Overview: motion-compensated coding

Similar documents
Overview: motion estimation. Differential motion estimation

Motion estimation for video compression

Interframe coding of video signals

Displacement estimation

IN the early 1980 s, video compression made the leap from

Decoded. Frame. Decoded. Frame. Warped. Frame. Warped. Frame. current frame

An Improved H.26L Coder Using Lagrangian Coder Control. Summary

Rate Distortion Optimization in Video Compression

Comparative Study of Partial Closed-loop Versus Open-loop Motion Estimation for Coding of HDTV

The Scope of Picture and Video Coding Standardization

Multimedia Systems Video II (Video Coding) Mahdi Amiri April 2012 Sharif University of Technology

Interframe coding A video scene captured as a sequence of frames can be efficiently coded by estimating and compensating for motion between frames pri

Laboratoire d'informatique, de Robotique et de Microélectronique de Montpellier Montpellier Cedex 5 France

New Techniques for Improved Video Coding

Redundancy and Correlation: Temporal

Digital Video Processing

Fraunhofer Institute for Telecommunications - Heinrich Hertz Institute (HHI)

Compression of Stereo Images using a Huffman-Zip Scheme

Week 14. Video Compression. Ref: Fundamentals of Multimedia

Mesh Based Interpolative Coding (MBIC)

Chapter 10. Basic Video Compression Techniques Introduction to Video Compression 10.2 Video Compression with Motion Compensation

Lecture 6: Compression II. This Week s Schedule

Introduction to Video Compression

Using animation to motivate motion

Coding of Coefficients of two-dimensional non-separable Adaptive Wiener Interpolation Filter

Model-Aided Coding: A New Approach to Incorporate Facial Animation into Motion-Compensated Video Coding

Wavelet-Based Video Compression Using Long-Term Memory Motion-Compensated Prediction and Context-Based Adaptive Arithmetic Coding

Efficient MPEG-2 to H.264/AVC Intra Transcoding in Transform-domain

( ) ; For N=1: g 1. g n

ECE 417 Guest Lecture Video Compression in MPEG-1/2/4. Min-Hsuan Tsai Apr 02, 2013

LONG-TERM MEMORY PREDICTION USING AFFINE MOTION COMPENSATION

Reduced Frame Quantization in Video Coding

Scalable video coding with robust mode selection

VIDEO COMPRESSION STANDARDS

2014 Summer School on MPEG/VCEG Video. Video Coding Concept

1740 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 7, JULY /$ IEEE

BLOCK MATCHING-BASED MOTION COMPENSATION WITH ARBITRARY ACCURACY USING ADAPTIVE INTERPOLATION FILTERS

Welcome Back to Fundamentals of Multimedia (MR412) Fall, 2012 Chapter 10 ZHU Yongxin, Winson

Daala: One year later

Improving Intra Pixel prediction for H.264 video coding

Compression of Light Field Images using Projective 2-D Warping method and Block matching

LECTURE VIII: BASIC VIDEO COMPRESSION TECHNIQUE DR. OUIEM BCHIR

Efficient Method for Half-Pixel Block Motion Estimation Using Block Differentials

10.2 Video Compression with Motion Compensation 10.4 H H.263

COMP 249 Advanced Distributed Systems Multimedia Networking. The Video Data Type Coding & Compression Basics

Optimal Estimation for Error Concealment in Scalable Video Coding

Model-Aided Coding: A New Approach to Incorporate Facial Animation into Motion-Compensated Video Coding

International Journal of Emerging Technology and Advanced Engineering Website: (ISSN , Volume 2, Issue 4, April 2012)

Lec 08 Video Signal Processing I

SINGLE PASS DEPENDENT BIT ALLOCATION FOR SPATIAL SCALABILITY CODING OF H.264/SVC

H.264/AVC und MPEG-4 SVC - die nächsten Generationen der Videokompression

Tutorial T5. Video Over IP. Magda El-Zarki (University of California at Irvine) Monday, 23 April, Morning

Cross Layer Protocol Design

Computer Vision 2. SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung. Computer Vision 2 Dr. Benjamin Guthier

Image and Video Watermarking

Video Compression Standards (II) A/Prof. Jian Zhang

Video Coding Standards. Yao Wang Polytechnic University, Brooklyn, NY11201 http: //eeweb.poly.edu/~yao

An Efficient Mode Selection Algorithm for H.264

A deblocking filter with two separate modes in block-based video coding

In the name of Allah. the compassionate, the merciful

CMPT 365 Multimedia Systems. Media Compression - Video

LIST OF TABLES. Table 5.1 Specification of mapping of idx to cij for zig-zag scan 46. Table 5.2 Macroblock types 46

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 6, NO. 11, NOVEMBER

Video coding. Concepts and notations.

Introduction to Video Coding

CAMED: Complexity Adaptive Motion Estimation & Mode Decision for H.264 Video

Lecture 13 Video Coding H.264 / MPEG4 AVC

Coding for the Network: Scalable and Multiple description coding Marco Cagnazzo

Video Compression MPEG-4. Market s requirements for Video compression standard

Video Coding Standards: H.261, H.263 and H.26L

Fast Decision of Block size, Prediction Mode and Intra Block for H.264 Intra Prediction EE Gaurav Hansda

Distributed Video Coding

Anatomy of a Video Codec

Frequency Band Coding Mode Selection for Key Frames of Wyner-Ziv Video Coding

A High Quality/Low Computational Cost Technique for Block Matching Motion Estimation

IMAGE COMPRESSION. Image Compression. Why? Reducing transportation times Reducing file size. A two way event - compression and decompression

A LOW-COMPLEXITY MULTIPLE DESCRIPTION VIDEO CODER BASED ON 3D-TRANSFORMS

MULTIDIMENSIONAL SIGNAL, IMAGE, AND VIDEO PROCESSING AND CODING

Multimedia Signals and Systems Motion Picture Compression - MPEG

Motion Estimation for Video Coding Standards

VIDEO AND IMAGE PROCESSING USING DSP AND PFGA. Chapter 3: Video Processing

Compression of VQM Features for Low Bit-Rate Video Quality Monitoring

Video Compression An Introduction

MOTION COMPENSATION IN BLOCK DCT CODING BASED ON PERSPECTIVE WARPING

Complexity Reduced Mode Selection of H.264/AVC Intra Coding

Audio-coding standards

Block-Matching based image compression

Reduced 4x4 Block Intra Prediction Modes using Directional Similarity in H.264/AVC

IMAGE COMPRESSION. Chapter - 5 : (Basic)

H.264 STANDARD BASED SIDE INFORMATION GENERATION IN WYNER-ZIV CODING

JUNSHENG FU A Real-time Rate-distortion Oriented Joint Video Denoising and Compression Algorithm

CS 260: Seminar in Computer Science: Multimedia Networking

Research Article A High-Throughput Hardware Architecture for the H.264/AVC Half-Pixel Motion Estimation Targeting High-Definition Videos

Stereo Image Compression

A Quantized Transform-Domain Motion Estimation Technique for H.264 Secondary SP-frames

Scalable Video Coding in H.264/AVC

CMPT 365 Multimedia Systems. Media Compression - Video Coding Standards

University of Erlangen-Nuremberg. Cauerstrasse 7/NT, D Erlangen, Germany. ffaerber stuhl

Professor Laurence S. Dooley. School of Computing and Communications Milton Keynes, UK

DIGITAL TELEVISION 1. DIGITAL VIDEO FUNDAMENTALS

Transcription:

Overview: motion-compensated coding Motion-compensated prediction Motion-compensated hybrid coding Motion estimation by block-matching Motion estimation with sub-pixel accuracy Power spectral density of the motion-compensated prediction error Rate-distortion analysis Loop filter Motion compensated coding with sub-pixel accuracy Rate-constrained motion estimation Bernd Girod: EE398B Image Communication II Motion Compensation no. 1

Motion-compensated prediction previous frame stationary background current frame x t time t moving object y Displacement vector d x d y shifted object Prediction for the luminance signal S(x,y,t) within the moving object: ˆ S (x, y,t) = S(x d x, y d y,t t) Bernd Girod: EE398B Image Communication II Motion Compensation no. 2

Motion-compensated hybrid coder Coder Control Control Data - Decoder Intra-frame DCT Coder Intra-frame Decoder DCT Coefficients Intra/Inter 0 Motion- Compensated Predictor Motion Estimator Motion Data Bernd Girod: EE398B Image Communication II Motion Compensation no. 3

Motion-compensated hybrid decoder Control Data DCT Coefficients Decoder Intra-frame Decoder Intra/Inter 0 Motion- Compensated Predictor Motion Data Bernd Girod: EE398B Image Communication II Motion Compensation no. 4

Block-matching algorithm search range in previous frame S k 1 Subdivide every image into square blocks. Find one displacement vector for each block. Within a search range, find a best match that minimizes an error measure. Intelligent search strategies can reduce computation. block of current frame S k Bernd Girod: EE398B Image Communication II Motion Compensation no. 5

Block-matching algorithm Previous Image Current Image Measurement window is compared with a shifted array of pixels in the other image, to determine the best match Rectangular array of pixels is selected as a measurement window Bernd Girod: EE398B Image Communication II Motion Compensation no. 6

Block-matching algorithm Previous Image Current Image... process repeated for another measurement window position. Bernd Girod: EE398B Image Communication II Motion Compensation no. 7

Blockmatching: Matching Criterion Sum of Squared Differences to determine similarity Sum all values in measurement window Current image Previous image SSD( d, d ) = S ( x, y) S ( x + d, y + d ) x y k k 1 x y msmnt window 2 Horizontal shift Vertical shift Alternative matching criteria: SAD (Sum of Absolute Differences), cross correlation,... Only integer pixel shifts are possible Bernd Girod: EE398B Image Communication II Motion Compensation no. 8

Integer Pixel Shifts Previous Image Current Image Measurement window is compared with a shifted array of pixels in the other image, to determine the best match Rectangular array of pixels is selected as a measurement window Bernd Girod: EE398B Image Communication II Motion Compensation no. 9

Integer Pixel Shifts 28 42 42 43 44 40 32 20 29 32 22 30 44 45 45 45 42 30 21 26 27 18 35 54 54 54 53 54 53 52 54 53 52 49 53 52 49 31 52 49 31 21 49 31 21 28 31 21 24 21 15 40 63 62 62 63 62 63 59 62 63 59 60 63 59 60 44 59 60 44 33 60 44 33 35 44 33 31 33 26 74 121 120 120 114 120 114 112 120 114 112 111 114 112 111 80 112 111 80 32 111 80 32 23 80 32 22 32 17 79 127 130 130 128 130 128 124 130 128 124 125 128 124 125 88 124 125 88 125 88 24 17 88 24 20 24 13 80 129 131 131 124 131 124 127 131 124 127 124 127 96 127 96 42 127 96 42 29 96 42 28 42 19 50 78 77 77 71 77 71 73 77 71 73 75 71 73 75 63 73 75 63 52 75 63 52 47 63 52 46 52 29 54 53 52 49 31 21 62 63 59 60 44 33 120 114 112 111 80 32 130 128 124 125 88 24 131 124 127 127 96 42 77 71 73 75 63 52 22 37 37 37 39 40 40 41 41 38 25 Measurement window is compared with a shifted array of pixels in the other image, to determine the best match Rectangular array of pixels is selected as a measurement window Bernd Girod: EE398B Image Communication II Motion Compensation no. 10

SSD Values Resulting from Blockmatching SSD 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 0 5 Vertical shift d y 10 15 2 6 4 12 10 8 Horizontal shift d x Estimated displacement Integer-pixel accuracy 14 Bernd Girod: EE398B Image Communication II Motion Compensation no. 11

Motion-compensated prediction: example Previous frame Current frame Current frame with displacement vectors Motion-compensated Prediction error Bernd Girod: EE398B Image Communication II Motion Compensation no. 12

Interpolation of the SSD Minimum SSD Sub-pixel Accurate Minimum Fit parabola through 3 >3 points exactly approximately Horizontal shift d x Bernd Girod: EE398B Image Communication II Motion Compensation no. 13

2-d Interpolation of SSD Minimum Paraboloid Perfect fit through 6 points Approximate fit through >6 points SSD Vertical shift d y Horizontal shift d x Bernd Girod: EE398B Image Communication II Motion Compensation no. 14

Blockmatching: search strategies I Full search All possible displacements within the search range are compared. Computationally expensive Highly regular, parallelizable d y d x Bernd Girod: EE398B Image Communication II Motion Compensation no. 15

Blockmatching: search strategies II 2D logarithmic search (Jain + Jain, 1981) Iterative comparison of error measure values at 5 neighboring points Logarithmic refinement of the search pattern if best match is in the center of the 5- point pattern center of search pattern touches the border of the search range 3 5 4 5 5 3 5 5 2 3 2 1 1 1 1 1 2 4 d x d y Bernd Girod: EE398B Image Communication II Motion Compensation no. 16

Blockmatching: search strategies III Computational complexity Example: max. horizontal, vertical displacement = 6, integer-pel accuracy: Block comparisons a b 2D logarithmic full search 18 169 21 169 a - for special vector (2,6) b - worst case Bernd Girod: EE398B Image Communication II Motion Compensation no. 17

Block comparison speed-ups Triangle and Cauchy-Schwarz inequality for SAD and SSE Strategy: S k S k 1 S k S k 1 = S k S k 1 block Compute partial sums for blocks in current and previous frame Compare blocks based on partial sums Omit full block comparison, if partial sums indicate worse error measure than previous best result Performance: > 20x speed-up of full search block matching reported by employing [Lin + Tai, IEEE Tr. Commun., May 97] Sum over 16x16 block Row wise block projection block Column wise block projection block block 2 2 1 1 S S S S S S 2 ( ) = k k 1 k k 1 k k 1 block N block N block block number of terms in sum Bernd Girod: EE398B Image Communication II Motion Compensation no. 18

Hierarchical blockmatching Displacement vector field Block matching current frame previous frame Block matching Filtering and subsampling Block matching Filtering and subsampling Bernd Girod: EE398B Image Communication II Motion Compensation no. 19

Sub-pel accuracy Block matching Displacement vector field with sub-pel accuracy Displacement vector field with integer-pel accuracy Interpolation Block matching current frame previous frame Block matching Filtering and subsampling Block matching Filtering and subsampling Bernd Girod: EE398B Image Communication II Motion Compensation no. 20

Fractional-pixel accuracy Interpolate pixel raster of the reference image to desired fractional pixel accuracy (typically by bi-linear interpolation) Straightforward extension of displacement vector search to fractional accuracy Example: half-pixel accurate displacements dx 4.5 = d y 4.5 Bernd Girod: EE398B Image Communication II Motion Compensation no. 21

Bi-linear Interpolation brightness Interpolated Pixel Value Bernd Girod: EE398B Image Communication II Motion Compensation no. 22

Bi-linear Interpolation (cont.) I(x,y ) Bernd Girod: EE398B Image Communication II Motion Compensation no. 23

Model for performance analysis of an MCP hybrid coder luminance signal S - e R-D optimal intraframe encoder intraframe decoder e motion compensated predictor s displacement estimate true displacement d x d y + x y displacement error Bernd Girod: EE398B Image Communication II Motion Compensation no. 24

Analysis of the motion-compensated prediction error Previous frame Motion-compensated signal ( ) = ( ) ( ) c x s x n x Prediction error x ( ) = ( ) ( ) = s( x) s( x ) + n( x) e x s x c x x Current frame c(x) s(x) x Displacement d x Displacement error x x Bernd Girod: EE398B Image Communication II Motion Compensation no. 25

Analysis of m.c. prediction error (cont.) Motion-compensated prediction error ( ) ( ) ( ) ( ) ( ) ( ) δ( ) δ( ) Power spectrum of prediction error, assuming constant displacement error, statistical independence of s and n x ( ) ( ) ( ) ex= sx cx= sx sx + nx= x x sx+ nx x jω x jω x ( e )( e ) jω x ss ω { e } Φ ( ω) =Φ ( ω) 1 1 +Φ ( ω) ee ss nn ( ) = 2 Φ ( ) 1 Re +Φ ( ω) jω x { e } x Random displacement error, statistically independent from s, n { ( ) } Φ ( ω) = E 2 Φ ( ω) 1 Re +Φ ( ω) ee ss nn jω x { } ( { E e }) = 2 Φ ( ω) 1 Re +Φ ( ω) ss { P ( )} ( ) = 2 Φ ( ω) 1 Re ω +Φ ( ω) ss Bernd Girod: EE398B Image Communication II Motion Compensation no. 26 nn nn nn x

Analysis of m.c. prediction error (cont.) What is P(ω)? jω x ( ω ) = { } P E e x { x } jω ( ) ( ) = p e d = F p Fourier transform of the displacement error pdf! x Same as characteristic function of displacement error, except for sign Extension to 2-d ( { P }) Φ ( ω, ω ) = 2 Φ ( ω, ω ) 1 Re ( ω, ω ) +Φ ( ω, ω ) ee x y ss x y x y nn x y power spectrum of luminance signal Fourier transform of the displacement error pdf p( x, y ) noise spectrum Bernd Girod: EE398B Image Communication II Motion Compensation no. 27

Power spectrum of motion-compensated prediction error 0 π frequency ω x Bernd Girod: EE398B Image Communication II Motion Compensation no. 28

R-D function for MCP with integer-pixel accuracy ( x, y ) T assumed uniformly distributed between x =± 1 2 pel y =± 1 2 line Minimum bit-rate for given SNR ~0.7 bpp Gaussian signal model Φ ss (ω x,ω y ) = A 1+ ω x 2 ω 0 2 +ω y 2 Typical parameters for CIF resolution (352 x 288 pixels) 3 2 Bernd Girod: EE398B Image Communication II Motion Compensation no. 29

Required accuracy of motion compensation p( x, y ) isotropic Gaussian pdf with variance Φ ss (ω x,ω y ) = A 1+ ω 2 2 x +ω y 2 ω 0 Typical parameters for CIF resolution (352 x 288 pixels) Minimum bit-rate for SNR = 30 db σ 2 3 2 Bernd Girod: EE398B Image Communication II Motion Compensation no. 30

Model of MCP hybrid coder with loop filter luminance signal S - e R-D optimal intraframe encoder intraframe decoder spatial filter F motion compensated predictor displacement estimate true displacement d x d y + x y displacement error Bernd Girod: EE398B Image Communication II Motion Compensation no. 31

Motion-compensated prediction error with loop filter Motion-compensated signal cx ()= sx ( x ) nx Previous frame ( ) Prediction error ( ) = s x e x ( ) f( x) c( x) = sx () fx () s( x x )+ fx () n x Impulse response of loop filter () Current frame c(x) s(x) x Displacement d x Displacement error x x Bernd Girod: EE398B Image Communication II Motion Compensation no. 32

Spatial power spectrum of m.c. prediction error with loop filter { } ( ) Φ ( Λ ) =Φ ( Λ ) 1 + F( Λ) 2Re F( Λ) P( Λ ) +Φ ( Λ) F( Λ) 2 2 ee ss nn P(Λ) 2 -D Fourier transform of displacement error pdf F(Λ) 2 -D Fourier transform of f (x, y) Φ uu spatial spectral power density of signal u Λ vector of spatial frequencies (ω x,ω y ) n(x, y) noise Bernd Girod: EE398B Image Communication II Motion Compensation no. 33

Optimum loop filter Wiener filter minimizes prediction error variance Φss ( Λ) Fopt ( Λ ) = P ( Λ) Φ ss ( Λ ) +Φ nn( Λ ) accounts for accuracy of motion compensation Resulting minimum prediction error spectrum accounts for noise 2 Φss ( Λ) Φee( Λ ) =Φss ( Λ) 1 P( Λ) Φss ( Λ ) +Φnn( Λ) Bernd Girod: EE398B Image Communication II Motion Compensation no. 34

Effect of loop filter Moderately accurate motion compensation Very accurate motion compensation Bernd Girod: EE398B Image Communication II Motion Compensation no. 35

Required accuracy of motion compensation with loop filter p( x, y ) isotropic Gaussian pdf with variance σ 2 Minimum bit-rate for SNR = 30 db ~0.8 bpp Bernd Girod: EE398B Image Communication II Motion Compensation no. 36

Practical optimum loop filter design Not practical for loop filter design Φss ( Λ) Fopt ( Λ ) = P ( Λ) Φ ss ( Λ ) +Φ nn( Λ ) Motion compensation accuracy not known To determine Wiener filter from measurements: F opt (Λ) = Φ sc (Λ) Φ cc (Λ) Noise psd not known cross spectrum between s(x,y) and the motion-compensated c(x, y) = r(x d ˆ x, y d ˆ signal y ) Bernd Girod: EE398B Image Communication II Motion Compensation no. 37

Experimental evaluation of fractional-pixel motion compensation ITU-R 601 TV signals, 13.5 MHz sampling rate, interlaced, blockwise motion compensation with blocksize16x16 Zoom Voiture Bernd Girod: EE398B Image Communication II Motion Compensation no. 38

Influence of noise on the performance of MCP Bernd Girod: EE398B Image Communication II Motion Compensation no. 39

Motion Compensation Performance in H.263 500 Bit Rate [kbps] 400 300 200 Intra mode only Integer-pel accuracy 100 1/2-pel accuracy 0 24 30 36 Simulation details: Foreman, QCIF, SKIP=2 Q=4,5,7,10,15,25 PSNR [db] Bernd Girod: EE398B Image Communication II Motion Compensation no. 40

Rate-constrained motion estimation I motion vector rate R m D bit-rate R prediction error rate R e displacement error variance optimum trade-off: D R m = D R e Bernd Girod: EE398B Image Communication II Motion Compensation no. 41

Rate-constrained motion estimation II How to find best motion vector subject to rate constraint? Lagrangian cost function: solve unconstrained problem rather than constrained problem min( D + λr m ) error measure motion vector rate Interpret motion search as ECVQ problem. Bernd Girod: EE398B Image Communication II Motion Compensation no. 42

Rate-constrained Motion Estimation in H.263 Reference Model TMN-10 40 20 PSNR [db] 38 36 34 32 30 28 TMN-10, w/ rate-constrained motion estimation TMN-10, w/o rate-constrained motion estimation (TMN-9) Partial bit-rate [kbps] 15 10 5 TMN-10, w/ rate-constrained motion estimation TMN-10, w/o rate-constrained motion estimation (TMN-9) 26 0 50 100 150 200 Bit Rate [kbps] Simulation details: Foreman, QCIF, SKIP=2 Q=4,5,7,10,15,25 Annexes D+F 0 0 50 100 150 200 Bit Rate [kbps] Bernd Girod: EE398B Image Communication II Motion Compensation no. 43

Video coder control Encoding decisions Coding modes (intra/inter/motion comp.) Block size Motion vectors Quantizer step size Suppression of DCT coefficients Solution Embed rate-constrained motion estimation into mode decision with Lagrangian cost function Couple Lagrange multiplier to quantizer step size Difficulties Joint entropy coding of side information Temporal dependencies due to DPCM structure Input Video - Intra/Inter Decoder 0 Coder Control Intraframe DCT Coder Motion- Compensated Predictor Intraframe Decoder Control Data DCT Coefficients Motion Data Bernd Girod: EE398B Image Communication II Motion Compensation no. 44

History of motion-compensated coding Intraframe coding: only spatial correlation exploited DCT [Ahmed, Natarajan, Rao 1974], JPEG [1992] Conditional replenishment H.120 [1984] (DPCM, scalar quantization) Frame difference coding H.120 Version 2 [1988] Motion compensation: integer-pel accurate displacements H.261 [1991] Half-pel accurate motion compensation MPEG-1 [1993], MPEG-2/H.262 [1994] Variable block-size motion compensation H.263 [1996], MPEG-4 [1999] Complexity increases Bernd Girod: EE398B Image Communication II Motion Compensation no. 45

Efficiency of motion-compensated coding PSNR [db] 38 36 34 32 30 28 State-of-the-Art: Half-pel TMN-10 motion Variable compensation block size (MPEG-1 1993) motion compensation (H.263 1998)? 67 % Integer-pel motion compensation (H.261 1991) Frame difference coding (H.120 1988) Intraframe DCT coding (DCT 1974, JPEG 1992) 26 0 100 200 300 400 500 Foreman 10 Hz, QCIF 100 frames encoded Bit-Rate [kbps] Bernd Girod: EE398B Image Communication II Motion Compensation no. 46

Efficiency of motion-compensated coding PSNR [db] 42 40 Variable block size motion compensation (H.263 1996) Conditional Replenishment (H.120) Mother & Daughter 10 Hz, QCIF 100 frames encoded 38 36 34 32 30 60 % Intraframe DCT coding (JPEG) 28 0 100 200 300 400 Bit-Rate [kbps] Bernd Girod: EE398B Image Communication II Motion Compensation no. 47

Efficiency of motion-compensated coding PSNR [db] 40 38 36 34 32 30 28 26 Variable block size motion compensation (H.263 1996) 35 % Integer-pel motion compensation (H.261 1991) 40 % Intraframe DCT coding (JPEG) Mobile & Calendar 10 Hz, QCIF 100 frames encoded 24 Bit-Rate [kbps] 22 0 500 1000 1500 Bernd Girod: EE398B Image Communication II Motion Compensation no. 48