Clustering. Distance Measures Hierarchical Clustering. k -Means Algorithms

Similar documents
DS504/CS586: Big Data Analytics Big Data Clustering Prof. Yanhua Li

Introduction to Data Mining

Near Neighbor Search in High Dimensional Data (1) Dr. Anwar Alhenshiri

Machine Learning: Symbol-based

Analytics and Visualization of Big Data

Chapter 18 Clustering

Clustering. Huanle Xu. Clustering 1

Clustering. Chapter Introduction to Clustering Techniques Points, Spaces, and Distances

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

Document Clustering: Comparison of Similarity Measures

What is Unsupervised Learning?

CHAPTER 4: CLUSTER ANALYSIS

Clustering and Visualisation of Data

Hierarchical Clustering 4/5/17

CSE 255 Lecture 6. Data Mining and Predictive Analytics. Community Detection

Polar Coordinates. 2, π and ( )

Lecture 5 Finding meaningful clusters in data. 5.1 Kleinberg s axiomatic framework for clustering

University of Florida CISE department Gator Engineering. Clustering Part 2

Supervised vs unsupervised clustering

CPSC 340: Machine Learning and Data Mining. Density-Based Clustering Fall 2016

Homework 4: Clustering, Recommenders, Dim. Reduction, ML and Graph Mining (due November 19 th, 2014, 2:30pm, in class hard-copy please)

Basics of Computational Geometry

Chapter 2 Basic Structure of High-Dimensional Spaces

University of Florida CISE department Gator Engineering. Clustering Part 5

Data Mining Clustering

CSE 158 Lecture 6. Web Mining and Recommender Systems. Community Detection

Small Libraries of Protein Fragments through Clustering

CPSC 340: Machine Learning and Data Mining

CSE 158. Web Mining and Recommender Systems. Midterm recap

Hierarchical Clustering

Clustering Part 4 DBSCAN

Topic: Local Search: Max-Cut, Facility Location Date: 2/13/2007

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

Gene Clustering & Classification

Case-Based Reasoning. CS 188: Artificial Intelligence Fall Nearest-Neighbor Classification. Parametric / Non-parametric.

CS 188: Artificial Intelligence Fall 2008

Big Data Infrastructure CS 489/698 Big Data Infrastructure (Winter 2017)

Clustering CS 550: Machine Learning

Math 734 Aug 22, Differential Geometry Fall 2002, USC

University of Florida CISE department Gator Engineering. Clustering Part 4

Level 4 means that I can

Proximity and Data Pre-processing

What to come. There will be a few more topics we will cover on supervised learning

Clustering. CS294 Practical Machine Learning Junming Yin 10/09/06

2-D Geometry for Programming Contests 1

Section 7.12: Similarity. By: Ralucca Gera, NPS

Machine Learning using MapReduce

CSE 258 Lecture 6. Web Mining and Recommender Systems. Community Detection

Administration. Final Exam: Next Tuesday, 12/6 12:30, in class. HW 7: Due on Thursday 12/1. Final Projects:

Non-Bayesian Classifiers Part I: k-nearest Neighbor Classifier and Distance Functions

SM 2. Date: Section: Objective: The Pythagorean Theorem: In a triangle, or

CSE 5243 INTRO. TO DATA MINING

High Dimensional Indexing by Clustering

Cluster Analysis. Ying Shen, SSE, Tongji University

CPSC 340: Machine Learning and Data Mining. Kernel Trick Fall 2017

Forestry Applied Multivariate Statistics. Cluster Analysis

Machine Learning. Nonparametric methods for Classification. Eric Xing , Fall Lecture 2, September 12, 2016

Clustering Algorithms

Feature Extractors. CS 188: Artificial Intelligence Fall Nearest-Neighbor Classification. The Perceptron Update Rule.

CSE 5243 INTRO. TO DATA MINING

Section 10.1 Polar Coordinates

Clustering: Overview and K-means algorithm

Olmo S. Zavala Romero. Clustering Hierarchical Distance Group Dist. K-means. Center of Atmospheric Sciences, UNAM.

Finding Similar Sets. Applications Shingling Minhashing Locality-Sensitive Hashing

CPSC 340: Machine Learning and Data Mining. Hierarchical Clustering Fall 2017

Cluster Analysis for Microarray Data

Cluster quality 15. Running time 0.7. Distance between estimated and true means Running time [s]

Clustering analysis of gene expression data

Knowledge Discovery and Data Mining 1 (VO) ( )

Overview of Clustering

BBS654 Data Mining. Pinar Duygulu. Slides are adapted from Nazli Ikizler

Methods for High Degrees of Similarity. Index-Based Methods Exploiting Prefixes and Suffixes Exploiting Length

Graphing Trig Functions - Sine & Cosine

Hard clustering. Each object is assigned to one and only one cluster. Hierarchical clustering is usually hard. Soft (fuzzy) clustering

Clustering and Dimensionality Reduction. Stony Brook University CSE545, Fall 2017

Clustering. Informal goal. General types of clustering. Applications: Clustering in information search and analysis. Example applications in search

Nearest Neighbor Search by Branch and Bound

Vocabulary. 5-number summary Rule. Area principle. Bar chart. Boxplot. Categorical data condition. Categorical variable.

Clustering. Unsupervised Learning

Based on Raymond J. Mooney s slides

Section 4.1: Introduction to Trigonometry

Geometry. Zachary Friggstad. Programming Club Meeting

Sergei Silvestrov, Christopher Engström. January 29, 2013

Clustering: Overview and K-means algorithm

Unit 14: Transformations (Geometry) Date Topic Page

MAT 142 College Mathematics. Module ST. Statistics. Terri Miller revised July 14, 2015

Nearest Neighbor Classification. Machine Learning Fall 2017

Clustering Billions of Images with Large Scale Nearest Neighbor Search

Machine Learning and Data Mining. Clustering (1): Basics. Kalev Kask

CPSC 340: Machine Learning and Data Mining. Non-Parametric Models Fall 2016

General Instructions. Questions

Kernels and Clustering

274 Curves on Surfaces, Lecture 5

2D/3D Geometric Transformations and Scene Graphs

Clustering: Centroid-Based Partitioning

Missing Data. Where did it go?

Data Mining and Analysis: Fundamental Concepts and Algorithms

CS 1675 Introduction to Machine Learning Lecture 18. Clustering. Clustering. Groups together similar instances in the data sample

Transcription:

Clustering Distance Measures Hierarchical Clustering k -Means Algorithms 1

The Problem of Clustering Given a set of points, with a notion of distance between points, group the points into some number of clusters, so that members of a cluster are in some sense as close to each other as possible. 2

Example x x x x x x x x x x x x x x x x x xx x x x x x x x x x x x x x x x x x x x x x x 3

Problems With Clustering Clustering in two dimensions looks easy. Clustering small amounts of data looks easy. And in most cases, looks are not deceiving. 4

The Curse of Dimensionality Many applications involve not 2, but 10 or 10,000 dimensions. High-dimensional spaces look different: almost all pairs of points are at about the same distance. Assuming random points within a bounding box, e.g., values between 0 and 1 in each dimension. 5

Example: SkyCat A catalog of 2 billion sky objects represented objects by their radiation in 9 dimensions (frequency bands). Problem: cluster into similar objects, e.g., galaxies, nearby stars, quasars, etc. Sloan Sky Survey is a newer, better version. 6

Example: Clustering CD s (Collaborative Filtering) Intuitively: music divides into categories, and customers prefer a few categories. But what are categories really? Represent a CD by the customers who bought it. Similar CD s have similar sets of customers, and vice-versa. 7

The Space of CD s Think of a space with one dimension for each customer. Values in a dimension may be 0 or 1 only. A CD s point in this space is (x 1, x 2,, x k ), where x i = 1 iff the i th customer bought the CD. Compare with the correlated items matrix: rows = customers; cols. = CD s. 8

Example: Clustering Documents Represent a document by a vector (x 1, x 2,, x k ), where x i = 1 iff the i th word (in some order) appears in the document. It actually doesn t matter if k is infinite; i.e., we don t limit the set of words. Documents with similar sets of words may be about the same topic. 9

Example: Protein Sequences Objects are sequences of {C,A,T,G}. Distance between sequences is edit distance, the minimum number of inserts and deletes needed to turn one into the other. Note there is a distance, but no convenient space in which points live. 10

Distance Measures Each clustering problem is based on some kind of distance between points. Two major classes of distance measure: 1. Euclidean 2. Non-Euclidean 11

Euclidean Vs. Non-Euclidean A Euclidean space has some number of real-valued dimensions and dense points. There is a notion of average of two points. A Euclidean distance is based on the locations of points in such a space. A Non-Euclidean distance is based on properties of points, but not their location in a space. 12

Axioms of a Distance Measure d is a distance measure if it is a function from pairs of points to reals such that: 1. d(x,y) > 0. 2. d(x,y) = 0 iff x = y. 3. d(x,y) = d(y,x). 4. d(x,y) < d(x,z) + d(z,y) (triangle inequality ). 13

Some Euclidean Distances L 2 norm : d(x,y) = square root of the sum of the squares of the differences between x and y in each dimension. The most common notion of distance. L 1 norm : sum of the differences in each dimension. Manhattan distance = distance if you had to travel along coordinates only. 14

Examples of Euclidean Distances L 2 -norm: dist(x,y) = (4 2 +3 2 ) = 5 x = (5,5) 5 4 3 y = (9,8) L 1 -norm: dist(x,y) = 4+3 = 7 15

Another Euclidean Distance L norm : d(x,y) = the maximum of the differences between x and y in any dimension. Note: the maximum is the limit as n goes to of what you get by taking the n th power of the differences, summing and taking the n th root. 16

Non-Euclidean Distances Jaccard distance for sets = 1 minus ratio of sizes of intersection and union. Cosine distance = angle between vectors from the origin to the points in question. Edit distance = number of inserts and deletes to change one string into another. 17

Jaccard Distance Example: p 1 = 10111; p 2 = 10011. Size of intersection = 3; size of union = 4, Jaccard measure (not distance) = 3/4. Need to make a distance function satisfying triangle inequality and other laws. d(x,y) = 1 (Jaccard measure) works. 18

Why J.D. Is a Distance Measure d(x,x) = 0 because x x = x x. d(x,y) = d(y,x) because union and intersection are symmetric. d(x,y) > 0 because x y < x y. d(x,y) < d(x,z) + d(z,y) trickier --- next slide. 19

Triangle Inequality for J.D. 1 - x z + 1 - y z > 1 - x y x z y z x y Remember: a b / a b = probability that minhash(a) = minhash(b). Thus, 1 - a b / a b = probability that minhash(a) minhash(b). 20

Triangle Inequality --- (2) So we need to observe that prob[minhash(x) minhash(y)] < prob[minhash(x) minhash(z)] + prob[minhash(z) minhash(y)] Clincher: whenever minhash(x) minhash(y), one of minhash(x) minhash(z) and minhash(z) minhash(y) must be true. 21

Cosine Distance Think of a point as a vector from the origin (0,0,,0) to its location. Two points vectors make an angle, whose cosine is the normalized dotproduct of the vectors: p 1.p 2 / p 2 p 1. Example p 1 = 00111; p 2 = 10011. p 1.p 2 = 2; p 1 = p 2 = 3. cos(θ) = 2/3; θ is about 48 degrees. 22

Cosine-Measure Diagram p 1 θ p 1.p 2 p 2 p 2 dist(p 1, p 2 ) = θ = arccos(p 1.p 2 / p 2 p 1 ) 23

Why? Dot product is invariant under rotation, so pick convenient coordinate system. p 1 = (x 1,y 1 ) p 1.p 2 = x 1 *x 2. p 2 = x 2. θ x 1 p 2 = (x 2,0) x 1 = p 1.p 2 / p 2 24

Why C.D. Is a Distance Measure d(x,x) = 0 because arccos(1) = 0. d(x,y) = d(y,x) by symmetry. d(x,y) > 0 because angles are chosen to be in the range 0 to 180 degrees. Triangle inequality: physical reasoning. If I rotate an angle from x to z and then from z to y, I can t rotate less than from x to y. 25

Edit Distance The edit distance of two strings is the number of inserts and deletes of characters needed to turn one into the other. Equivalently, d(x,y) = x + y -2 LCS(x,y). LCS = longest common subsequence = longest string obtained both by deleting from x and deleting from y. 26

Example x = abcde ; y = bcduve. Turn x into y by deleting a, then inserting u and v after d. Edit-distance = 3. Or, LCS(x,y) = bcde. x + y - 2 LCS(x,y) = 5 + 6 2*4 = 3. 27

Why E.D. Is a Distance Measure d(x,x) = 0 because 0 edits suffice. d(x,y) = d(y,x) because insert/delete are inverses of each other. d(x,y) > 0: no notion of negative edits. Triangle inequality: changing x to z and then to y is one way to change x to y. 28

Variant Edit Distance Allow insert, delete, and mutate. Change one character into another. Minimum number of inserts, deletes, and mutates also forms a distance measure. 29

Methods of Clustering Hierarchical: Initially, each point in cluster by itself. Repeatedly combine the two closest clusters into one. Point Assignment: Maintain a set of clusters. Place points into closest cluster. 30

Hierarchical Clustering Key problem: as you build clusters, how do you represent the location of each cluster, to tell which pair of clusters is closest? Euclidean case: each cluster has a centroid = average of its points. Measure intercluster distances by distances of centroids. 31

Example (5,3) o (1,2) o x (1.5,1.5) x (4.7,1.3) x (1,1) o (2,1) o (4,1) x (4.5,0.5) o (0,0) o (5,0) 32

And in the Non-Euclidean Case? The only locations we can talk about are the points themselves. I.e., there is no average of two points. Approach 1: clustroid = point closest to other points. Treat clustroid as if it were centroid, when computing intercluster distances. 33

Closest? Possible meanings: 1. Smallest maximum distance to the other points. 2. Smallest average distance to other points. 3. Smallest sum of squares of distances to other points. 34

Example clustroid 1 2 3 6 5 4 clustroid intercluster distance 35

Other Approaches to Defining Nearness of Clusters Approach 2: intercluster distance = minimum of the distances between any two points, one from each cluster. Approach 3: Pick a notion of cohesion of clusters, e.g., maximum distance from the clustroid. Merge clusters whose union is most cohesive. 36

k Means Algorithm(s) Assumes Euclidean space. Start by picking k, the number of clusters. Initialize clusters by picking one point per cluster. For instance, pick one point at random, then k -1 other points, each as far away as possible from the previous points. 37

Populating Clusters 1. For each point, place it in the cluster whose current centroid it is nearest. 2. After all points are assigned, fix the centroids of the k clusters. 3. Reassign all points to their closest centroid. Sometimes moves points between clusters. 38

Example Reassigned points 6 x 4 2 7 5 x 3 1 8 Clusters after first round 39

Getting k Right Try different k, looking at the change in the average distance to centroid, as k increases. Average falls rapidly until right k, then changes little. Average distance to centroid k Best value of k 40

Example Too few; many long distances to centroid. x x x x x x x x x x x x x x x x x xx x x x x x x x x x x x x x x x x x x x x x x 41

Example Just right; distances rather short. x x x x x x x x x x x x x x x x x xx x x x x x x x x x x x x x x x x x x x x x x 42

Example Too many; little improvement in average x x distance. x x x x x x x x x x x x x x x xx x x x x x x x x x x x x x x x x x x x x x x 43

BFR Algorithm BFR (Bradley-Fayyad-Reina) is a variant of k -means designed to handle very large (disk-resident) data sets. It assumes that clusters are normally distributed around a centroid in a Euclidean space. Standard deviations in different dimensions may vary. 44

BFR --- (2) Points are read one main-memory-full at a time. Most points from previous memory loads are summarized by simple statistics. To begin, from the initial load we select the initial k centroids by some sensible approach. 45

Initialization: k -Means Possibilities include: 1. Take a small sample and cluster optimally. 2. Take a sample; pick a random point, and then k 1 more points, each as far from the previously selected points as possible. 46

Three Classes of Points 1. The discard set : points close enough to a centroid to be represented statistically. 2. The compression set : groups of points that are close together but not close to any centroid. They are represented statistically, but not assigned to a cluster. 3. The retained set : isolated points. 47

Representing Sets of Points For each cluster, the discard set is represented by: 1. The number of points, N. 2. The vector SUM, whose i th component is the sum of the coordinates of the points in the i th dimension. 3. The vector SUMSQ: i th component = sum of squares of coordinates in i th dimension. 48

Comments 2d + 1 values represent any number of points. d = number of dimensions. Averages in each dimension (centroid coordinates) can be calculated easily as SUM i /N. SUM i = i th component of SUM. 49

Comments --- (2) Variance of a cluster s discard set in dimension i can be computed by: (SUMSQ i /N ) (SUM i /N ) 2 And the standard deviation is the square root of that. The same statistics can represent any compression set. 50

Galaxies Picture Points in the RS Compressed sets. Their points are in the CS. A cluster. Its points are in the DS. The centroid 51

Processing a Memory-Load of Points 1. Find those points that are sufficiently close to a cluster centroid; add those points to that cluster and the DS. 2. Use any main-memory clustering algorithm to cluster the remaining points and the old RS. Clusters go to the CS; outlying points to the RS. 52

Processing --- (2) 3. Adjust statistics of the clusters to account for the new points. 4. Consider merging compressed sets in the CS. 5. If this is the last round, merge all compressed sets in the CS and all RS points into their nearest cluster. 53

A Few Details... How do we decide if a point is close enough to a cluster that we will add the point to that cluster? How do we decide whether two compressed sets deserve to be combined into one? 54

How Close is Close Enough? We need a way to decide whether to put a new point into a cluster. BFR suggest two ways: 1. The Mahalanobis distance is less than a threshold. 2. Low likelihood of the currently nearest centroid changing. 55

Mahalanobis Distance Normalized Euclidean distance. For point (x 1,,x k ) and centroid (c 1,,c k ): 1. Normalize in each dimension: y i = x i -c i /σ i 2. Take sum of the squares of the y i s. 3. Take the square root. 56

Mahalanobis Distance --- (2) If clusters are normally distributed in d dimensions, then one standard deviation corresponds to a distance d. I.e., 70% of the points of the cluster will have a Mahalanobis distance < d. Accept a point for a cluster if its M.D. is < some threshold, e.g. 4 standard deviations. 57

Picture: Equal M.D. Regions 2σ σ 58

Should Two CS Subclusters Be Combined? Compute the variance of the combined subcluster. N, SUM, and SUMSQ allow us to make that calculation. Combine if the variance is below some threshold. 59