Interference, Diffraction & Polarization

Similar documents
Chapter 24. Wave Optics

The sources must be coherent. This means they emit waves with a constant phase with respect to each other.

College Physics B - PHY2054C

Chapter 24. Wave Optics

Polarisation and Diffraction

Chapter 8: Physical Optics

College Physics 150. Chapter 25 Interference and Diffraction

Lecture PowerPoints. Chapter 24 Physics: Principles with Applications, 7 th edition Giancoli

Chapter 24. Wave Optics

specular diffuse reflection.

Chapter 24. Wave Optics

Unit 5.C Physical Optics Essential Fundamentals of Physical Optics

Chapter 24. Wave Optics. Wave Optics. The wave nature of light is needed to explain various phenomena

Textbook Reference: Physics (Wilson, Buffa, Lou): Chapter 24

Chapter 25. Wave Optics

Chapter 24 The Wave Nature of Light

Chapter 37. Wave Optics

f. (5.3.1) So, the higher frequency means the lower wavelength. Visible part of light spectrum covers the range of wavelengths from

CHAPTER 26 INTERFERENCE AND DIFFRACTION

Michelson Interferometer

Chapter 24 - The Wave Nature of Light

Chapter 24. Wave Optics. Wave Optics. The wave nature of light is needed to explain various phenomena

Interference of Light

Interference of Light

Physical or wave optics

Electromagnetic waves

Chapter 37. Interference of Light Waves

Interference. Electric fields from two different sources at a single location add together. The same is true for magnetic fields at a single location.

Experiment 5: Polarization and Interference

Ray Optics. Lecture 23. Chapter 23. Physics II. Course website:

Chapter 82 Example and Supplementary Problems

Interference Effects. 6.2 Interference. Coherence. Coherence. Interference. Interference

Physics 272 Lecture 27 Interference (Ch ) Diffraction (Ch )

EM Waves Practice Problems

Interference and Diffraction of Light

Diffraction. Factors that affect Diffraction

Chapter 35 &36 Physical Optics

Interference of Light

Interference of Light

LECTURE 26: Interference ANNOUNCEMENT. Interference. Interference: Phase Differences

L 32 Light and Optics [3]

Interference & Diffraction

Lab 12 - Interference-Diffraction of Light Waves

Wallace Hall Academy

Interference of Light

Chapter 38. Diffraction Patterns and Polarization

AP Physics Problems -- Waves and Light

Single slit diffraction

Lecture Wave Optics. Physics Help Q&A: tutor.leiacademy.org

Today: Interferometry, Diffraction

Diffraction. Single-slit diffraction. Diffraction by a circular aperture. Chapter 38. In the forward direction, the intensity is maximal.

Name: Lab Partner: Section:

Intermediate Physics PHYS102

PHY132 Introduction to Physics II Class 5 Outline:

Physics 1CL WAVE OPTICS: INTERFERENCE AND DIFFRACTION Fall 2009

2t = (m+ 1 /2) λ = (m+ 1 /2)(λ/n); min, m = 0, 1, 2,... n1 < n2 < n3 2t = m λ = m(λ/n); min, m = 0, 1, 2,... n1 < n2 > n3

PHY 222 Lab 11 Interference and Diffraction Patterns Investigating interference and diffraction of light waves

UNIT 102-9: INTERFERENCE AND DIFFRACTION

Midterm II Physics 9B Summer 2002 Session I

Physics 202 Homework 9

Experiment 8 Wave Optics

PHYS:1200 LECTURE 32 LIGHT AND OPTICS (4)

Chapter 15. Light Waves

light Chapter Type equation here. Important long questions

5 10:00 AM 12:00 PM 1420 BPS

Young s Double Slit Experiment

MDHS Science Department SPH 4U - Student Goal Tracking Sheet

Physics 1C, Summer 2011 (Session 1) Practice Midterm 2 (50+4 points) Solutions

Electromagnetism & Light. Interference & Diffraction

Physics 214 Midterm Fall 2003 Form A

Physics Midterm I

Dispersion Polarization

Diffraction and Interference of Plane Light Waves

Light: Geometric Optics

Phy 133 Section 1: f. Geometric Optics: Assume the rays follow straight lines. (No diffraction). v 1 λ 1. = v 2. λ 2. = c λ 2. c λ 1.

INTERFERENCE. where, m = 0, 1, 2,... (1.2) otherwise, if it is half integral multiple of wavelength, the interference would be destructive.

Waves & Oscillations

PHYSICS. Chapter 33 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

INTERFERENCE. Interf - 1

LECTURE 12 INTERFERENCE OF LIGHT. Instructor: Kazumi Tolich

Lecture 4 Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization

ConcepTest PowerPoints

Physics 123 Optics Review

WAVE SUPERPOSITION. Challenging MCQ questions by The Physics Cafe. Compiled and selected by The Physics Cafe

Lecture 39. Chapter 37 Diffraction

Models of Light The wave model: The ray model: The photon model:

PHYS2002 Spring 2012 Practice Exam 3 (Chs. 25, 26, 27) Constants

Activity 9.1 The Diffraction Grating

Reflections from a thin film

CHAPTER 24 The Wave Nature of Light

25-1 Interference from Two Sources

Interference of Light

Electricity & Optics

Fresnel's biprism and mirrors

22.1. Visualize: Please refer to Figure Ex22.1. Solve: (a)

Lab 8. Interference of Light

Diffraction at a single slit and double slit Measurement of the diameter of a hair

22.4. (a) (b) (c) (d)

Chapter 2: Wave Optics

Optics Final Exam Name

Transcription:

Interference, Diffraction & Polarization PHY232 Remco Zegers zegers@nscl.msu.edu Room W109 cyclotron building http://www.nscl.msu.edu/~zegers/phy232.html

light as waves so far, light has been treated as if it travels in straight lines ray diagrams refraction To describe many optical phenomena, we have to treat light as waves. Just like waves in water, or sound waves, light waves can interact and form interference patterns. remember c=fλ PHY232 - Remco Zegers - interference, diffraction & polarization 2

interference constructive interference destructive interference at any point in time one can construct the total amplitude by adding the individual components PHY232 - Remco Zegers - interference, diffraction & polarization 3

demo: interference λ Interference III λ λ + + λ = = constructive interference waves in phase destructive interference waves ½λ out of phase PHY232 - Remco Zegers - interference, diffraction & polarization 4

Interference in spherical waves maximum of wave r 1 =r 2 minimum of wave r 1 r 2 positive constructive interference negative constructive interference destructive interference if r 2 -r 1 =nλ then constructive interference occurs if r 2 -r 1 =(n+½)λ the destructive interference occurs PHY232 - Remco Zegers - interference, diffraction & polarization 5

PHY232 - Remco Zegers - interference, diffraction & polarization 6

light as waves it works the same as water and sound! PHY232 - Remco Zegers - interference, diffraction & polarization 7

double slit experiment the light from the two sources is incoherent (fixed phase with respect to each other in this case, there is no phase shift between the two sources the two sources of light must have identical wave lengths PHY232 - Remco Zegers - interference, diffraction & polarization 8

Young s interference experiment there is a path difference: depending on its size the waves coming from S 1 or S 2 are in or out of phase PHY232 - Remco Zegers - interference, diffraction & polarization 9

Young s interference experiment If the difference in distance between the screen and each of the two slits is such that the waves are in phase, constructive interference occurs: bright spot difference in distance must be a integer multiple of the wavelength: dsinθ=mλ, m=0,1,2,3 m=0: zeroth order m=1: first order etc path difference if the difference in distance is off by half a wavelength (or one and a half etc), destructive interference occurs (dsinθ=[m+1/2]λ, m=0,1,2,3 ) demo PHY232 - Remco Zegers - interference, diffraction & polarization 10

distance between bright spots tanθ=y/l L if θ is small, then sinθ θ tanθ so: dsinθ=mλ, m=0,1,2,3 converts to dy/l=mλ difference between maximum m and maximum m+1: y m+1 -y m = (m+1)λl/d-mλl/d= λl/d demo y m =mλl/d PHY232 - Remco Zegers - interference, diffraction & polarization 11

do loncapa 1,2,7 from set 9 PHY232 - Remco Zegers - interference, diffraction & polarization 12

question two light sources are put at a distance d from a screen. Each source produces light of the same wavelength, but the sources are out of phase by half a wavelength. On the screen exactly midway between the two sources will occur a) constructive interference b) destructive interference distance is equal so 1/2λ difference: destructive int. +1/2λ PHY232 - Remco Zegers - interference, diffraction & polarization 13

question two narrow slits are illuminated by a laser with a wavelength of 600 nm. the distance between the two slits is 1 cm. a) At what angle from the beam axis does the 3 rd order maximum occur? b) If a screen is put 5 meter away from the slits, what is the distance between the 0 th order and 3 rd order maximum? a) use dsinθ=mλ with m=3 θ=sin -1 (mλ/d)=sin -1 (3x600x10-9 /0.01)=0.0103 0 b) y m =mλl/d m=0: y 0 =0 m=3: y 3 =3x600x10-9 x5/0.01=9x10-4 m =0.9 mm PHY232 - Remco Zegers - interference, diffraction & polarization 14

quiz (extra credit) Two beams of coherent light travel different paths arriving at point P. If constructive interference occurs at point P, the two beams must: a) travel paths that differ by a whole number of wavelengths b)travel paths that differ by an odd number of half wavelengths PHY232 - Remco Zegers - interference, diffraction & polarization 15

other ways of causing interference remember equivalent to: n 1 >n 2 n 1 <n 2 1 2 1 2 PHY232 - Remco Zegers - interference, diffraction & polarization 16

phase changes at boundaries If a light ray travels from medium 1 to medium 2 with n 1 <n 2, the phase of the light ray will change by 1/2λ. This will not happen if n 1 >n 2. n 1 >n 2 1 2 1 2 n 1 <n 2 1/2λ phase change no phase change In a medium with index of refraction n, the wavelength changes (relative to vacuum) to λ/n PHY232 - Remco Zegers - interference, diffraction & polarization 17

thin film interference n=1 n=1.5 The two reflected rays can interfere. To analyze this system, 4 steps are needed: n=1 1. Is there phase inversion at the top surface? 2. Is there phase inversion at the bottom surface 3. What are the conditions for constructive/destructive interference? 4. what should the thickness d be for 3) to happen? PHY232 - Remco Zegers - interference, diffraction & polarization 18

thin film analysis n=1 n=1.5 1 2 1. top surface? 2. bottom surface? 3. conditions? 4. d? n=1 1. top surface: n 1 <n 2 so phase inversion 1/2λ 2. bottom surface: n 1 >n 2 so no phase inversion 3. conditions: 1. constructive: ray 1 and 2 must be in phase 2. destructive: ray 1 and 2 must be out of phase by 1/2λ 4. if phase inversion would not take place at any of the surfaces: constructive: 2d=mλ (difference in path length=integer number of wavelengths) due to phase inversion at top surface: 2d=(m+1/2)λ since the ray travels through film: 2d=(m+1/2)λ film =(m+1/2)λ/n film destructive: 2d=mλ film =mλ/n film PHY232 - Remco Zegers - interference, diffraction & polarization 19

Note The interference is different for light of different wavelengths PHY232 - Remco Zegers - interference, diffraction & polarization 20

question n a =1 n b =1.5 n c =2 Phase inversion will occur at a) top surface b) bottom surface c) top and bottom surface d) neither surface n 1 <n 2 in both cases constructive interference will occur if: a) 2d=(m+1/2)λ/n b b) 2d=mλ/n b c) 2d=(m+1/2)λ/n c d) 2d=mλ/n c note: if destructive 2d=(m+1/2)λ/n b this is used e.g. on sunglasses to reduce reflections PHY232 - Remco Zegers - interference, diffraction & polarization 21

another case 1 2 The air gap in between the plates has varying thickness. Ray 1 is not inverted (n 1 >n 2 ) Ray 2 is inverted (n 1 <n 2 ) where the two glasses touch: no path length difference: dark fringe. if 2t=(m+1/2)λ constructive interference if 2t=mλ destructive interference. PHY232 - Remco Zegers - interference, diffraction & polarization 22

question Given h=1x10-5 m 30 bright fringes are seen, with a dark fringe at the left and the right. What is the wavelength of the light? 2t=mλ destructive interference. m goes from 0 (left) to 30 (right). λ=2t/m=2h/m=2x1x10-5 /30=6.67x10-7 m=667 nm PHY232 - Remco Zegers - interference, diffraction & polarization 23

demo newton s rings spacing not equal PHY232 - Remco Zegers - interference, diffraction & polarization 24

loncapa now do 3,4,5,8 from set 9 PHY232 - Remco Zegers - interference, diffraction & polarization 25

diffraction In Young s experiment, two slits were used to produce an interference pattern. However, interference effects can already occur with a single slit. This is due to diffraction: the capability of light to be deflected by edges/small openings. In fact, every point in the slit opening acts as the source of a new wave front PHY232 - Remco Zegers - interference, diffraction & polarization 26

PHY232 - Remco Zegers - interference, diffraction & polarization 27

interference pattern from a single slit pick two points, 1 and 2, one in the top top half of the slit, one in the bottom half of the slit. Light from these two points interferes destructively if: Δx=(a/2)sinθ=λ/2 so sinθ=λ/a we could also have divided up the slit into 4 pieces: Δx=(a/4)sinθ=λ/2 so sinθ=2λ/a 6 pieces: Δx=(a/6)sinθ=λ/2 so sinθ=3λ/a Minima occur if sinθ=mλ/a m=1,2,3 In between the minima, are maxima: sinθ=(m+1/2)λ/a m=1,2,3 AND sinθ=0 or θ=0 PHY232 - Remco Zegers - interference, diffraction & polarization 28

slit width a a if λ>a sinθ=λ/a > 1 Not possible, so no patterns λ<a : interference pattern is seen if λ<<a sinθ=mλ/a is very small diffraction hardly seen PHY232 - Remco Zegers - interference, diffraction & polarization 29

the diffraction pattern The intensity is not uniform: I=I 0 sin 2 (β)/β 2 β=πa(sinθ)/ λ a a a a a a PHY232 - Remco Zegers - interference, diffraction & polarization 30

question light with a wavelength of 500 nm is used to illuminate a slit of 5μm. At which angle is the 5 th minimum in the diffraction pattern seen? sinθ=mλ/a θ=sin -1 (5x500x10-9 /(5x10-6 ))=30 0 PHY232 - Remco Zegers - interference, diffraction & polarization 31

diffraction from a single hair instead of an slit, we can also use an inverse image, for example a hair! demo PHY232 - Remco Zegers - interference, diffraction & polarization 32

double slit interference revisited The total response from a double slit system is a combination of two single-source slits, combined with a diffraction pattern from each of the slit due to diffraction minima asinθ=mλ, m=1,2,3 maxima asinθ=(m+1/2)λ, m=1,2,3 and θ=0 a: width of individual slit due to 2-slit interference maxima dsinθ=mλ, m=0,1,2,3 minima dsinθ=(m+1/2)λ, m=0,1,2,3 d: distance between two slits PHY232 - Remco Zegers - interference, diffraction & polarization 33

double-slit experiment a d if λ>d, each slit acts as a single source of light and we get a more or less prefect double-slit interference spectrum if λ<d the interference spectrum is folded with the diffraction pattern. PHY232 - Remco Zegers - interference, diffraction & polarization 34

question 7th A person has a double slit plate. He measures the distance between the two slits to be d=1 mm. Next he wants to determine the width of each slit by investigating the interference pattern. He finds that the 7 th order interference maximum lines up with the first diffraction minimum and thus vanishes. What is the width of the slits? 7 th order interference maximum: dsinθ=7λ so sinθ=7λ/d 1 st diffraction minimum: asinθ=1λ so sinθ=λ/a sinθ must be equal for both, so λ/a=7λ/d and a=d/7=1/7 mm PHY232 - Remco Zegers - interference, diffraction & polarization 35

diffraction grating d consider a grating with many slits, each separated by a distance d. Assume that for each slit λ>d. We saw that for 2 slits maxima appear if: dsinθ=mλ, m=0,1,2,3 This condition is not changed for in the case of n slits. diffraction gratings can be made by scratching lines on glas and are often used to analyze light instead of giving d, one usually gives the number of slits per unit distance: e.g. 300 lines/mm d=1/(300 lines/mm)=0.0033 mm PHY232 - Remco Zegers - interference, diffraction & polarization 36

separating colors dsinθ=mλ, m=0,1,2,3 for maxima (same as for double slit) so θ=sin -1 (mλ/d) depends on λ, the wavelength. cd s can act as a diffraction grating PHY232 - Remco Zegers - interference, diffraction & polarization 37

quiz question (extra credit) why is it not possible to produce an interference pattern in a double-slit experiment if the separation of the slits is less than the wavelength of the light used? a) the very narrow slits required would generate different wavelength, thereby washing out the interference pattern b) the two slits would not emit coherent light c) the fringes would be too close together d) in no direction could a path difference as large as one wavelength be obtained PHY232 - Remco Zegers - interference, diffraction & polarization 38

question If the interference conditions are the same when using a double slit or a diffraction grating with thousands of slits, what is the advantage of using the grating to analyze light? a) the more slits, the larger the separation between maxima. b) the more slits, the narrower each of the bright spots and thus easier to see c) the more slits, the more light reaches each maximum and the maxima are brighter d) there is no advantage PHY232 - Remco Zegers - interference, diffraction & polarization 39

question An diffraction grating has 5000 lines per cm. The angle between the central maximum and the fourth order maximum is 47.2 0. What is the wavelength of the light? dsinθ=mλ, m=0,1,2,3 d=1/5000=2x10-4 cm=2x10-6 m m=4, sin(47.2)=0.734 so λ= dsinθ/m=2x10-6 x0.734/4=3.67x10-7 m=367 nm PHY232 - Remco Zegers - interference, diffraction & polarization 40

lon-capa do question 6 from lon-capa 9 PHY232 - Remco Zegers - interference, diffraction & polarization 41

polarization We saw that light is really an electromagnetic wave with electric and magnetic field vectors oscillating perpendicular to each other. In general, light is unpolarized, which means that the E-field vector (and thus the B-field vector as long as it is perpendicular to the E- field) could point in any direction E-vectors could point anywhere: unpolarized propagation into screen PHY232 - Remco Zegers - interference, diffraction & polarization 42

polarized light light can be linearly polarized, which means that the E- field only oscillated in one direction (and the B-field perpendicular to that) The intensity of light is proportional to the square of amplitude of the E-field. I~E 2 max PHY232 - Remco Zegers - interference, diffraction & polarization 43

How to polarize? absorption reflection scattering PHY232 - Remco Zegers - interference, diffraction & polarization 44

polarization by absorption certain material (such as polaroid used for sunglasses) only transmit light along a certain transmission axis. because only a fraction of the light is transmitted after passing through a polarizer the intensity is reduced. If unpolarized light passes through a polarizer, the intensity is reduced by a factor of 2 PHY232 - Remco Zegers - interference, diffraction & polarization 45

polarization axis polarizers and intensity direction of E-vector θ For unpolarized light, on average, the E-field has an angle of 45 0 with the polarizer. I=I 0 cos 2 θ=i 0 cos 2 (45)=I 0 /2 If E-field is parallel to polarization axis, all light passes If E-field makes an angle θ pol. axis only the component parallel to the pol. axis passes: E 0 cosθ So I=I 0 cos 2 θ PHY232 - Remco Zegers - interference, diffraction & polarization 46

question unpolarized light with intensity I 0 passes through a linear polarizer. It then passes through a second polarizer (the second polarizer is usually called the analyzer) whose transmission axis makes and angle of 30 0 with the transmission axis of the first polarized. What is the intensity of the light after the second polarizer, in terms of the intensity of the initial light? After passing through the first polarizer, I 1 =I 0 /2. After passing through the second polarizer, I 2 =I 1 cos 2 30=0.75I 1 =0.375I 0 PHY232 - Remco Zegers - interference, diffraction & polarization 47

n 1 n 2 polarization by reflection If unpolarized light is reflected, than the reflected light is partially polarized. if the angle between the reflected ray and the refracted ray is exactly 90 0 the reflected light is completely polarized the above condition is met if for the angle of incidence the equation tanθ=n 2 /n 1 the angle θ=tan -1 (n 2 /n 1 ) is called the Brewster angle the polarization of the reflected light is (mostly) parallel to the surface of reflection PHY232 - Remco Zegers - interference, diffraction & polarization 48

question direction of polarization of reflected light vertical horizontal Because of reflection from sunlight of the glass window, the curtain behind the glass is hard to see. If I would wear polaroid sunglasses that allow polarized light through, I would be able to see the curtain much better. a) horizontally b) vertically PHY232 - Remco Zegers - interference, diffraction & polarization 49

sunglasses wearing sunglasses will help reducing glare (reflection) from flat surfaces (highway/water) without with sunglasses PHY232 - Remco Zegers - interference, diffraction & polarization 50

polarization by scattering certain molecules tend to polarize light when struck by it since the electrons in the molecules act as little antennas that can only oscillate in a certain direction PHY232 - Remco Zegers - interference, diffraction & polarization 51

lon-capa do problem 9 from set 9 PHY232 - Remco Zegers - interference, diffraction & polarization 52