

WiMAX Forum Network Architecture

Integration of the IMS/PCC Framework into the Mobile WiMAX Network

IP Mobility Support for QoS over Heterogeneous Networks

CAN Wireless IP Network Overview and List of Parts

IEEE C /08

Network Architectures for Evolving 3G LTE and Mobile WiMAX

Mobile IPv6 Operations Explored

Internet Engineering Task Force (IETF) Request for Comments: 6572 Category: Standards Track

IEEE Assisted Network Layer Mobility Support

IEEE C /26. IEEE Working Group on Mobile Broadband Wireless Access <

NGN and WiMAX: Putting the pieces together

Network PMIP Support COPYRIGHT. 3GPP2 X.S Version 1.0 Date: December 5, 2008

7/27/2010 LTE-WIMAX BLOG HARISHVADADA.WORDPRESS.COM. QOS over 4G networks Harish Vadada

WiMAX Forum Requirements for WiMAX BS/WFAP Local Routing of the Bearer Traffic

Ethernet Services over Mobile WiMAX

WiMAX Forum Proprietary

DAY 2. HSPA Systems Architecture and Protocols

Performance of Soft Handover FBSS Compared to Hard Handover in case of High Speed in IEEE e for Multimedia Traffic

Using WiMAX in Cisco Prime Access Registrar

Improvement of Handoff in Mobile WiMAX Networks Using Mobile Agents

Status of IMS-Based Next Generation Networks for Fixed Mobile Convergence

WiMAX Overview. Max Riegel Siemens Co-chair WiMAX NWG

MIPv6: New Capabilities for Seamless Roaming Among Wired, Wireless, and Cellular Networks

Overview of the Cisco Broadband Wireless Gateway

Mobile IP QoS Using Flow in BcN. Contents

Faisal Ahmad. MIMOS Berhad. On Challenges in Deploying Wimax to the Unconnected Communities

Configuring the Cisco Broadband Wireless Gateway

cdma2000 Femtocell Network: Overview

3GPP TS V8.0.0 ( )

CDG Technology Forum Inter-Technology Networking

Implementation and Analysis of a Testbed for IP-Based Heterogeneous Wireless Networks

Multi-RAT Heterogeneous Networks. Presenter: S. Vasudevan, Technical Manager, Advanced Technology Standards

Proxy Mobile IPv6 (PMIPv6)

Network Security. Security of Mobile Internet Communications. Chapter 17. Network Security (WS 2002): 17 Mobile Internet Security 1 Dr.-Ing G.

WiMax-based Handovers in Next Generation Networks

An IETF-based Evolved Packet System beyond the 3GPP Release 8

IPv6 Protocols and Networks Hadassah College Spring 2018 Wireless Dr. Martin Land

All-IP System MMD Roaming Technical Report

Interworking of Wimax and 3GPP Networks based on IMS

Handover Management for Mobile Nodes in IPv6 Networks

Cisco ASR 5000 Series Small Cell Gateway

PMIPv6 PROXY MOBILE IPV6 OVERVIEW OF PMIPV6, A PROXY-BASED MOBILITY PROTOCOL FOR IPV6 HOSTS. Proxy Mobile IPv6. Peter R. Egli INDIGOO.COM. indigoo.

4G: Convergence, Openness for Excellence and Opportunity Cisco Systems, Inc

Mobility Management - Basics

Fixed Internetworking Protocols and Networks. IP mobility. Rune Hylsberg Jacobsen Aarhus School of Engineering

3GPP TS V8.4.0 ( )

Convergence WLAN/CDMA Architecture. CDG Technology Forum October 7, 2005

Mobile IP and its trends for changing from IPv4 to IPv6

T Computer Networks II. Mobility Issues Contents. Mobility. Mobility. Classifying Mobility Protocols. Routing vs.

Gateway relocation by Bandwidth based Admission Control Scheme in WiMax

IPv6. IPv4 & IPv6 Header Comparison. Types of IPv6 Addresses. IPv6 Address Scope. IPv6 Header. IPv4 Header. Link-Local

Mobile SCTP for IP Mobility Support in All-IP Networks

Preface Preliminaries. Introduction to VoIP Networks. Public Switched Telephone Network (PSTN) Switching Routing Connection hierarchy Telephone

IPv6-based Beyond-3G Networking

GRE Extension for Mobile IPv4

Configuring the Cisco Broadband Wireless Gateway

COPYRIGHTED MATERIAL. Introduction. 1.1 WiMAX in the Telecommunication Markets Integrated Services Digital Networks

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

3GPP TS V6.1.0 ( )

Applicability of IETF Mobility Solutions to the 3GPP All IP Network

Quality-of-Service Option for Proxy Mobile IPv6

Overview of the Cisco Mobile Wireless Home Agent

MAC layer: structure and QoS support. PhD student: Le Minh Duong

Overview of GPRS and UMTS

Configuring the Cisco Broadband Wireless Gateway

ETSI TS V ( ) Technical Specification

Performance Analysis of Hierarchical Mobile IPv6 in IP-based Cellular Networks

IPv6 over IEEE 구현시나리오

Daedalus/GloMop Architectural Walkthrough

Stateless 4V6. draft-dec-stateless-4v6. September 2011

Abstract of the Book

SJTU 2018 Fall Computer Networking. Wireless Communication

3GPP TS V9.4.0 ( )

Mobile Communications Chapter 8: Network Protocols/Mobile IP

Context-aware Services for UMTS-Networks*

SPIRENT LANDSLIDE MOBILE PACKET CORE PERFORMANCE TEST SYSTEM

WiMAX and WiFi Interoperability in Next Generation Networks

3GPP TS V ( )

Assigning a Home Address on the Home Agent

PCC (Policy and Charging Control) In Mobile Data. EFORT

Evaluating VoIP using Network Simulator-2

Network Based Seamless Mobility In Networks Of Future. M.Sc. Ahmet Cihat Toker

Ubiquitous Internet & WiMAX open standard

Outline : Wireless Networks Lecture 10: Management. Management and Control Services : Infrastructure Reminder.

Institute of Electrical and Electronics Engineers (IEEE)

IJCSMS International Journal of Computer Science & Management Studies, Vol. 12, Issue 03, September 2012 ISSN (Online):

GTP-based S2b Interface Support on the P-GW and SAEGW

Configuring Proxy Mobile IPv6

Seamless Handover Scheme for Proxy Mobile IPv6

CSC 401 Data and Computer Communications Networks

CDMA IP. FMC WiMAX LTE L2TP Billing Policy DPI SPIRENT TEST SCENARIOS LANDSLIDE.

Simulation of LTE Signaling

WiMAX Forum Network Architecture

Transcription:

WiMAX Overview Parviz Yegani Cisco Systems pyegani@cisco.com IETF-64 Nov. 7-11, 2005 Vancouver, Canada Session Number 1

Outline WiMAX NWG Goals Network Reference Model Reference Points and Interfaces NWG Release 1 Features Implementation Scenarios Usage Modes (Fixed, Nomadic, Mobile) Quality of Service (QoS) Mobility Management (MM) Security Next Steps 2

WiMAX NWG Goals Network WG was formed to create an open end-toend framework for interoperable WiMAX networks, satisfying operators business requirements for multi-vendor interoperability. NWG specification will include the following: Normative use of protocols and procedures to satisfy various functions of a working system based on existing IEEE and IETF standards Protocols and procedures defined over various interfaces for different capabilities supported by the network A unified approach from which interoperable profiles can be derived for basic interoperability for different usage modes and service models 3

Network Reference Architecture. R2 NAP BS R6 HA AAA NSP MS R1 R8 ASN GW (FA) R3 BS ASN R6 visited CSN R8 R4 R5 (Roaming) open closed ASN GW home CSN Architecture allows multiple implementation options for a given functional entity, and yet achieve interoperability among different realizations of functional entities 4

Interfaces R1 the interface between the MS and the ASN as per the air interface (PHY and MAC) specifications (IEEE P802.16d/e). R1 may include additional protocols related to the management plane. R2 the interface between the MS and CSN associated with Authentication, Services Authorization, IP Host Configuration management, and mobility management. This is a logical interface thus does not reflect a direct protocol interface between MS and CSN. R3 the interface between the ASN and the CSN to support AAA, policy enforcement and mobility management capabilities. It also encompasses the bearer plane methods (e.g., tunneling) to transfer IP data between the ASN and the CSN. 5

Interfaces R4 consists of a set of control and bearer plane protocols originating/terminating in various entities within the ASN that coordinate MS mobility between ASNs. In Release 1, R4 is the only interoperable interface between heterogeneous or dissimilar ASNs. R5 consists of a set of control plane and bearer plane protocols for internetworking between CSNs operated by either the home or visited NSP. R6 consists of a set of control and bearer plane protocols for communication between the BS and the ASN GW. The bearer plane consists of intra-asn data path or inter-asn tunnels between the BS and ASN GW. The control plane includes protocols for IP tunnel management (establish, modify, and release) in accordance with the MS mobility events. R6 may also serve as a conduit for exchange of MAC states information between neighboring BSs. 6

Interfaces R8 consists of a set of control plane message flows and, in some situations, bearer plane data flows between the base stations to ensure fast and seamless handover. bearer plane consists of protocols that allow the data transfer between Base Stations involved in handover of a certain MS. control plane consists of the inter-bs communication protocol defined in IEEE 802.16 and additional set of protocols that allow controlling the data transfer between the Base Stations involved in handover of a certain MS. 7

Interoperability Framework Main goals: Maximize vendors access to the market Maximize revenue opportunity for operators Reference Points (RPs) Network Entities on either side of an RP represent a collection of control protocols and bearer end-points Interoperability will be verified based only on protocols & procedures exposed across an RP For a supported capability, NWG will specify the normative use of protocols over an RP If the vendor claims support for the capability and exposes the RP, then the implementation must comply with the NWG definition Avoids the situation where a protocol entity can reside on either end of an RP or replication of identical procedures across multiple RPs 8

NWG Release 1 Features NWG Release 1 enforces interoperability across R1, R2, R3, R4 and R5 for all ASN implementation profiles Convergence sub-layer considerations/choices IP Address Assignment (Stateless/Stateful) Network Discovery and Selection PKMv2 based end-to-end security Accounting support for multi-operator roaming (RADIUS only) QoS, Admission Control and Service Flow Management Layer 2/3 Mobility Management Radio Resource Management 9

Implementation Scenarios. ASN Scenario 1 Decomposed BS Rx ASN GW BTS BSC Ry R3 Visited CSN - IP Core R1 BTS Internet MS R2 R4. R6 BS1 ASN GW R5 Home CSN - IP Core BS2 ASN Scenario 2 BS and ASN GW 10

Access Scenarios. Stateful auto-configuration based on DHCPv6 [RFC3315]. The DHCP server is in the serving CSN and a DHCP relay must exist in the network path to the CSN. Stateless auto-configuration as defined in RFC2462 and privacy extensions in RFC3041. 11

Usage Modes. Full Mobility (e.g. Greenfield, 3G Overlay) Portability / Simple Mobility (e.g. Greenfield, DSL Overlay, 3G Overlay) Fixed Access / Nomadicity (e.g. DSL Overlay, Greenfield) WiMAX architecture is designed to support evolution path from fixed to nomadic to portability with simple mobility and eventually to full mobility deployment with E2E QoS and Security support Usage Modes: Representative of the types of profiles the WiMAX Forum may develop to guide implementations and multi-vendor interoperability 12

Quality of Service (QoS) IEEE QoS Framework Deals with radio link (802.16) QoS Connection-oriented service Five QoS classes are defined - UGS: Unsolicited Grant Service - rtps: real-time Polling Service - ertps: enhanced real-time Polling Service - nrtps: non-real-time Polling Service - BE: Best-Effort Provisioned QoS profile for permitted flows per subscriber Admission policies for new service flows NWG QoS Framework Extends the 802.16 QoS framework to NWG NRM Deals with WiMax QoS only (see next slide) QoS control entities are placed either in the BS or ASN GW 13

QoS Framework SFM Service Flow Management SFA Service Flow Authorization AF Application Function PF Policy Function LPF Local Policy Function AF (1) AF => PF PF Home NSP QoS/Policy Data ASN (2) PF => SFA R3/R5 MS R1 Admission Control Local Resources Info (3) SFA => SFM SFM SFA Note The SFA, after successful user authentication, must update its location with the PF. LPF Local Policy Data 14

QoS Models in Release 1 Push or Pull Pre-Provisioned Service Flow - Static Push Model (steps 1-2) Dynamic Service Flow - triggered Push Model (or Push/Pull) Subscribed QoS profile is provisioned either in AAA DB or a policy server User priority may be used to enforce relative precedence for admitting new flows when radio resources are tight Triggers: L2 User-initiated via IEEE 802.16 signaling L3 User-initiated on-path QoS signaling (e.g., RSVP) Network-initiated - Application Triggered (e.g., SIP proxy) Network-initiated - Administratively Triggered (e.g., SNMP) 15

Mobility & Handover The architecture must support intra-asn micromobility - R6 Mobility - R8 Mobility (inter-bs handover) The architecture must support inter-asn macromobility - R3 Mobility - R4 Mobility Intra/inter-ASN Mobility is to ensure minimal delay and data loss during the transition/handover from serving ASN to target ASN. This is done via transferring context (mobility, security, ) and all active service flows when handover occurs. 16

L3 Mobility Anchored ASN Proxy MIP (PMIP) - does not involve a change in the point of attachment address when the user moves. There is no need for the terminal to implement a client MIP stack. Client MIP (CMIP) - with a FA based CoA, the CoA point of attachment IP address can change with the Foreign Agent. Foreign Agent change can be detected by Agent Advertisement. For ASN mobility using client MIPv6 in a Colocated CoA mode (CoCoA), the point of attachment CoA changes when subnet changes. PMIP and CMIP can coexist in the network. MS should support either Mobile IP with CMIP or simple IP with PMIP. Network should support both CMIP and PMIP for coexistence R3 mobility is established between ASN and CSN that are in the same or different administrative domains. R4 mobility should allow for keeping an existing anchor ASN GW or re-anchoring at the target ASN GW. 17

L3 Mobility - FA Migration Initiated by policy (e.g. for path optimization) Triggered by MIP Agent Advertisement MIP registration to new FA (ASN GW) for PMIP and CMIP Src BS R6 Src ASN GW R3 MSS R8 R4 HA Optimized path Tgt BS R6 Tgt ASN GW MIP messaging 18

R6 Mobility R6 mobility should take into account different level of Data Path granularities: per-flow, user, and per-bs Data Paths. The Data Path is identified via the classification operation based on a set of classification criteria such as MS IP address. 19

Security WiMAX architecture must comply with the security and trust architecture defined in the IEEE 802.16 specification and IETF EAP RFCs. Authenticator is anchored during HO (e.g., in the ASN GW) Session is anchored at the first GW through which the MS connects to the network HA and Anchor GW have trust relationship with Home AAA Anchor GW and HA are in different administrative domains Trust relationship needs to be set up before signalling Home AAA distributes keys to Authenticator and HA Authenticator distributes AKs to the BSs HA has to authorize setup of forwarding path for MS to Anchor GW Signaling between HA and Anchor GW needs to be secure EAP packets carried between the EAP Relay (BS) and the Authenticator to populate channel binding attributes in the Authenticator ASN is treated as a single NAS 20

What s Next? NWG Release 1 Schedule Stage 2 is near completion Stage 3 just started (Oct. 2005) Release 2 (tentative) Schedule Stage 1 2Q06 Stage 2&3 4Q06 New Features - Legal Intercept - VoIP (full support) - IPv6 Mobility - IMS - BCMCS - Other features as requested by SPWG. 21