Chapter 2: outline. 2.1 principles of network applications app architectures app requirements

Similar documents
Chapter 3 outline. 3.5 connection-oriented transport: TCP segment structure reliable data transfer flow control connection management

CS 3516: Advanced Computer Networks

Transport services and protocols. Chapter 3 outline. Internet transport-layer protocols Chapter 3 outline. Multiplexing/demultiplexing

Transport layer. Our goals: Understand principles behind transport layer services: Learn about transport layer protocols in the Internet:

Transport layer: Outline

CMSC 332 Computer Networks Reliable Data Transfer

CSC 4900 Computer Networks: Reliable Data Transport

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 8

TDTS06: Computer Networks

Chapter 3 Transport Layer

Chapter 3 Transport Layer

CC451 Computer Networks

Internet transport-layer protocols. Transport services and protocols. Sending and receiving. Connection-oriented (TCP) Connection-oriented

COSC4377. Useful Linux Tool: screen

CSC358 Week 4. Adapted from slides by J.F. Kurose and K. W. Ross. All material copyright J.F Kurose and K.W. Ross, All Rights Reserved

Chapter III: Transport Layer

Chapter 3 Transport Layer

Data Communications & Networks. Session 6 Main Theme Reliable Data Transfer. Dr. Jean-Claude Franchitti

Chapter 3 Transport Layer

CSC 8560 Computer Networks: Transport Layer

Rdt2.0: channel with packet errors (no loss!)

Lecture 07 The Transport Layer (TCP & UDP) Dr. Anis Koubaa

CS 3516: Computer Networks

CSC 401 Data and Computer Communications Networks

Chapter 3: Transport Layer

Last time. Mobility in Cellular networks. Transport Layer. HLR, VLR, MSC Handoff. Introduction Multiplexing / demultiplexing UDP 14-1

Announcement. Homework 1 due last night, how is that? Will discuss some problems in the lecture next week

rdt2.0 has a fatal flaw!

Lecture 10: Transpor Layer Principles of Reliable Data Transfer

CSE 3214: Computer Network Protocols and Applications Transport Layer (Part 2) Chapter 3 outline. UDP checksum. Port numbers

Chapter 3 outline. TDTS06 Computer networks. Principles of Reliable data transfer. Reliable data transfer: getting started

Computer Networks & Security 2016/2017

CSCE 463/612 Networks and Distributed Processing Spring 2018

Chapter III: Transport Layer

CSC 401 Data and Computer Communications Networks

CSCD 330 Network Programming

Chapter 3: Transport Layer Part A

CS 655 System and Network Architectures and Implementation. Module 3 - Transport

Distributed Systems. 5. Transport Protocols. Werner Nutt

Chapter 3 Transport Layer

Distributed Systems. 5. Transport Protocols

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 7

Course on Computer Communication and Networks. Lecture 4 Chapter 3; Transport Layer, Part A

Lecture 5. Transport Layer. Transport Layer 1-1

Chapter 3 outline. Chapter 3: Transport Layer. Transport vs. network layer. Transport services and protocols. Internet transport-layer protocols

CSCE 463/612 Networks and Distributed Processing Spring 2018

Lecture 11: Transport Layer Reliable Data Transfer and TCP

Course on Computer Communication and Networks. Lecture 4 Chapter 3; Transport Layer, Part A

The Transport Layer Multiplexing, Error Detection, & UDP

Transport Layer. CMPS 4750/6750: Computer Networks

COMP211 Chapter 3 Transport Layer

Chapter 3: Transport Layer. Chapter 3 Transport Layer. Chapter 3 outline. Transport services and protocols

Chapter 3: Transport Layer

Chapter 2: outline. 2.6 P2P applications 2.7 socket programming with UDP and TCP

Chapter 3: Transport Layer

Chapter 3 Transport Layer

Chapter 3 Transport Layer

Computer Networks. Transport Layer

Transport Layer. Chapter 3. Computer Networking: A Top Down Approach

Chapter 3 Transport Layer

Chapter 3: Transport Layer. Chapter 3 Transport Layer. Chapter 3 outline. Transport services and protocols

Chapter 3 Transport Layer

Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ

Chapter 3: Transport Layer

Architettura di Reti

Chapter 3 Transport Layer

Chapter 3: Transport Layer. Computer Networks. Transport Layer. Transport services and protocols. Chapter 3 outline. Bu-Ali Sina University, Hamedan

Chapter 3 Transport Layer

Chapter 3: Transport Layer

Lecture 9: Transpor Layer Overview and UDP

Chapter 3 Transport Layer

Chapter 3 Transport Layer

Chapter 3 Transport Layer

EC441 Fall 2018 Introduction to Computer Networking Chapter 3: Transport Layer

Chapter 3 Transport Layer

Chapter 3 Transport Layer

Chapter 3: Transport Layer

Chapter 3: Transport Layer. Chapter 3 Transport Layer. Chapter 3 outline. Transport services and protocols

Chapter 3 Transport Layer. Chapter 3: Transport Layer. Chapter 3 outline. Our goals: understand principles behind transport layer services:

Chapter 3 Transport Layer

CS/ECE 438: Communication Networks Fall Transport Layer

Chapter 3. Transport Layer. Computer Networking: A Top Down Approach 5th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.

CSCI Computer Networks Fall 2016

Chapter 3 Transport Layer

Chapter II: Application Layer

Chapter 3 Transport Layer

Chapter 3 Transport Layer. Chapter 3: Transport Layer. Chapter 3 outline

Transport services and protocols. Chapter 3 Transport Layer. Chapter 3: Transport Layer. Transport vs. network layer

Chapter 3 Transport Layer

CSCI Computer Networks Spring 2017

Chapter 3 Transport Layer

internet technologies and standards

Chapter 3. Kultida Rojviboonchai, Ph.D. Dept. of Computer Engineering Faculty of Engineering Chulalongkorn University

Chapter 3: Transport Layer

Chapter 3 Transport Layer

Chapter 3 Transport Layer

Chapter 3 Transport Layer

Chapter 3: Transport Layer. Chapter 3 Transport Layer. Transport Services and Protocols. Chapter 3 Outline

Chapter 3 Transport Layer

Chapter 3: Transport Layer

Transcription:

Chapter 2: outline 2.1 principles of network applications app architectures app requirements 2.2 Web and HTTP 2.3 FTP 2.4 electronic mail SMTP, POP3, IMAP 2.5 DNS 2.6 P2P applications 2.7 socket programming with UDP and TCP Application Layer 2-1

Client/server socket interaction: UDP server (running on serverip) create socket, port= x: serversocket = socket(af_inet,sock_dgram) read datagram from serversocket write reply to serversocket specifying client address, port number client create socket: clientsocket = socket(af_inet,sock_dgram) Create datagram with server IP and port=x; send datagram via clientsocket read datagram from clientsocket close clientsocket Application 2-2

Example app: UDP client Python UDPClient from socket import * servername = hostname serverport = 12000 clientsocket = socket(af_inet, SOCK_DGRAM) message = raw_input( Input lowercase sentence: ) clientsocket.sendto(message,(servername, serverport)) modifiedmessage, serveraddress = clientsocket.recvfrom(1024) print modifiedmessage clientsocket.close() Application Layer 2-3

Example app: UDP server Python UDPServer from socket import * serverport = 12000 serversocket = socket(af_inet, SOCK_DGRAM) serversocket.bind(('', serverport)) print The server is ready to receive while 1: message, clientaddress = serversocket.recvfrom(1024) modifiedmessage = message.upper() serversocket.sendto(modifiedmessage, clientaddress) Application Layer 2-4

Client/server socket interaction: TCP server (running on hostid) client create socket, port=x, for incoming request: serversocket = socket() wait for incoming connection request connectionsocket = serversocket.accept() read request from connectionsocket write reply to connectionsocket close connectionsocket TCP connection setup create socket, connect to hostid, port=x clientsocket = socket() send request using clientsocket read reply from clientsocket close clientsocket Application Layer 2-5

Example app: TCP client Python TCPClient from socket import * servername = servername serverport = 12000 clientsocket = socket(af_inet, SOCK_STREAM) clientsocket.connect((servername,serverport)) sentence = raw_input( Input lowercase sentence: ) clientsocket.send(sentence) modifiedsentence = clientsocket.recv(1024) print From Server:, modifiedsentence clientsocket.close() Application Layer 2-6

Example app: TCP server Python TCPServer from socket import * serverport = 12000 serversocket = socket(af_inet,sock_stream) serversocket.bind((,serverport)) serversocket.listen(1) print The server is ready to receive while 1: connectionsocket, addr = serversocket.accept() sentence = connectionsocket.recv(1024) capitalizedsentence = sentence.upper() connectionsocket.send(capitalizedsentence) connectionsocket.close() Application Layer 2-7

Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Slides adopted from original ones provided by the textbook authors. Transport Layer 3-8

Chapter 3 outline 3.1 transport-layer services 3.2 multiplexing and demultiplexing 3.3 connectionless transport: UDP 3.4 principles of reliable data transfer 3.5 connection-oriented transport: TCP segment structure reliable data transfer flow control connection management 3.6 principles of congestion control 3.7 TCP congestion control Transport Layer 3-9

Transport vs. network layer network layer: logical communication between hosts transport layer: logical communication between processes relies on, enhances, network layer services two transport-layer protocols reliable, in-order delivery: TCP unreliable, unordered delivery: UDP Transport Layer 3-10

Chapter 3 outline 3.1 transport-layer services 3.2 multiplexing and demultiplexing 3.3 connectionless transport: UDP 3.4 principles of reliable data transfer 3.5 connection-oriented transport: TCP segment structure reliable data transfer flow control connection management 3.6 principles of congestion control 3.7 TCP congestion control Transport Layer 3-11

Demultiplexing UDP socket identified by 2-tuple: dest IP address dest port number TCP socket identified by 4-tuple: source IP address source port number dest IP address dest port number Transport Layer 3-12

Chapter 3 outline 3.1 transport-layer services 3.2 multiplexing and demultiplexing 3.3 connectionless transport: UDP 3.4 principles of reliable data transfer 3.5 connection-oriented transport: TCP segment structure reliable data transfer flow control connection management 3.6 principles of congestion control 3.7 TCP congestion control Transport Layer 3-13

UDP: User Datagram Protocol [RFC 768] no frills, bare bones Internet transport protocol best effort service, UDP segments may be: lost delivered out-of-order to app connectionless: no handshaking between UDP sender, receiver each UDP segment handled independently of others UDP use: streaming multimedia apps (loss tolerant, rate sensitive) DNS SNMP reliable transfer over UDP: add reliability at application layer application-specific error recovery! Transport Layer 3-14

UDP: segment header 32 bits source port # dest port # length application data (payload) checksum UDP segment format length, in bytes of UDP segment, including header why is there a UDP? no connection establishment (which can add delay) simple: no connection state at sender, receiver small header size no congestion control: UDP can blast away as fast as desired Transport Layer 3-15

UDP checksum Goal: detect errors (e.g., flipped bits) in transmitted segment sender: treat segment contents, including header fields, as sequence of 16-bit integers checksum: addition (one s complement sum) of segment contents sender puts checksum value into UDP checksum field receiver: compute checksum of received segment check if computed checksum equals checksum field value: NO - error detected YES - no error detected. But maybe errors nonetheless? More later. Transport Layer 3-16

Internet checksum: example example: add two 16-bit integers 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 wraparound sum checksum 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 Note: when adding numbers, a carryout from the most significant bit needs to be added to the result Transport Layer 3-17

Example P3: UDP and TCP use 1s complement for their checksums. Suppose you have the following three 8-bit bytes: 01010011, 01010100, 01110100. What is the 1s complement of the sum of these 8-bit bytes? With the 1s complement scheme, how does the receiver detect errors? Is it possible that a 1-bit error will go undetected? How about a 2-bit error? Transport Layer 3-18

Chapter 3 outline 3.1 transport-layer services 3.2 multiplexing and demultiplexing 3.3 connectionless transport: UDP 3.4 principles of reliable data transfer 3.5 connection-oriented transport: TCP segment structure reliable data transfer flow control connection management 3.6 principles of congestion control 3.7 TCP congestion control Transport Layer 3-19

Principles of reliable data transfer important in application, transport, link layers top-10 list of important networking topics! characteristics of unreliable channel will determine complexity of reliable data transfer protocol (rdt) Transport Layer 3-20

Principles of reliable data transfer important in application, transport, link layers top-10 list of important networking topics! characteristics of unreliable channel will determine complexity of reliable data transfer protocol (rdt) Transport Layer 3-21

Principles of reliable data transfer important in application, transport, link layers top-10 list of important networking topics! characteristics of unreliable channel will determine complexity of reliable data transfer protocol (rdt) Transport Layer 3-22

Reliable data transfer: getting started rdt_send(): called from above, (e.g., by app.). Passed data to deliver to receiver upper layer deliver_data(): called by rdt to deliver data to upper send side receive side udt_send(): called by rdt, to transfer packet over unreliable channel to receiver rdt_rcv(): called when packet arrives on rcv-side of channel Transport Layer 3-23

Reliable data transfer: getting started we ll: incrementally develop sender, receiver sides of reliable data transfer protocol (rdt) consider only unidirectional data transfer but control info will flow on both directions! use finite state machines (FSM) to specify sender, receiver state: when in this state next state uniquely determined by next event state 1 event causing state transition actions taken on state transition event actions state 2 Transport Layer 3-24

rdt1.0: reliable transfer over a reliable channel underlying channel perfectly reliable no bit errors no loss of packets separate FSMs for sender, receiver: sender sends data into underlying channel receiver reads data from underlying channel Wait for call from above rdt_send(data) packet = make_pkt(data) udt_send(packet) Wait for call from below rdt_rcv(packet) extract (packet,data) deliver_data(data) sender receiver Transport Layer 3-25

rdt2.0: channel with bit errors underlying channel may flip bits in packet checksum to detect bit errors the question: how to recover from errors: acknowledgements (ACKs): receiver explicitly tells sender that pkt received OK negative acknowledgements (NAKs): receiver explicitly tells sender that pkt had errors How do humans recover from errors during conversation? sender retransmits pkt on receipt of NAK new mechanisms in rdt2.0 (beyond rdt1.0): error detection receiver feedback: control msgs (ACK,NAK) rcvr- >sender Transport Layer 3-26

rdt2.0: channel with bit errors underlying channel may flip bits in packet checksum to detect bit errors the question: how to recover from errors: acknowledgements (ACKs): receiver explicitly tells sender that pkt received OK negative acknowledgements (NAKs): receiver explicitly tells sender that pkt had errors sender retransmits pkt on receipt of NAK new mechanisms in rdt2.0 (beyond rdt1.0): error detection feedback: control msgs (ACK,NAK) from receiver to sender Transport Layer 3-27

rdt2.0: FSM specification rdt_send(data) sndpkt = make_pkt(data, checksum) udt_send(sndpkt) Wait for call from above rdt_rcv(rcvpkt) && isack(rcvpkt) L sender Wait for ACK or NAK rdt_rcv(rcvpkt) && isnak(rcvpkt) udt_send(sndpkt) receiver rdt_rcv(rcvpkt) && corrupt(rcvpkt) udt_send(nak) Wait for call from below rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) extract(rcvpkt,data) deliver_data(data) udt_send(ack) Transport Layer 3-28

rdt2.0: operation with no errors rdt_send(data) snkpkt = make_pkt(data, checksum) udt_send(sndpkt) Wait for call from above rdt_rcv(rcvpkt) && isack(rcvpkt) L Wait for ACK or NAK rdt_rcv(rcvpkt) && isnak(rcvpkt) udt_send(sndpkt) rdt_rcv(rcvpkt) && corrupt(rcvpkt) udt_send(nak) Wait for call from below rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) extract(rcvpkt,data) deliver_data(data) udt_send(ack) Transport Layer 3-29

rdt2.0: error scenario rdt_send(data) snkpkt = make_pkt(data, checksum) udt_send(sndpkt) Wait for call from above rdt_rcv(rcvpkt) && isack(rcvpkt) L Wait for ACK or NAK rdt_rcv(rcvpkt) && isnak(rcvpkt) udt_send(sndpkt) rdt_rcv(rcvpkt) && corrupt(rcvpkt) udt_send(nak) Wait for call from below rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) extract(rcvpkt,data) deliver_data(data) udt_send(ack) Transport Layer 3-30

rdt2.0 has a fatal flaw! what happens if ACK/NAK corrupted? sender doesn t know what happened at receiver! can t just retransmit: possible duplicate handling duplicates: stop and wait sender sends one packet, then waits for receiver response sender retransmits current pkt if ACK/NAK corrupted sender adds sequence number to each pkt receiver discards (doesn t deliver up) duplicate pkt Transport Layer 3-31

rdt2.1: sender, handles garbled ACK/NAKs rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isack(rcvpkt) L rdt_rcv(rcvpkt) && ( corrupt(rcvpkt) isnak(rcvpkt) ) udt_send(sndpkt) rdt_send(data) sndpkt = make_pkt(0, data, checksum) udt_send(sndpkt) Wait for call 0 from above Wait for ACK or NAK 1 rdt_send(data) Wait for ACK or NAK 0 Wait for call 1 from above rdt_rcv(rcvpkt) && ( corrupt(rcvpkt) isnak(rcvpkt) ) udt_send(sndpkt) rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isack(rcvpkt) sndpkt = make_pkt(1, data, checksum) udt_send(sndpkt) L Transport Layer 3-32

rdt2.1: receiver, handles garbled ACK/NAKs rdt_rcv(rcvpkt) && (corrupt(rcvpkt) sndpkt = make_pkt(nak, chksum) udt_send(sndpkt) rdt_rcv(rcvpkt) && not corrupt(rcvpkt) && has_seq1(rcvpkt) sndpkt = make_pkt(ack, chksum) udt_send(sndpkt) rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && has_seq0(rcvpkt) extract(rcvpkt,data) deliver_data(data) sndpkt = make_pkt(ack, chksum) udt_send(sndpkt) Wait for 0 from below Wait for 1 from below rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && has_seq1(rcvpkt) extract(rcvpkt,data) deliver_data(data) sndpkt = make_pkt(ack, chksum) udt_send(sndpkt) rdt_rcv(rcvpkt) && (corrupt(rcvpkt) sndpkt = make_pkt(nak, chksum) udt_send(sndpkt) rdt_rcv(rcvpkt) && not corrupt(rcvpkt) && has_seq0(rcvpkt) sndpkt = make_pkt(ack, chksum) udt_send(sndpkt) Transport Layer 3-33

rdt2.1: discussion sender: seq # added to pkt two seq. # s (0,1) will suffice. Why? must check if received ACK/NAK corrupted twice as many states state must remember whether expected pkt should have seq # of 0 or 1 receiver: must check if received packet is duplicate state indicates whether 0 or 1 is expected pkt seq # note: receiver can not know if its last ACK/NAK received OK at sender Transport Layer 3-34

rdt2.2: a NAK-free protocol same functionality as rdt2.1, using ACKs only instead of NAK, receiver sends ACK for last pkt received OK receiver must explicitly include seq # of pkt being ACKed duplicate ACK at sender results in same action as NAK: retransmit current pkt Transport Layer 3-35

rdt2.2: sender, receiver fragments rdt_rcv(rcvpkt) && (corrupt(rcvpkt) has_seq1(rcvpkt)) udt_send(sndpkt) rdt_send(data) sndpkt = make_pkt(0, data, checksum) udt_send(sndpkt) Wait for call 0 from above Wait for 0 from below sender FSM fragment receiver FSM fragment Wait for ACK 0 rdt_rcv(rcvpkt) && ( corrupt(rcvpkt) isack(rcvpkt,1) ) udt_send(sndpkt) rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isack(rcvpkt,0) L rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && has_seq1(rcvpkt) extract(rcvpkt,data) deliver_data(data) sndpkt = make_pkt(ack1, chksum) udt_send(sndpkt) Transport Layer 3-36

Question What happens to rdt2.2 when an ACK is lost? Transport Layer 3-37

rdt3.0: channels with errors and loss new assumption: underlying channel can also lose packets (data, ACKs) checksum, seq. #, ACKs, retransmissions will be of help but not enough approach: sender waits reasonable amount of time for ACK retransmits if no ACK received in this time if pkt (or ACK) just delayed (not lost): retransmission will be duplicate, but seq. # s already handles this receiver must specify seq # of pkt being ACKed requires countdown timer Transport Layer 3-38

rdt3.0 sender Wait for call 0 from above rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isack(rcvpkt,1) stop_timer timeout rdt_rcv(rcvpkt) L udt_send(sndpkt) start_timer rdt_rcv(rcvpkt) && ( corrupt(rcvpkt) isack(rcvpkt,0) ) L Wait for ACK1 rdt_send(data) sndpkt = make_pkt(0, data, checksum) udt_send(sndpkt) start_timer rdt_send(data) Wait for ACK0 Wait for call 1 from above sndpkt = make_pkt(1, data, checksum) udt_send(sndpkt) start_timer rdt_rcv(rcvpkt) && ( corrupt(rcvpkt) isack(rcvpkt,1) ) timeout udt_send(sndpkt) start_timer rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isack(rcvpkt,0) stop_timer L rdt_rcv(rcvpkt) L Transport Layer 3-39

rdt3.0 in action sender receiver sender receiver send pkt0 rcv ack0 send pkt1 rcv ack1 send pkt0 pkt0 ack0 pkt1 ack1 pkt0 ack0 (a) no loss rcv pkt0 send ack0 rcv pkt1 send ack1 rcv pkt0 send ack0 send pkt0 rcv ack0 send pkt1 timeout resend pkt1 rcv ack1 send pkt0 pkt0 ack0 pkt1 X loss pkt1 ack1 pkt0 ack0 rcv pkt0 send ack0 rcv pkt1 send ack1 rcv pkt0 send ack0 (b) packet loss Transport Layer 3-40

rdt3.0 in action sender send pkt0 rcv ack0 send pkt1 timeout resend pkt1 rcv ack1 send pkt0 pkt0 ack0 pkt1 ack1 X loss pkt1 ack1 pkt0 ack0 receiver rcv pkt0 send ack0 rcv pkt1 send ack1 rcv pkt1 (detect duplicate) send ack1 rcv pkt0 send ack0 sender send pkt0 rcv ack0 send pkt1 timeout resend pkt1 rcv ack1 send pkt0 rcv ack1 send pkt0 pkt0 ack0 pkt1 ack1 pkt1 pkt0 ack1 ack0 pkt0 ack0 receiver rcv pkt0 send ack0 rcv pkt1 send ack1 rcv pkt1 (detect duplicate) send ack1 rcv pkt0 send ack0 rcv pkt0 (detect duplicate) send ack0 (c) ACK loss (d) premature timeout/ delayed ACK Transport Layer 3-41

Performance of rdt3.0 rdt3.0 is correct, but performance is bad e.g.: 1 Gbps link, 15 ms prop. delay, 8000 bit packet: D trans = L R 8000 bits = 10 9 = 8 microsecs bits/sec U sender : utilization fraction of time sender busy sending U sender = L / R RTT + L / R =.008 30.008 = 0.00027 if RTT=30 msec, 1KB pkt every 30 msec: 33kB/sec thruput over 1 Gbps link network protocol limits use of physical resources! Transport Layer 3-42

rdt3.0: stop-and-wait operation first packet bit transmitted, t = 0 last packet bit transmitted, t = L / R sender receiver RTT first packet bit arrives last packet bit arrives, send ACK ACK arrives, send next packet, t = RTT + L / R U sender = L / R RTT + L / R =.008 30.008 = 0.00027 Transport Layer 3-43

Pipelined protocols pipelining: sender allows multiple, in-flight, yetto-be-acknowledged pkts range of sequence numbers must be increased buffering at sender and/or receiver two generic forms of pipelined protocols: go-back-n, selective repeat Transport Layer 3-44

Pipelining: increased utilization first packet bit transmitted, t = 0 last bit transmitted, t = L / R sender receiver RTT ACK arrives, send next packet, t = RTT + L / R first packet bit arrives last packet bit arrives, send ACK last bit of 2 nd packet arrives, send ACK last bit of 3 rd packet arrives, send ACK 3-packet pipelining increases utilization by a factor of 3! U sender = 3L / R RTT + L / R =.0024 30.008 = 0.00081 Transport Layer 3-45

Example P15. Consider the cross-country example shown in Figure 3.17. How big would the windows size have to be for the channel utilization to be greater than 95 percent? Suppose that the size of a packet is 1,500 bytes, including both header fields and data. Transport Layer 3-46

Pipelined protocols: overview Go-back-N: sender can have up to N unacked packets in pipeline receiver only sends cumulative ack doesn t ack packet if there s a gap sender has timer for oldest unacked packet when timer expires, retransmit all unacked packets Selective Repeat: sender can have up to N unack ed packets in pipeline rcvr sends individual ack for each packet sender maintains timer for each unacked packet when timer expires, retransmit only that unacked packet Transport Layer 3-47

Go-Back-N: sender k-bit seq # in pkt header window of up to N, consecutive unack ed pkts allowed ACK(n): ACKs all pkts up to, including seq # n - cumulative ACK may receive duplicate ACKs (see receiver) timer for oldest in-flight pkt timeout(n): retransmit packet n and all higher seq # pkts in window Transport Layer 3-48

GBN: sender extended FSM rdt_send(data) L base=1 nextseqnum=1 rdt_rcv(rcvpkt) && corrupt(rcvpkt) if (nextseqnum < base+n) { sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum) udt_send(sndpkt[nextseqnum]) if (base == nextseqnum) start_timer nextseqnum++ } else refuse_data(data) Wait timeout start_timer udt_send(sndpkt[base]) udt_send(sndpkt[base+1]) udt_send(sndpkt[nextseqnum-1]) rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) base = getacknum(rcvpkt)+1 If (base == nextseqnum) stop_timer else start_timer Transport Layer 3-49

GBN: receiver extended FSM L default udt_send(sndpkt) Wait expectedseqnum=1 sndpkt = make_pkt(expectedseqnum,ack,chksum) rdt_rcv(rcvpkt) && notcurrupt(rcvpkt) && hasseqnum(rcvpkt,expectedseqnum) extract(rcvpkt,data) deliver_data(data) sndpkt = make_pkt(expectedseqnum,ack,chksum) udt_send(sndpkt) expectedseqnum++ ACK-only: always send ACK for correctly-received pkt with highest in-order seq # may generate duplicate ACKs need only remember expectedseqnum out-of-order pkt: discard (don t buffer): no receiver buffering! re-ack pkt with highest in-order seq # Transport Layer 3-50

GBN in action sender window (N=4) 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 sender send pkt0 send pkt1 send pkt2 send pkt3 (wait) rcv ack0, send pkt4 rcv ack1, send pkt5 ignore duplicate ACK pkt 2 timeout send pkt2 send pkt3 send pkt4 send pkt5 Xloss receiver receive pkt0, send ack0 receive pkt1, send ack1 receive pkt3, discard, (re)send ack1 receive pkt4, discard, (re)send ack1 receive pkt5, discard, (re)send ack1 rcv pkt2, deliver, send ack2 rcv pkt3, deliver, send ack3 rcv pkt4, deliver, send ack4 rcv pkt5, deliver, send ack5 Transport Layer 3-51

Selective repeat receiver individually acknowledges all correctly received pkts buffers pkts, as needed, for eventual in-order delivery to upper layer sender only resends pkts for which ACK not received sender timer for each unacked pkt sender window N consecutive seq # s limits seq #s of sent, unacked pkts Transport Layer 3-52

Selective repeat: sender, receiver windows Transport Layer 3-53

Selective repeat sender data from above: if next available seq # in window, send pkt timeout(n): resend pkt n, restart timer ACK(n) in [sendbase,sendbase+n]: mark pkt n as received if n smallest unacked pkt, advance window base to next unacked seq # receiver pkt n in [rcvbase, rcvbase+n-1] send ACK(n) out-of-order: buffer in-order: deliver (also deliver buffered, in-order pkts), advance window to next not-yet-received pkt pkt n in [rcvbase-n,rcvbase-1] ACK(n) otherwise: ignore Transport Layer 3-54

Selective repeat in action sender window (N=4) 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 sender send pkt0 send pkt1 send pkt2 send pkt3 (wait) rcv ack0, send pkt4 rcv ack1, send pkt5 record ack3 arrived pkt 2 timeout send pkt2 record ack4 arrived record ack5 arrived Xloss receiver receive pkt0, send ack0 receive pkt1, send ack1 receive pkt3, buffer, send ack3 receive pkt4, buffer, send ack4 receive pkt5, buffer, send ack5 rcv pkt2; deliver pkt2, pkt3, pkt4, pkt5; send ack2 Q: what happens when ack2 arrives? Transport Layer 3-55

Selective repeat: dilemma example: seq # s: 0, 1, 2, 3 window size=3 receiver sees no difference in two scenarios! duplicate data accepted as new in (b) Q: what relationship between seq # size and window size to avoid problem in (b)? sender window (after receipt) 0 1 2 3 0 1 2 0 1 2 3 0 1 2 0 1 2 3 0 1 2 0 1 2 3 0 1 2 0 1 2 3 0 1 2 0 1 2 3 0 1 2 0 1 2 3 0 1 2 pkt0 pkt1 pkt2 X X timeout retransmit pkt0 X 0 1 2 3 0 1 2 pkt0 (b) oops! pkt0 pkt1 pkt2 0 1 2 3 0 1 2 pkt3 (a) no problem pkt0 X receiver window (after receipt) 0 1 2 3 0 1 2 0 1 2 3 0 1 2 0 1 2 3 0 1 2 will accept packet with seq number 0 receiver can t see sender side. receiver behavior identical in both cases! something s (very) wrong! 0 1 2 3 0 1 2 0 1 2 3 0 1 2 0 1 2 3 0 1 2 will accept packet with seq number 0 Transport Layer 3-56