PROBLEMS INVOLVING PARAMETERIZED SURFACES AND SURFACES OF REVOLUTION

Similar documents
YOUR MATLAB ASSIGNMENT 4

16.6. Parametric Surfaces. Parametric Surfaces. Parametric Surfaces. Vector Calculus. Parametric Surfaces and Their Areas

MATH 2023 Multivariable Calculus

Parametric Surfaces and Surface Area

Surfaces. Ron Goldman Department of Computer Science Rice University

the straight line in the xy plane from the point (0, 4) to the point (2,0)

Math 2130 Practice Problems Sec Name. Change the Cartesian integral to an equivalent polar integral, and then evaluate.

2. Give an example of a non-constant function f(x, y) such that the average value of f over is 0.

UNIVERSITI TEKNOLOGI MALAYSIA SSE 1893 ENGINEERING MATHEMATICS TUTORIAL 5

Section Parametrized Surfaces and Surface Integrals. (I) Parametrizing Surfaces (II) Surface Area (III) Scalar Surface Integrals

Classes 7-8 (4 hours). Graphics in Matlab.

Goals: Course Unit: Describing Moving Objects Different Ways of Representing Functions Vector-valued Functions, or Parametric Curves

Functions of Several Variables

Curvilinear Coordinates

form are graphed in Cartesian coordinates, and are graphed in Cartesian coordinates.

Vectors and the Geometry of Space

Quadric surface. Ellipsoid

Functions of Several Variables

Determine whether or not F is a conservative vector field. If it is, find a function f such that F = enter NONE.

7/14/2011 FIRST HOURLY PRACTICE IV Maths 21a, O.Knill, Summer 2011

MA 114 Worksheet #17: Average value of a function

4 = 1 which is an ellipse of major axis 2 and minor axis 2. Try the plane z = y2

Multiple Integrals. max x i 0

Chapter 15: Functions of Several Variables

UNIVERSITI TEKNOLOGI MALAYSIA SSCE 1993 ENGINEERING MATHEMATICS II TUTORIAL 2. 1 x cos dy dx x y dy dx. y cosxdy dx

Chapter 6 Some Applications of the Integral

MATH 234. Excercises on Integration in Several Variables. I. Double Integrals

Three-Dimensional Coordinate Systems

Introduction to Matlab for Engineers

Math 126C: Week 3 Review

MATH 162 Calculus II Computer Laboratory Topic: Introduction to Mathematica & Parametrizations

Quadric Surfaces. Philippe B. Laval. Today KSU. Philippe B. Laval (KSU) Quadric Surfaces Today 1 / 24

PURE MATHEMATICS 212 Multivariable Calculus CONTENTS. Page. 1. Assignment Summary... i 2. Summary Assignments...2

Math 251 Quiz 5 Fall b. Calculate. 2. Sketch the region. Write as one double integral by interchanging the order of integration: 2

Multivariate Calculus: Review Problems for Examination Two

Quadric Surfaces. Philippe B. Laval. Spring 2012 KSU. Philippe B. Laval (KSU) Quadric Surfaces Spring /

Multivariate Calculus Review Problems for Examination Two

Rectangular Coordinates in Space

Name: Class: Date: 1. Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint.

LECTURE 3-1 AREA OF A REGION BOUNDED BY CURVES

Measuring Lengths The First Fundamental Form

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions

12.6 Cylinders and Quadric Surfaces

Quadric Surfaces. Six basic types of quadric surfaces: ellipsoid. cone. elliptic paraboloid. hyperboloid of one sheet. hyperboloid of two sheets

16.6 Parametric Surfaces and Their Areas

12 m. 30 m. The Volume of a sphere is 36 cubic units. Find the length of the radius.

MATH 261 FALL 2000 FINAL EXAM INSTRUCTIONS. 1. This test booklet has 14 pages including this one. There are 25 questions, each worth 8 points.

CHAPTER 6: APPLICATIONS OF INTEGRALS

Mechanical Engineering Department Second Year (2015)

Practice problems from old exams for math 233 William H. Meeks III December 21, 2009

ü 12.1 Vectors Students should read Sections of Rogawski's Calculus [1] for a detailed discussion of the material presented in this section.

If the center of the sphere is the origin the the equation is. x y z 2ux 2vy 2wz d 0 -(2)

INTRODUCTION TO MATLAB PLOTTING WITH MATLAB

f (Pijk ) V. may form the Riemann sum: . Definition. The triple integral of f over the rectangular box B is defined to f (x, y, z) dv = lim

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Homework 1 - Solutions 3. 2 Homework 2 - Solutions 13

CSC418 / CSCD18 / CSC2504

18.02 Final Exam. y = 0

= f (a, b) + (hf x + kf y ) (a,b) +

1. no trace exists correct. 2. hyperbola : z 2 y 2 = ellipse : y z2 = ellipse : 5. circle : y 2 +z 2 = 2

MA 243 Calculus III Fall Assignment 1. Reading assignments are found in James Stewart s Calculus (Early Transcendentals)

GRAPHICAL REPRESENTATION OF SURFACES

QUIZ 4 (CHAPTER 17) SOLUTIONS MATH 252 FALL 2008 KUNIYUKI SCORED OUT OF 125 POINTS MULTIPLIED BY % POSSIBLE

Lab 2B Parametrizing Surfaces Math 2374 University of Minnesota Questions to:

True/False. MATH 1C: SAMPLE EXAM 1 c Jeffrey A. Anderson ANSWER KEY

Final Exam Review. Name: Class: Date: Short Answer

MATH 2221A Mathematics Laboratory II

Surfaces. U (x; y; z) = k. Indeed, many of the most familiar surfaces are level surfaces of functions of 3 variables.

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 27 / 45

Worksheet 3.5: Triple Integrals in Spherical Coordinates. Warm-Up: Spherical Coordinates (ρ, φ, θ)

VOLUME OF A REGION CALCULATOR EBOOK

7/8/2010 FIRST HOURLY PRACTICE II Maths 21a, O.Knill, Summer 2010

MATH 116 REVIEW PROBLEMS for the FINAL EXAM

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

A Quick Guide to MATLAB

MAC Learning Objectives. Module 12 Polar and Parametric Equations. Polar and Parametric Equations. There are two major topics in this module:

Math 113 Calculus III Final Exam Practice Problems Spring 2003

Equation of tangent plane: for implicitly defined surfaces section 12.9

6 Appendix B: Quick Guide to MATLAB R

2.2 Volumes of Solids of Revolution

Math (Spring 2009): Lecture 5 Planes. Parametric equations of curves and lines

Volume by Slicing (Disks & Washers)

a. Plot the point (x, y, z) and understand it as a vertex of a rectangular prism. c. Recognize and understand equations of planes and spheres.

MATH 2400: CALCULUS 3 MAY 9, 2007 FINAL EXAM

Parametric Surfaces. Substitution

WHAT YOU SHOULD LEARN

Practice problems from old exams for math 233

MATH 31A HOMEWORK 9 (DUE 12/6) PARTS (A) AND (B) SECTION 5.4. f(x) = x + 1 x 2 + 9, F (7) = 0

Topic 6: Calculus Integration Volume of Revolution Paper 2

The diagram above shows a sketch of the curve C with parametric equations

Graphs of Equations. MATH 160, Precalculus. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Graphs of Equations

Ma MULTIPLE INTEGRATION

The Three Dimensional Coordinate System

Key Idea. It is not helpful to plot points to sketch a surface. Mainly we use traces and intercepts to sketch

Grad operator, triple and line integrals. Notice: this material must not be used as a substitute for attending the lectures

Symbolic Computational Approach to Construct a 3D Torus Via Curvature

7/8/2010 FIRST HOURLY PRACTICE II Maths 21a, O.Knill, Summer 2010

Introduction to MATLAB Step by Step Exercise

Matlab Notes for Calculus 3. Lia Vas

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved.

Dr. Allen Back. Nov. 19, 2014

Transcription:

PROBLEMS INVOLVING PARAMETERIZED SURFACES AND SURFACES OF REVOLUTION Exercise 7.1 Plot the portion of the parabolic cylinder z = 4 - x^2 that lies in the first octant with 0 y 4. (Use parameters x and y. Determine the range of values for x to only plot points in the first octant.) clear all clc; f = @(x,y)4 - x.^2; x = linspace(0,2,60); y = linspace(0,4,60); [X,Y] = meshgrid(x,y); surf(x,y,f(x,y),'facealpha',0.5) colormap copper grid on rotate3d view([154,44]) axis([0 2 0 4 0 4]) set(gca,'color','y') set(gca,'xtick',0:.5:2,'xminortick','on','fontname','times','fontweight','bold') set(gca,'ytick',0:1:4,'yminortick','on','fontname','times','fontweight','bold') set(gca,'ztick',0:1:4,'zminortick','on','fontname','times','fontweight','bold') title({'portion of the Cylinder z = 4 - x^2','in the first Octant'}) xlabel('x-axis','color','black','fontname','mathematica','fontweight','bold','fontsize',12) ylabel('y-axis','color','black','fontname','mathematica','fontweight','bold','fontsize',12) zlabel('z-axis','color','black','fontname','mathematica','fontweight','bold','fontsize',12)

Exercise 7.2 Rotate the curve x = 1 + cos z, for 0 z 2π, around the z-axis. Use Matlab to draw the surface of revolution. Use axis equal command if necessary for a nondistorted view. These equations x = F(z)cos t, y = F(z) sin t, z = z rotates a function F(z) about the z-axis. Clear all clc F = @(z)1 + cos(z); %(The funtion or curve to be rotated) t = linspace(0,2*pi,55); z = linspace(0,2*pi,55); %Rotation of the curve F(z) about the z-axis [T,U] = meshgrid(t,z); X = F(U).*cos(T); Y = F(U).*sin(T); Z = U; surfl(x,y,z); hold on % Parametrization of the curve x = 1 + cos(z) t=linspace(0,2*pi,55); x=1+cos(t); y=0.*t; z=t; plot3(x,y,z,'b','linewidth',4)

colormap copper grid on rotate3d view([146,20]) axis equal square axis([-2 2-2 2 0 2*pi]) legend('surface','revolved curve','location','northeastoutside') set(gca,'color','y') set(gca,'xtick',-2:1:2,'xminortick','on','fontname','times','fontweight','bold') set(gca,'ytick',-2:1:2,'yminortick','on','fontname','times','fontweight','bold') set(gca,'ztick',0:pi/2:2*pi,'zticklabel',{'0','pi/2','pi','3pi/2','2pi'}) set(gca,'zminortick','on','fontname','times','fontweight','bold') title({'the curve x = F(z) = 1 + cos(z)','revolved about the z-axis'}) xlabel('x-axis','color','black','fontname','mathematica','fontweight','bold','fontsize',12) ylabel('y-axis','color','black','fontname','mathematica','fontweight','bold','fontsize',12) zlabel('z-axis','color','black','fontname','mathematica','fontweight','bold','fontsize',12)

Exercise 7.3 Draw the portion of the cone y^2 = x^2 + z^2 for 0 y 3. (This is obtained by rotating the line z = y around the y-axis. Use the angle of rotation t and the y variable as parameters.) clear all clc F = @(y)y; t = linspace(0,2*pi,55); y = linspace(0,3,55); [T,Y] = meshgrid(t,y); X = F(Y).*cos(T); Z = F(Y).*sin(T); Y = Y; surfl(x,y,z); hold on X = 0.*F(y); Y = F(y); Z = F(y); plot3(x,y,z,'b','linewidth',4) colormap copper grid on rotate3d view([130,22]) axis equal square axis([-3 3 0 3-3 3])

legend('surface','revolved curve','location','northeastoutside') set(gca,'color','y','xtick',-3:1:3,'xminortick','on','fontname','times','fontweight','bold') set(gca,'ytick',0:0.5:3,'yminortick','on','fontname','times','fontweight','bold') set(gca,'ztick',-3:1:3,'zticklabel',{'0','pi/2','pi','3pi/2','2pi'}) set(gca,'zminortick','on','fontname','times','fontweight','bold') title({'revolving the curve x = 1 + cos(z)','about the z-axis'}) xlabel('x-axis','color','black','fontname','mathematica','fontweight','bold','fontsize',12) ylabel('y-axis','color','black','fontname','mathematica','fontweight','bold','fontsize',12) zlabel('z-axis','color','black','fontname','mathematica','fontweight','bold','fontsize',12)

Exercise 7.4 Draw the ellipsoid whose equation is x^2/4 + y^2/16 + z^2/2 = 1 in two ways. WAY 1: Using explicit parametric equations base on spherical coordinates. (Observe: The quantities x' = x/2, y' = y/4 and z' = z/sqrt(2) satisfy the equation (x')^2 + ( y')^2 + (z')^2 = 1. Use spherical coordinates for x', y', and z' to parametrize the latter surface.) Use axis equal to obtain a non-distorted view. WAY 2: Using the MatLab built-in function ellipsoid. THE CODE FOR WAY 1 u = linspace(0,pi,60); v = linspace (0,2*pi,60); [U,V] = meshgrid(u,v); X = 2*sin(U).*cos(V); Y = 4*sin(U).*sin(V); Z = sqrt(2)*cos(u); surfl(x,y,z) colormap copper grid on rotate3d axis equal axis([-2 2-4 4 -sqrt(2),sqrt(2)]) view([158,14]) set(gca,'color','y','xtick',-2:1:2,'xminortick','on','fontname','times','fontweight','bold') set(gca,'ytick',-4:1:4,'yminortick','on','fontname','times','fontweight','bold') set(gca,'ztick',-2:0.5:2,'zminortick','on','fontname','times','fontweight','bold')

title('a Parameterized Ellipsoid 4x^2 + y^2 + 8z^2 = 16') xlabel('x-axis','color','black','fontname','mathematica','fontweight','bold','fontsize',12) ylabel('y-axis','color','black','fontname','mathematica','fontweight','bold','fontsize',12) zlabel('z-axis','color','black','fontname','mathematica','fontweight','bold','fontsize',12)

CODE FOR WAY 2 Clear all clc [x,y,z] = ellipsoid(0,0,0,2,4,sqrt(2),40); surfl(x,y,z) colormap copper grid on rotate3d axis equal axis([-2 2-4 4 -sqrt(2),sqrt(2)]) view([158,14]) set(gca,'color','y') set(gca,'xtick',-2:1:2,'xminortick','on','fontname','times','fontweight','bold') set(gca,'ytick',-4:1:4,'yminortick','on','fontname','times','fontweight','bold') set(gca,'ztick',-2:0.5:2,'zminortick','on','fontname','times','fontweight','bold') title('an Ellipsoid 4x^2 + y^2 + 8z^2 = 16 (generated by the Ellipsoid Command)') xlabel('x-axis','color','black','fontname','mathematica','fontweight','bold','fontsize',12) ylabel('y-axis','color','black','fontname','mathematica','fontweight','bold','fontsize',12) zlabel('z-axis','color','black','fontname','mathematica','fontweight','bold','fontsize',12)

Exercise 7.5 The circle of radius 1 centered at (2,0,0) in the xz-plane has parametric equations x = 2 + cos t, y = 0, z = sin t, where 0 t 2π. If we revolve that circle or curve around the z-axis we obtain a donut-shaped figure called a TORUS. Letting s denote the angle of rotation about the z-axis. Show that the parametric equations of this surface are x = (2 + cos t) cos s, y = (2 + cos t) sin s, z = sin t, where 0 t 2π and 0 s 2π. Using Matlab, draw the surface. (N.B. Use axis equal to obtain a non-distorted view.) clear all clc f = @(x)2 + cos(x); g = @(x)sin(x); t = linspace(0,2*pi,40); s = linspace(0,2*pi,40); [T,S] = meshgrid(t,s); %The torus X = f(t).*cos(s); Y = f(t).*sin(s); Z = g(t); surf(x,y,z,'facealpha', 0.4) hold on % The circle drawn in blue that was rotated about the z-axis X = f(t); Y = 0.*f(t); Z = z(t);

plot3(x,y,z,'b','linewidth',4); colormap copper grid on rotate3d view([130,22]) axis equal axis([-3 3-3 3-1 1]) legend('surface','revolved curve','location','northeastoutside') set(gca,'color','y','xtick',-3:1:3,'xminortick','on','fontname','times','fontweight','bold') set(gca,'ytick',-3:1:3,'yminortick','on','fontname','times','fontweight','bold') set(gca,'ztick',-1:0.5:1,'zminortick','on','fontname','times','fontweight','bold') title({ The circle (x-2)^2 + z^2 = 1','revolved about the z-axis','to get a surface called a Torus'}) xlabel('x-axis','color','black','fontname','mathematica','fontweight','bold','fontsize',12) ylabel('y-axis','color','black','fontname','mathematica','fontweight','bold','fontsize',12) zlabel('z-axis','color','black','fontname','mathematica','fontweight','bold','fontsize',12)

Exercise 7.6 Create a single plot showing the cylinders x^2 + z^2 = 1 and y^2 + z^2 = 1 within the box where -2 x 2, -2 y 2, and -2 z 2. Later we will compute the volume enclosed by the two cylinders. Make one cylinder semi-transparent using matlab s FaceAlpha property. Clear all clc x=@(w)cos(w); y=@(w)0.*w; z=@(w)sin(w); t=linspace(-2,2,40); s=linspace(0,2*pi,40); X = x(s); Y = 0.*y(s); Z = z(s); plot3(x,y,z,'r','linewidth',4) hold on X = y(s); Y = x(s); Z = z(s); plot3(x,y,z,'g','linewidth',4) [U,V] = meshgrid(t,s); X = cos(v); Y = U; Z = sin(v);

surf(x,y,z,'facealpha',0.5) X = U; Y = cos(v); Z = sin(v); surf(x,y,z,'facealpha',0.5) colormap copper grid on rotate3d axis equal square axis([-2 2-2 2-2 2]) view([154,32]) set(gca,'color','y','xtick',-2:1:2,'xminortick','on','fontname','times','fontweight','bold') set(gca,'ytick',-2:1:2,'yminortick','on','fontname','times','fontweight','bold') set(gca,'ztick',-2:1:2,'zminortick','on','fontname','times','fontweight','bold') title({'two intersecting Cylinders',' x^2 + z^2 = 1 and y^2 + z^2 = 1'}) xlabel('x-axis','color','black','fontname','mathematica','fontweight','bold','fontsize',12) ylabel('y-axis','color','black','fontname','mathematica','fontweight','bold','fontsize',12) zlabel('z-axis','color','black','fontname','mathematica','fontweight','bold','fontsize',12)

Exercise 7.7 Create a single plot showing the portion of the parabolic cylinder z = 4 - x^2 that lies in the first octant with 0 y 3, (see Exercise 7.1) and the first octant portion of the vertical plane y = x, with 0 z 4. Draw the plane with a single patch using a 'FaceColor' of 'cyan'. Make the cylinder semi-transparent so you can see the vertical plane inside the cylinder. clear all clc f = @(x,y)4 - x.^2; g = @(x,z)x + 0.*z; x = linspace(0,2,60); z = linspace(0,4,60); y = linspace(0,3,60); [X,Y] = meshgrid(x,z); [X,Z] = meshgrid(x,z); surf(x,y,f(x,y),'facealpha',0.5) hold on surfl(x,g(x,z),z) colormap copper grid on rotate3d view([154,44]) axis([0 2 0 4 0 4]) set(gca,'color','y','xtick',0:.5:2,'xminortick','on','fontname','times','fontweight','bold') set(gca,'ytick',0:1:4,'yminortick','on','fontname','times','fontweight','bold') set(gca,'ztick',0:1:4,'zminortick','on','fontname','times','fontweight','bold')

title({'portion of the Cylinder z = 4 - x^2 and vertical plane y = x','in the first Octant'}) xlabel('x-axis','color','black','fontname','mathematica','fontweight','bold','fontsize',12) ylabel('y-axis','color','black','fontname','mathematica','fontweight','bold','fontsize',12) zlabel('z-axis','color','black','fontname','mathematica','fontweight','bold','fontsize',12)

Exercise 7.8 Create a single plot that shows the sphere x^2 + y^2 + z^2 = 4 and the cylinder (x - 1)^2 + y^2 = 1. Use axis equal to obtain a non-distorted view. Make the sphere semitransparent so you can see the cylinder inside of it. clear all clc t = linspace(-2,2,40); u = linspace(0,pi,40); s = linspace(0,2*pi,40); [U,V] = meshgrid(u,s); %The Sphere of radius 2 centered at the origin (0,0,0. X = 2.* sin(u).* cos(v); Y = 2.* sin(u).* sin(v); Z = 2.* cos(u); surf(x,y,z,'facealpha',0.4) hold on [U,V] = meshgrid(t,s); % The cylinder at centered at (1,0,0) X = 1 + cos(v); Y = sin(v); Z = U; surf(x,y,z)

colormap copper grid on rotate3d view([154,44]) axis equal square axis([-2 2-2 2-2 2]) set(gca,'color','y','xtick',-2:1:2,'xminortick','on','fontname','times','fontweight','bold') set(gca,'ytick',-2:1:2,'yminortick','on','fontname','times','fontweight','bold') set(gca,'ztick',-2:1:2,'zminortick','on','fontname','times','fontweight','bold') title({'portion of the Cylinder z = f(x,y) = 4 - x^2', 'and the vertical plane y = x in the first Octant'}) xlabel('x-axis','color','black','fontname','mathematica','fontweight','bold','fontsize',12) ylabel('y-axis','color','black','fontname','mathematica','fontweight','bold','fontsize',12) zlabel('z-axis','color','black','fontname','mathematica','fontweight','bold','fontsize',12)

END OF MATLAB ASSIGNMENT 7 (READ AND DO ASSIGNMENT 8 ON YOUR OWN!!!)

THIS PROBLEM (NOT A PART OF YOUR 7 TH LAB) WAS INCLUDED ONLY TO ASSIST YOU IN SOLVING PROBLEM 2 OF YOUR TAKE HOME Exercise 7.9 Sketch the surface f(x,y) = 144 - x^2 - y^2 together with these two contour curves f(x,y) = 44 and f(x,y) = 23. Include the planes z = 23 and z = 44 and the trace curve y = 0 as part of your plot. This should help you. Clear all clc % THE SURFACES TO BE PLOTTED g = @(x)144 - x.^2; % The trace curve y = 0 This is a curve in the xz-plane. F = @(x,y)44-0.*x - 0.*y; % The plane z = 44 G = @(x,y)23-0.*x - 0.*y; % The plane z = 23 x = linspace(-12,12, 40); y = linspace(-12,12, 40); u = linspace(0,12,40); v = linspace(0,2*pi,40); % Parametrization of the Circular Paraboloid z = 144 x^2 y^2. [U,V] = meshgrid(u,v); % Parameter domain X = U.*cos(V); Y = U.*sin(V); Z = 144-U.^2;

surf(x,y,z,'facealpha',0.4) hold on [X,Y] = meshgrid(x,y); % Rectangular Domain over which I am plotting f(x,y) only surf(x,y,f(x,y),'facealpha',0.3) surf(x,y,g(x,y),'facealpha',0.3) % READY TO DEFINE PLANES z = d - ax - by. Therefore we have z = 44-0x - 0y and z = 23-0x - 0y t = linspace(-12,12,40); % Domain of the trace curve % Define the trace curve y = 0 and z = 144 - x^2 X = t; Y = 0.*t; Z = 144 - t.^2; plot3(x,y,z,'b','linewidth', 3) % Now we define the two 'Contour curves' (not level curves) f(x,y) = 44 i.e the x^2 + y^2 = 100; z = 44 and % f(x,y) = 23 i.e., x^2 + y^2 = 121; z = 23. Since these curves in space % are circles we can parameterize them in the usual way. t = linspace(0,2*pi,40); u = linspace(1,1,40); X = 11.*cos(t); Y = 11.*sin(t); Z = 23.*u;

plot3(x,y,z,'g','linewidth',3) X = 10.*cos(t); Y = 10.*sin(t); Z = 44.*u; plot3(x,y,z,'r','linewidth',3) colormap copper grid on rotate3d view([148,34]) axis equal square axis([-12 12-12 12 0 144]) legend('surface f(x,y) = 144 - x^2 - y^2','plane z = 23','plane z = 44','Trace z = 144 - x^2','contour f(x,y) = 23','contour f(x,y) = 44','Location','NorthEastOutside') set(gca,'color','y','xtick',-12:4:12,'xminortick','on','fontname','times','fontweight','bold') set(gca,'ytick',-12:4:12,'yminortick','on','fontname','times','fontweight','bold') set(gca,'ztick',0:36:144,'zminortick','on','fontname','times','fontweight','bold') title({'graph of f(x,y) = 144 - x^2-y^2','with two contour curves and a trace',' and two and planes'}) xlabel('x-axis','color','black','fontname','mathematica','fontweight','bold','fontsize',12) ylabel('y-axis','color','black','fontname','mathematica','fontweight','bold','fontsize',12) zlabel('z-axis','color','black','fontname','mathematica','fontweight','bold','fontsize',12)