Getting Started with IPv6 in Low-Power Wireless Personal Area Networks (6LoWPAN)

Similar documents
Outline. Introduction. The Internet Architecture and Protocols Link Layer Technologies Introduction to 6LoWPAN The 6LoWPAN Format Bootstrapping

Module 1: Wireless Sensor Networks

Networked Embedded Systems: 6LoWPAN

IPv6 Stack. 6LoWPAN makes this possible. IPv6 over Low-Power wireless Area Networks (IEEE )

Networked Embedded Systems: 6LoWPAN

Module 1: Wireless Sensor Networks

Mobile Communications

ETSI Plugtests Guide V1.0.0 ( ) 6LoWPAN Plugtests; Berlin, Germany; July 2013

L o g o. IPv6 in IoT. Network Information Center Institute of Network Technology BUPT. Website: niclab.bupt.edu.cn

Constrained Node Networks

draft-ietf-6lowpan-nd-07 Authors: Zach Shelby (ed.) Jonathan Hui Pascal Thubert Samita Chakrabarti Erik Nordmark Carsten Bormann

Politecnico di Milano Advanced Network Technologies Laboratory. 6LowPAN

IoT Roadmap in the IETF. Ines Robles

Internet based IoT connectivity Technologies

6LoWPAN (IPv6 based Low Power WPAN)

Implementation and Evaluation of the Enhanced Header Compression (IPHC) for 6LoWPAN

Outlook on IEEE ZigBee Implications IP Requirements IPv6 over Low Power WPAN (IEEE ) Conclusions. KRnet /21

Introduction to IPv6 - II

Linux-based 6LoWPAN border router

Evaluation of 6LoWPAN Implementations

TinyOS meets IP -- finally

Internet of Things: Latest Technology Development and Applications

WPAN/WBANs: ZigBee. Dmitri A. Moltchanov kurssit/elt-53306/

Intel Corp J. Hui D. Culler Arch Rock Corp September Transmission of IPv6 Packets over IEEE Networks

Design Considerations for Low Power Internet Protocols

Lesson 4 RPL and 6LoWPAN Protocols. Chapter-4 L04: "Internet of Things ", Raj Kamal, Publs.: McGraw-Hill Education

Politecnico di Milano Advanced Network Technologies Laboratory. 6LowPAN

ZigBee IP update IETF 87 Berlin. Robert Cragie

Internet Protocol, Version 6

Proposed Node and Network Models for M2M Internet

Routing over Low Power and Lossy Networks

System Architecture Challenges in the Home M2M Network

IPv6 Protocols and Networks Hadassah College Spring 2018 Wireless Dr. Martin Land

Configuring IPv6 basics

TTCN-3 in the Internet of Things(IoT), Testing in lossy environments

Optimized Neighbor Discovery for 6LoWPANs: Implementation and Performance Evaluation

IPv6 for the Masses (Of sensors)

Configuring IPv6 for Gigabit Ethernet Interfaces

Linux-wpan: IEEE and 6LoWPAN in Linux

Low Power and Low Latency MAC Protocol: Dynamic Control of Radio Duty Cycle

CHAPTER 3. 6LoWPAN 3.1 INTRODUCTION

RF and network basics. Antonio Liñán Colina

IPv6 Neighbor Discovery

Configuring IPv6. Information About IPv6. Send document comments to CHAPTER

IPv6. IPv4 & IPv6 Header Comparison. Types of IPv6 Addresses. IPv6 Address Scope. IPv6 Header. IPv4 Header. Link-Local

TCP/IP Protocol Suite

IPv6 Protocol. Does it solve all the security problems of IPv4? Franjo Majstor EMEA Consulting Engineer Cisco Systems, Inc.

IPv6 Backbone Router draft-thubert-6lo-backbonerouter-02

RFC 6775 Extension. P.Thubert, E. Nordmark, S. Chakrabarti, C. Perkins IETF 101. London

Communication and Networking in the IoT

IPv6 over MS/TP Networks

IETF 93 ROLL. Routing over Low-Power And Lossy Networks. Chairs: Michael Richardson Ines Robles

Wireless Embedded InterNetworking Foundations of Ubiquitous Sensor Networks 6LoWPAN David E. Culler University of California, Berkeley June 2008

The Research of Long-Chain Wireless Sensor Network Based on 6LoWPAN

Rocky Mountain IPv6 Summit April 9, 2008

ETSI M2M Workshop. IPSO Alliance Standard Update. Patrick Wetterwald Cisco Smart Grid and IoT Product Marketing President, IPSO Alliance

Design Considerations for Low Power Internet Protocols. Hudson Ayers Paul Crews, Hubert Teo, Conor McAvity, Amit Levy, Philip Levis

WIRELESS TECHNOLOGIES FOR THE INTERNET OF THINGS

Guide to TCP/IP Fourth Edition. Chapter 6: Neighbor Discovery in IPv6

Table of Contents 1 IPv6 Configuration IPv6 Application Configuration 2-1

Computer Networking: A Top Down Approach Featuring the. Computer Networks with Internet Technology, William

Internet Engineering Task Force (IETF) Request for Comments: ISSN: February 2015

Introduction to IEEE and IPv6 over (6LowPAN)

Operation Manual IPv6 H3C S3610&S5510 Series Ethernet Switches Table of Contents. Table of Contents

MBC. Auto. Address. Networks. Mesh. uto- configuration for Wireless. Keecheon Kim. Konkuk University Seoul, Korea

IPv6 over IEEE 구현시나리오

Lithe: Lightweight Secure CoAP for the Internet of Things

LSCHC: Layered Static Context Header Compression for LPWANs

G3-PLC L3/L4 Interoperability Test Procedure Manual ANNEX

Network protocol for Internet of Things based on 6LoWPAN

IPv6 Neighbor Discovery

The Netwok Layer IPv4 and IPv6 Part 2

Workshop on Scientific Applications for the Internet of Things (IoT) March

Low-Rate Wireless Personal Area Networks IEEE Fernando Solano Warsaw University of Technology

Table of Contents 1 IPv6 Configuration IPv6 Application Configuration 2-1

IPv6 Concepts. Improve router performance Simplify IP header Align to 64 bits Address hierarchy with more levels Simplify routing tables

G3-PLC L3/L4 Interoperability Test Procedure Manual ANNEX

Table of Contents 1 IPv6 Configuration IPv6 Application Configuration 2-1

Mobile IPv6 Overview

IP Connected Low Power Wireless Personal Area Networks in the Future Internet

Introduction to IPv6. IPv6 addresses

Evaluating IPv6 Connectivity for IEEE and Bluetooth Low Energy

Extending IP to Low-Power, Wireless Personal Area Networks

AIM: To create a project for implement a wireless communication protocol on an embedded system- ZigBee.

IPv6 Next generation IP

A dozen years of standardizing the Internet of Things

Sensor-to-cloud connectivity using Sub-1 GHz and

Recent Advances in IPv6 Security. Fernando Gont

Intended status: Standards Track Expires: November 8, 2014 Sensinode M. Van de Logt Gigaset Communications GmbH D. Barthel Orange Labs May 7, 2014

Robust Header Compression (ROHC)

IPv6 Neighbor Discovery

Address Protected Neighbor Discovery for Low-power and Lossy Networks. draft-sarikaya-6lo-ap-nd-02

Table of Contents 1 IPv6 Basics Configuration 1-1

Implementation of 6LoWPAN Border Router (6BR) in Internet of Things

CSCI-1680 Network Layer:

Chapter 7: IP Addressing CCENT Routing and Switching Introduction to Networks v6.0

IPv6 Specifications to Internet Standard

Interworking between USN and IP Networks Ki-Hyung Kim Ajou University, Korea

How efficient is Efficient NDP?

A study on Need of Adaptation Layer in 6LoWPAN Protocol Stack

Transcription:

Getting Started with IPv6 in Low-Power Wireless Personal Area Networks (6LoWPAN) Carsten Bormann, Universität Bremen TZI IETF 6lowpan WG and CoRE WG Co-Chair Presented at IAB Tutorial on Interconnecting Smart Objects with the Internet, Prague, Saturday, 2011-03-26 http://www.iab.org/about/workshops/smartobjects/tutorial.html

v6.12.2009 6LoWPAN: The Wireless Embedded Internet, Shelby & Bormann 2

IPv4 Registry Exhaustion Dates 2011-02-03 Geoff Huston potaroo.net

3.4 10 38 IPv6 = 340282366920938463463374607431768211456 addresses There are only ~ 10 25 grains of sand on the earth Let s settle for a billion (10 9 ) objects on the net Danfoss (EU): 0.4 10 9 thermostats so far Walmart (US): 0.1 10 9 CFL light bulbs per year

Wires are too expensive Electrical wall socket + installation = $80 Cat5 socket + installation = $150 1 billion nodes = GDP of Kuwait

Wireless? Technology Range Speed Power Use Cost WiFi 100 m nn Mbit/s high $$$ Bluetooth 10 100 m n Mbit/s medium $$ 802.15.4 10 100 m 0.n Mbit/s low $

Constrained node/networks Internet of Things Low-Power/Lossy IP Smart Objects IoT LLN IPSO

Constrained nodes Node: a few MHz, ~10 KiB RAM, ~100 KiB Flash/ROM Often battery operated must sleep a lot (mw (1.0 (99.9 %)) = µw!) Moore s law will fix it? Moore s law will be used mostly to make things cheaper, more energy efficient! 8

http://www.flickr.com/photos/blahflowers/3878202215/sizes/l/ 9

Example: MSP430 Texas Instruments mixed-signal uc 16-bit RISC ROM: 1-60 KiB RAM: Up to 10 KiB Analogue 12 bit ADC & DAC LCD driver Digital USART x 2 DMA controller Timers v4.3.2010 6LoWPAN: The Wireless Embedded Internet, Shelby & Bormann 10

Example: CC2420 IEEE 802.15.4 compliant radio 2.4 GHz band using DSSS at 250 kbps Integrated voltage regulator Integrated digital baseband and MAC functions Clear channel assessment Energy detection (RSSI) Synchronization Framing Encryption/authentication Retransmission (CSMA) cf. CC2431: Add an 8051-style processor, 8 KB RAM, 128 KB Flash Sleep Idle Tx Rx 20 ua 426 ua 8.5 17.4 ma 18.8 ma v4.3.2010 6LoWPAN: The Wireless Embedded Internet, Shelby & Bormann 11

Power Consumption A simple approximation for power consumption: P avg = 1 T F { P Rx T wk up + P Rx ( N Tx T Tx up + N Rx T Rx up ) + P Tx T Tx + P Rx T Rx + P idle T idle + P sleep T sleep } T wk up T Tx up T Tx T Rx up T Rx T idle T sleep N Tx N Rx T F P Tx P Rx P idle P sleep P avg = Time that takes to go from sleep state to awake state = Transmitter setup time, i.e. time it takes for the transmitter to be ready = Time in the Tx state = Receiver setup time, i.e. time it takes for the receiver to be ready = Time in the Rx state = Time in the idle state = Time in the sleep state = Average number of times per frame that the transmitter is used = Average number of times per frame that the receiver is used = Duration of the time frame = Power used in the Tx state = Power used in the Rx state = Power used in the idle state = Power used in the sleep state = Average power used by the transceiver v4.3.2010 6LoWPAN: The Wireless Embedded Internet, Shelby & Bormann 12

Constrained networks Node:... must sleep a lot (µw!) vs. always on Network: ~100 kbit/s, high loss, high link variability May be used in an unstable radio environment Physical layer packet size may be limited (~100 bytes) LLN low power, lossy network 13

Constrained network example: IEEE 802.15.4 popular low-power (~ 1 mw) radio 0.9 and 2.4 GHz bands 868 MHz: Europe (1 % duty cycle, 20 kbit/s) 900 MHz: US (40 kbit/s) 2.4 GHz: World (256 kbit/s) up to 127-byte packets 14

Architecture v6.12.2009 6LoWPAN: The Wireless Embedded Internet, Shelby & Bormann 15

Constrained node/networks in the IETF IETF WGs to date: 6LoWPAN ROLL CoRE INT area (Internet) L2/L3 interface RTG area (Routing) L3 routing APP area (Applications) L7 application (now) JP Vasseur Zach Shelby Adam Dunkels New: LWIG (INT area, Light-Weight Implementation Guidance) 16

6LoWPAN: IPv6 over Low-Power Area Networks (IEEE 802.15.4) IETF WG chartered in 2005 to define IPv6 over IEEE 802.15.4 Two initial deliverables approved 2007-05-01 RFC 4919: Problem statement ( Goals and Assumptions ) RFC 4944: Format specification ( IPv6 over 802.15.4 ) 17

RFC 4944: make 802.15.4 look like an IPv6 link 2007 Basic Encapsulation Efficient representation of packets < ~100 bytes First approach to stateless Header Compression Fragmentation (map 1280 byte MTU to < 128 bytes) Datagram tag/datagram offset Mesh forwarding Identify Originator/Final Destination Minimal use of complex MAC layer concepts cf. RFC 3819 Advice for Internet Subnetwork Designers 18

The dispatch byte: replacement Ethertype Space later taken by 6LoWPAN-HC Pattern Header Type +------------+-----------------------------------------------+ 00 xxxxxx NALP - Not a LoWPAN frame 01 000001 IPv6 - Uncompressed IPv6 Addresses 01 000010 LOWPAN_HC1 - LOWPAN_HC1 compressed IPv6 01 000011 reserved - Reserved for future use... reserved - Reserved for future use 01 001111 reserved - Reserved for future use 01 010000 LOWPAN_BC0 - LOWPAN_BC0 broadcast 01 010001 reserved - Reserved for future use... reserved - Reserved for future use 01 111110 reserved - Reserved for future use 01 111111 ESC - Additional Dispatch byte follows 10 xxxxxx MESH - Mesh Header 11 000xxx FRAG1 - Fragmentation Header (first) 11 001000 reserved - Reserved for future use... reserved - Reserved for future use 11 011111 reserved - Reserved for future use 11 100xxx FRAGN - Fragmentation Header (subsequent) 11 101000 reserved - Reserved for future use... reserved - Reserved for future use 11 111111 reserved - Reserved for future use +------------+-----------------------------------------------+ v6.12.2009 6LoWPAN: The Wireless Embedded Internet, Shelby & Bormann 19

LoWPAN UDP/IPv6 Headers 6 Bytes! LoWPAN Dispatch byte provides multiplexing IPv6 UDP Compressed port numbers 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Dispatch with...lowpan_iphc LOWPAN_NHC Src Dst +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ UDP Checksum UDP Payload... +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Payload using draft-ietf-6lowpan-hc format (see later) v6.12.2009 6LoWPAN: The Wireless Embedded Internet, Shelby & Bormann 20

LoWPAN Dispatch byte provides multiplexing Initial Fragment Fragmentation 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1 1 0 0 0 datagram_size datagram_tag +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Following Fragments 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1 1 1 0 0 datagram_size datagram_tag +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ datagram_offset +-+-+-+-+-+-+-+-+ v6.12.2009 6LoWPAN: The Wireless Embedded Internet, Shelby & Bormann 21

6LoWPAN-ND Classic IPv6: link multicast domain could be realized by mesh-under (L2 routing) protocol can be substituted by less multicast-reliant ND RFC 5889: ad-hoc link model Alternative: confine link to radio domain multicast is local only need route-over (L3 routing) protocol to build larger 6lowpan Both mesh-under and route-over covered by single architecture 22

Addressing Example v6.12.2009 6LoWPAN: The Wireless Embedded Internet, Shelby & Bormann 23

Internet Router Route-Over ackhaul link Router Local Server H One or more Edge Routers (6LoWPAN border routers) connect 6LoWPAN to global Internet 6LoWPAN comprises H H routers (6LRs) and hosts Edge Router R R R Backbone link Edge Router Edge Router R R R R H R H H H R Simple LoWPAN Extended LoWPAN 24

Host-Router Interface Hosts only talk to routers Routers may redirect to hosts in mesh-under no direct host-host communication in route-over (wouldn t be awake anyway...) 25

Classic IPv6 Neighbor Discovery (4861) v6.12.2009 6LoWPAN: The Wireless Embedded Internet, Shelby & Bormann 26

Typical 6LoWPAN-ND Exchange Optional multi-hop DAD NS with ARO NA with ARO DAR DAC v6.12.2009 6LoWPAN: The Wireless Embedded Internet, Shelby & Bormann 27

6LoWPAN-ND elements beyond 4861 ARO (address registration option): hosts register their addresses to routers (6LRs): NS/NR 6LRs can check the address with edge router (6LBR): new ICMP messages DAR/DAC replaces NS/NR use for address resolution (off-link model), but keeps NS/NR intact for NUD (neighbor unreachability detection) 28

ARO Option Reserved 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Type Length = 2 Status +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Registration Lifetime +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + EUI-64 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Registration Lifetime: 16-bit unsigned integer. Time in units of 60 s v6.12.2009 6LoWPAN: The Wireless Embedded Internet, Shelby & Bormann 29

6LoWPAN-ND elements beyond 4861 ABRO (authoritative border router option) distribute information about available 6LBRs (edge routers) 6CO (6LoWPAN Context Option) distribute header compression context in entire LoWPAN 30

Header Compression Organized Layer Violation compress L3+ headers on L3-L2 interface Traditional header compression (ROHC, RFC 3095 etc.) is flow-based stateful exploit redundancies between packets RFC 4944 header compression is stateless exploit intra-packet redundancies only Can t compress global prefix 31

6LoWPAN-HC: Header Compression Is there a middle ground? draft-bormann-6lowpan-cbhc (2008-07): introduced a single area context state for an entire 6LoWPAN Infrastucture Cloud +-----+ +-----+ Gateway Host +-----+ +-----+ Backbone link +--------------------+------------------+ +-----+ +-----+ +-----+ Edge Edge Edge router router router +-----+ +-----+ +-----+ o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o 32

IPv6 Header Compression 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 0 1 1 TF NH HLIM CID SAC SAM M DAC DAM Addressing TF 2 bits Traffic Class and Flow Label NH 1 bit Next Header HLIM 2 bits Hop Limit CID 1 bit Context Identifier Extension SAC 1 bit Source Address Context SAM 2 bits Source Address Mode M 1 bit Multicast Address Compression DAC 1 bit Destination Address Context DAM 2 bits Destination Address Mode 11/18/2008 73rd IETF Meeting - 6LoWPAN WG [Hui] 33

6LoWPAN Headers Orthogonal header format for efficiency Stateless header compression v6.12.2009 6LoWPAN: The Wireless Embedded Internet, Shelby & Bormann 34

Area context state up to 16 contexts, each with a prefix (up to 128 bits), given by value and length Used in 6LoWPAN-HC compression methods: carry the variable bits in packet infer variable bits from L2 addresses special method for multicast addresses 6LoWPAN-ND Context Option (6CO) distribute context throughout 6LoWPAN defined as part of 6LoWPAN-ND 0 1 2 3 4 5 6 7 35

LOWPAN-NHC: Next Header Compression beyond IP header: UDP: Can compress ports (from 61616 to 61631) Extension headers: IPv6 Hop-by-Hop Options Header IPv6 Routing Header IPv6 Fragment Header IPv6 Destination Options Header IPv6 Mobility Header [RFC3775] IPv6 Header (for compressing Tunneling) 36

draft-bormann-6lowpan-ghc-02 New proposal: 6LoWPAN-GHC Generic compression of remaining headers and header-like payloads: ICMPv6, ND, RPL; DHCP;... draft-bormann-6lowpan-ghc: simple LZ77 based on bytecode single-page specification: simple stateless (but can use 6LoWPAN-HC context) provides modest compression factors between 1.65 and 1.85 on realistic examples 37

Example: ND Neighbor Solicitation Payload: 87 00 a7 68 00 00 00 00 fe 80 00 00 00 00 00 00 02 1c da ff fe 00 30 23 01 01 3b d3 00 00 00 00 1f 02 00 00 00 00 00 06 00 1c da ff fe 00 20 24 Pseudoheader: 20 02 0d b8 00 00 00 00 00 00 00 ff fe 00 3b d3 fe 80 00 00 00 00 00 00 02 1c da ff fe 00 30 23 00 00 00 30 00 00 00 3a copy: 04 87 00 a7 68 4 nulls: 82 ref(32): fe 80 00 00 00 00 00 00 02 1c da ff fe 00 30 23 -> ref 101nssss 1 2/11nnnkkk 6 0: b2 f0 copy: 04 01 01 3b d3 4 nulls: 82 copy: 02 1f 02 5 nulls: 83 copy: 02 06 00 ref(24): 1c da ff fe 00 -> ref 101nssss 0 2/11nnnkkk 3 3: a2 db copy: 02 20 24 Compressed: 04 87 00 a7 68 82 b2 f0 04 01 01 3b d3 82 02 1f 02 83 02 06 00 a2 db 02 20 24 Was 48 bytes; compressed to 26 bytes, compression factor 1.85 draft-bormann-6lowpan-ghc-01 38

6LoWPAN status http://tools.ietf.org/wg/6lowpan 6LoWPAN widely accepted as the way to run IP on 802.15.4 RFC 4944 published September 2007 Adoption in TinyOS, Contiki; Standards: ISA100, ZigBee SE 2.0,... Recent interoperability events for both 6LoWPAN-ND/ 6LoWPAN-HC: 10+ implementations each 6LoWPAN-HC (HC-15) in IESG (last step before RFC) remaining issue: checksum omission (vs. draft-ietf-6man-udpzero-02) 6LoWPAN-ND (ND-15) went through second WG last call remaining technical discussion next week before submitting to IESG 39

6LoWPAN = RFC4944 HC1/HC2 + 6LoWPAN-HC + 6LoWPAN-ND