Assessing the Accuracy of Stockpile Volumes Obtained Through Aerial Surveying

Similar documents
Accuracy Assessment of an ebee UAS Survey

USING UNMANNED AERIAL VEHICLE (DRONE/FLYCAM) TECHNOLOGY IN SURVEY WORK OF PORTCOAST

a Geo-Odyssey of UAS LiDAR Mapping Henno Morkel UAS Segment Specialist DroneCon 17 May 2018

2/9/2016. Session Agenda: Implementing new Geospatial Technologies for more efficient data capture

TAKING FLIGHT JULY/AUGUST 2015 COMMERCIAL UAS ADVANCEMENT BALLOONS THE POOR MAN S UAV? SINGLE PHOTON SENSOR REVIEW VOLUME 5 ISSUE 5

UAV Flight Operations for Mapping. Precision. Accuracy. Reliability

Reality Modeling Drone Capture Guide

Open Pit Mines. Terrestrial LiDAR and UAV Aerial Triangulation for. Figure 1: ILRIS at work

Merging LiDAR Data with Softcopy Photogrammetry Data

Terrestrial LiDAR. Patrick Crawford. Harnessing the Power of Big Data for Asset and Facility Management WHITE PAPER SHAFER, KLINE & WARREN

UAS for Surveyors. An emerging technology for the Geospatial Industry. Ian Murgatroyd : Technical Sales Rep. Trimble

Welcome to IMAGIN. June 18, 2018

Laser technology has been around

Volumetric Calculations. Sample Data

Comparing workflow and point cloud outputs of the Trimble SX10 TLS and sensefly ebee Plus drone

Surveying like never before

Drone2Map: an Introduction. October 2017

Photogrammetry: A Modern Tool for Crash Scene Mapping

Hardware 3D Mapping Systems

Invasive Alien Plant Program. Part 2. Modules 2.2, 2.3 & 2.4. Prepared by Range Branch. Ministry of Forests and Range

Our Experiences with UAVs in Coastal Monitoring at Gator Lake. Capt. Joe Morrow MRD Associates, Inc. Destin, Florida

Technical English -I 5 th week SURVEYING AND MAPPING

A New Protocol of CSI For The Royal Canadian Mounted Police

Practical Considerations of UAS Operations on Data Quality

Intelligent photogrammetry. Agisoft

CHAPTER 10. Digital Mapping and Earthwork

A New Direction in GIS Data Collection or Why Are You Still in the Field?

Drone2Map for ArcGIS: Bring Drone Imagery into ArcGIS

TopoDrone Photogrammetric Mapping Reliable, Accurate, Safe

Photo based Terrain Data Acquisition & 3D Modeling

Overview of the Trimble TX5 Laser Scanner

Digital Photogrammetry Software Comparison for Rock Mass Characterization

Tools, Tips, and Workflows Automatic Ground Classification of Dense Point Clouds in LP360

CREATING 3D MODEL OF AN OPEN PIT QUARRY BY UAV IMAGING AND ANALYSIS IN GIS

Ingesting, Managing, and Using UAV (Drone) Imagery in the ArcGIS Platform

PhotoScan. Fully automated professional photogrammetric kit

3GSM GmbH. Plüddemanngasse 77 A-8010 Graz, Austria Tel Fax:

UAV s in Surveying: Integration/processes/deliverables A-Z. 3Dsurvey.si

Virtually Real: Terrestrial Laser Scanning

PhotoScan. Fully automated professional photogrammetric kit

Commercial suas The Right Tool for the Right Job

UAS to GIS Utilizing a low-cost Unmanned Aerial System (UAS) for Coastal Erosion Monitoring

Aerial Mapping using UAS. Jeff Campbell

Drones and Supercalculators : A New Field of Investigation in Photogrammetry.

Feel4U TerrEye. Tactical decision-support solutions for land management (for a better and cost-efficiency & environmental friendly land stewardship)

Drone2Map for ArcGIS: Bring Drone Imagery into ArcGIS. Will

STARTING WITH DRONES. Data Collection and Remote Sensing with UAVs, etc. Dr. Bill Hazelton LS

Unmanned Aerial Systems: A Look Into UAS at ODOT

Geometry of Aerial photogrammetry. Panu Srestasathiern, PhD. Researcher Geo-Informatics and Space Technology Development Agency (Public Organization)

REMOTE SENSING LiDAR & PHOTOGRAMMETRY 19 May 2017

OPEN-PIT MINE SCANNING IN INDONESIA, HYDRONAV SERVICES OF SINGAPORE

INTRODUCTION TO Accelerating Data Collection with Unmanned Aircraft Systems

Leica Geosystems UAS Airborne Sensors. MAPPS Summer Conference July 2014 Alistair Stuart

Creating a Competitive Edge with FARO Scanners

Case Study for Long- Range Beyond Visual Line of Sight Project. March 15, 2018 RMEL Transmission and Planning Conference

Todd King, PLS, LEED AP Business Developer

DRONE MAPPING FOR CONSTRUCTION

Sasanka Madawalagama Geoinformatics Center Asian Institute of Technology Thailand

LEAK DETECTION UTILIZING SMALL UNMANNED AERIAL SYSTEMS (SUAS) PRESENTED BY MATT HALKER

A COMPARISON OF STANDARD FIXED-WING VS MULTIROTOR DRONE PHOTOGRAMMETRY SURVEYS

TRAINING MATERIAL HOW TO OPTIMIZE ACCURACY WITH CORRELATOR3D

Terrain Modeling and Mapping for Telecom Network Installation Using Scanning Technology. Maziana Muhamad

HYDRA FUSION TOOLS CAPABILITIES GUIDE REAL-TIME 3D RECONSTRUCTIONS

Trimble VISION Positions from Pictures

Tutorial (Beginner level): Orthomosaic and DEM Generation with Agisoft PhotoScan Pro 1.3 (with Ground Control Points)

Simply powerful. Pix4Dmapper features the raycloud. Read more on Next generation aerial image processing software

2. POINT CLOUD DATA PROCESSING

The Use and Applications of Unmanned- Aerial Systems (UAS) In Agriculture

Tutorial (Beginner level): Orthomosaic and DEM Generation with Agisoft PhotoScan Pro 1.3 (without Ground Control Points)

3D recording of archaeological excavation

A New Way to 3D Scan. Photo-based Scanning Saves Time and Money. A White Paper by Alan Walford, Eos Systems Inc.

Airborne Laser Survey Systems: Technology and Applications

Should Contours Be Generated from Lidar Data, and Are Breaklines Required? Lidar data provides the most

MAPPING WITHOUT GROUND CONTROL POINTS: DOES IT WORK?

Chapters 1 9: Overview

LIDAR MAPPING FACT SHEET

UAS Campus Survey Project

THREE DIMENSIONAL CURVE HALL RECONSTRUCTION USING SEMI-AUTOMATIC UAV

An Introduction to Lidar & Forestry May 2013

Hydra Fusion Tools. Capabilities Guide. Real-time 3D Reconstructions

Virtual and remote inspection methods

Reality Modeling Webinar

Iowa Department of Transportation Office of Design. Photogrammetric Mapping Specifications

2010 LiDAR Project. GIS User Group Meeting June 30, 2010

PHOTOGRAMMETRIC SOLUTIONS OF NON-STANDARD PHOTOGRAMMETRIC BLOCKS INTRODUCTION

A New Way to Control Mobile LiDAR Data

UAV Surveying II. Precision. Accuracy. Reliability

EVOLUTION OF POINT CLOUD

FRST 557. Lecture 9c. Switchbacks Vertical and Horizontal Design. Lesson Background and Overview:

I. Project Title Light Detection and Ranging (LIDAR) Processing

TRIMBLE BUSINESS CENTER PHOTOGRAMMETRY MODULE

PARCC Geometry Practice Test Released April,

GIS data input. In the early days of GIS 1980s and early 1990s. We used canned datasets for teaching (from USA)

2-4 April 2019 Taets Art and Event Park, Amsterdam CLICK TO KNOW MORE

Microwave. Infrared. Preprogrammed Chip

Pave the Way to Better Profits. Trimble. Paving Solutions TRANSFORMING THE WAY THE WORLD WORKS

Surveying Revolutionized. LaserScanning. >> By Marc Cheves, LS

Harnessing GIS and Imagery for Power Transmission Inspection. ESRI European Users Conference October 15, 2015

LiDAR data pre-processing for Ghanaian forests biomass estimation. Arbonaut, REDD+ Unit, Joensuu, Finland

LiDAR Applications in Surveying and Engineering

Transcription:

CASE STUDY Assessing the Accuracy of Stockpile Volumes Obtained Through Aerial Surveying Martin Remote Sensing share surveying insight DroneDeploy

Introduction This report comes to us from Kelsey Martin, President of Martin Remote Sensing. Martin has 12 years of experience in the mining industry, and has been responsible for all aspects of mine planning and surveying, including measuring millions of dollars worth of stockpiled material on a quarterly basis. Many people have recently enquired whether aerial surveying utilizing unmanned aerial vehicles (UAV s) is as accurate as other generally accepted methods, in particular, highprecision GPS. This is a very valid question since ultimately, the reason that we conduct stockpile surveys regardless of the industry is to accurately determine the volume of materials. This information could be required for financial reporting of inventories, ensuring a certain stockpile will cover a particular area, or even as an important piece of legal information should Party A look to purchase certain stockpiled assets from Party B. The accuracy of any survey regardless of method used is therefore a matter of critical importance. In an effort to determine the accuracy of our survey methods versus historically accepted methods, Martin Remote Sensing conducted comparative analysis on a stockpile that had previously been surveyed utilizing GPS methods. As the survey had been conducted by a reputable firm, we chose to use this as the gold standard by which we would measure our performance. The accuracy of any survey regardless of method used is of critical importance as there is a financial impact 2 Case Study Martin Remote Sensing DroneDeploy

Typically, GPS is used to determine the position of several hundred to thousands of data points for a typical stockpile, to an error of less than 5 cm. This is a very precise method for determining the X, Y and Z coordinates of each point, however there are limitations in the number of points that can be taken for a given survey before becoming cost prohibitive. With aerial surveying, complex photogrammetry software is used to stitch hundreds to thousands of high resolution photographs into complex three-dimensional models. This step-change to using big data and powerful software to calculate volumes can provide exceptional results at a lower cost compared to traditional methods. By having many more data points, the resulting volumes from this method are very accurate. 3 Case Study Martin Remote Sensing DroneDeploy

The Process Ground-based GPS and aerial surveying, a side-by-side comparison. We ll begin by describing the process for each survey method to understand the key differences and how they influence accuracy. Ground-based GPS Surveying The first step in ground-based GPS surveying is collecting GPS point measurements of latitude, longitude and elevation using ground-based survey equipment. The coordinates of the collected points are then uploaded into a three-dimensional space and connected through 3D rays or lines, creating multiple lines emanating from each point. Once the lines have been connected to the neighboring points, they define a surface. Essentially, GPS creates points, points create lines, lines create surfaces and finally surfaces can calculate volumes. Aerial Surveying Aerial surveying leverages drones to capture geo-tagged imagery of the area of interest. Once the photos have been gathered from multiple angles, with high degrees of overlap, they are uploaded into software that then uses photogrammetry to generate a high-resolution orthomosaic map, point cloud and 3D model. Photogrammetry works by identifying points that are common between overlapping photos and then comparing the geo-tagging data and relationship between overlapping photos to model the points in 3-dimensional space. From there, the software revisits the imagery Where typical GPS surveys for stockpile volumes are measured in square meters per point, aerial surveying creates hundreds of points per square meter 4 Case Study Martin Remote Sensing DroneDeploy

to find more shared points and create a very dense point cloud, as illustrated in Fig 1. The dense point cloud can also be used to generate a 3D mesh model or 2-dimensional orthomosaic map. Martin Remote Sensing uses DroneDeploy s mobile app to automatically fly and capture imagery and then uploads imagery to DroneDeploy s cloud-based Map Engine for processing using photogrammetry. Aerial surveying relinquishes some of the precision of GPS in exchange for the generation of substantially more points. Where typical GPS surveys for stockpile volumes are measured in square meters per point, aerial surveying creates hundreds of points per square meter. For example, the stockpile volume that was measured in this study was calculated using 275 points for the GPS method, while our method generated 368,400 points. Of course, having 135,000% more data points alone is not adequate to create highly repeatable, accurate surveys. Fig 1. Stockpile Survey Output GPS may be used to find survey pins prior to excavating a foundation, but once that has been accomplished, a home takes its highly accurate form based on measuring points within the project 5 Case Study Martin Remote Sensing DroneDeploy

For measuring stockpile volumes, the most important component of accuracy is relative accuracy, or the accuracy of the distances between points within model. This is very similar to the footing of a home being squared against itself using angles and distances. The relative accuracy of a point cloud or volume measurement is determined by the photogrammetry software being used, the experience of the technician conducting the survey and their attention to detail in the field. By contrast, global accuracy, the precision of the x,y,z point measurements when compared to global absolute GPS measurements, is far less important. For a volume measurement, as long as you know your locations relative to other local points, you will have a very accurate final product. For this same reason, our 3-dimensional volumes are extremely accurate. Theoretical Stockpile GPS Surveying 37.215 cubic metres Aerial Surveying 37.983 cubic metres (+2.06%) Once the photos have been triangulated, by having many more points, the breaklines that connect the points are much shorter and therefore are less likely to vary considerably from the actual stockpile profile. Let s look at a theoretical example through three cross sections, as shown in Fig 2. Fig 2. Stockpile Survey Output 37.359 cubic metres (+0.39%) 6 Case Study Martin Remote Sensing DroneDeploy

The Results Aerial surveying provides highly accurate volume measurement. Returning to our case study, below are the results of our field testing, which will instill confidence in our methods, as the numbers are the primary factor in forming an opinion: GPS Surveyed Stockpile Fig 3. GPS Surveyed Stockpile Point density: 3.25 square meters per point Volume: 3,394.9 cubic meters Same Stockpile Surveyed with UAV Point density: 400 points per square meter Volume: 3,375.0 cubic meters Based on our field tests conducted this past summer, we are very pleased with the results. Fig 4. Same Stockpile Surveyed with UAV Comparing our survey to the gold standard yielded a variation of only 0.6% 7 Case Study Martin Remote Sensing DroneDeploy

Conclusion Aerial surveys are cost effective, safer, and provide comparable accuracy. Beyond proving the accuracy of our methods compared to traditionally methods, customers have also found considerable benefit in the following: Cost Aerial surveying saves our customers money as it is able to cover larger areas than a typical survey crew in the same amount of time, reducing costs almost in half. In fact, on a recent project we were able to survey 19 gravel stockpiles in just four hours a task that would have taken 10-12 hours with two surveyors. This 48-hectare project generated 190 million data points or an astounding 47 million points per hour! More Information Unlike a ground-based GPS survey, an aerial survey also captures visual information that can be a helpful management tool. We are able to generate high resolution air photos as well as highresolution 2-dimensional maps and 3-dimensional models. Typical GPS surveys only provide computer generated surfaces as displayed above in Fig.3. Safety Putting survey crews near steep slopes especially on active piles can pose safety risks to individuals. By utilizing aerial surveys, the survey instruments are 80 metres above the ground surface with the UAV pilot stationed on the ground in a safe location. On a recent project we were able to survey 19 gravel stockpiles in just four hours a task that would have taken 10-12 hours with two surveyors 8 Case Study Martin Remote Sensing DroneDeploy

Make Drone-based Volume Measurements on Your Job Site With DroneDeploy, it s easy to automatically fly your DJI drone to make a map and 3D model. You can then make volume calculations instantly from any device simply by selecting the perimeter of the pile or pit you want to measure. To get started, just download the free DroneDeploy app for ios or Android or signup to start your free trial. Try DroneDeploy for Free Interested in learning more about how DroneDeploy can help your business? Request a consultation here www.dronedeploy.com In Canada? - Contact Martin Remote Sensing for a free quote. From gravel stockpile surveys to drainage planning for agriculture, see how our experience will save you money. www.dronedeploy.com DroneDeploy