CFD-RANS APPLICATIONS IN COMPLEX TERRAIN ANALYSIS. NUMERICAL VS EXPERIMENTAL RESULTS A CASE STUDY: COZZOVALLEFONDI WIND FARM IN SICILY

Similar documents
CFD wake modeling using a porous disc

Validation of CFD Wind Resource Modeling in Highly Complex Terrain

Getting started. When the terrain gets rough

Post conversion of Lidar data on complex terrains

Experimental and Computational Investigation of Flow Distortion Around a Tubular Meteorological Mast

Getting benefits from CFD. in the wind energy industry

Simulation of Flow Development in a Pipe

Introduction to ANSYS CFX

THE APPLICATION OF AN ATMOSPHERIC BOUNDARY LAYER TO EVALUATE TRUCK AERODYNAMICS IN CFD

A Case Study on Using a Nacelle Lidar for Power Performance Testing in Complex Terrain. Megan Quick December 11, 2013

Numerical Simulation Study on Aerodynamic Characteristics of the High Speed Train under Crosswind

Aurélien Thinat Stéphane Cordier 1, François Cany

Reproducibility of Complex Turbulent Flow Using Commercially-Available CFD Software

ON THE NUMERICAL MODELING OF IMPINGING JET HEAT TRANSFER

COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF ORIFICE PLATE METERING SITUATIONS UNDER ABNORMAL CONFIGURATIONS

Coupling of STAR-CCM+ to Other Theoretical or Numerical Solutions. Milovan Perić

Simulation of Turbulent Flow in an Asymmetric Diffuser

Dispersion Modelling for Explosion Risk Analysis

Achieving Good Natural Ventilation through the Use of High Performance Computer Simulations Singapore Case Studies

STAR-CCM+: Wind loading on buildings SPRING 2018

Reproducibility of Complex Turbulent Flow Using Commercially-Available CFD Software

NUMERICAL ANALYSIS OF WIND EFFECT ON HIGH-DENSITY BUILDING AERAS

McNair Scholars Research Journal

Reproducibility of Complex Turbulent Flow Using Commercially-Available CFD Software

Induction zone measurements and simulations at Perdigão. Alexander Meyer Forsting, Niels Troldborg, Andreas Bechmann, Nikolas Angelou

Simulation of Turbulent Flow over the Ahmed Body

MASSACHUSETTS INSTITUTE OF TECHNOLOGY. Analyzing wind flow around the square plate using ADINA Project. Ankur Bajoria

2. POINT CLOUD DATA PROCESSING

Module D: Laminar Flow over a Flat Plate

Numerical calculation of the wind action on buildings using Eurocode 1 atmospheric boundary layer velocity profiles

Comparing WAsP and CFD wind resource estimates for the regular user Rui Pereira 1, Ricardo Guedes 1, C. Silva Santos,1,2

MOMENTUM AND HEAT TRANSPORT INSIDE AND AROUND

Using WindSim by means of WindPRO-interface gives the user many advantages:

GALION LIDAR PERFORMANCE VERIFICATION Technical report

CFD MODELING FOR PNEUMATIC CONVEYING

Wind lidars Not the final answer

EVALUATION OF A GENERAL CFD-SOLVER FOR A MICRO-SCALE URBAN FLOW

CFD Analysis of a Fully Developed Turbulent Flow in a Pipe with a Constriction and an Obstacle

GLOBAL SOLUTIONS IN ENGINEERING. Power Performance Testing

Verification and Validation in CFD and Heat Transfer: ANSYS Practice and the New ASME Standard

Preliminary Spray Cooling Simulations Using a Full-Cone Water Spray

Using a Single Rotating Reference Frame

Introduction to C omputational F luid Dynamics. D. Murrin

Appendix A - Calibration Data Sheets for Pika T701 Test Instruments Primary Anemometer Pre-Test Calibration

Workbench Tutorial Minor Losses, Page 1 Tutorial Minor Losses using Pointwise and FLUENT

ACTIVITY 8. The Bouncing Ball. You ll Need. Name. Date. 1 CBR unit 1 TI-83 or TI-82 Graphing Calculator Ball (a racquet ball works well)

NUMERICAL 3D TRANSONIC FLOW SIMULATION OVER A WING

Verification of Laminar and Validation of Turbulent Pipe Flows

Answers to Webinar "Wind farm flow modelling using CFD update" Q&A session

Turbulent Premixed Combustion with Flamelet Generated Manifolds in COMSOL Multiphysics

Backward facing step Homework. Department of Fluid Mechanics. For Personal Use. Budapest University of Technology and Economics. Budapest, 2010 autumn

Optimizing Bio-Inspired Flow Channel Design on Bipolar Plates of PEM Fuel Cells

Tutorial 1. Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

NUMERICAL MODELING STUDY FOR FLOW PATTERN CHANGES INDUCED BY SINGLE GROYNE

Flow in an Intake Manifold

Preliminary investigation into two-way fluid structure interaction of heliostat wind loads Josh Wolmarans

WALL Y + APPROACH FOR DEALING WITH TURBULENT FLOW OVER A SURFACE MOUNTED CUBE: PART 2 HIGH REYNOLDS NUMBER

Numerical and experimental investigations into liquid sloshing in a rectangular tank

Enhancement of a large injection system for steam turbines

STUDY OF FLOW PERFORMANCE OF A GLOBE VALVE AND DESIGN OPTIMISATION

Continued Investigation of Small-Scale Air-Sea Coupled Dynamics Using CBLAST Data

CFD design tool for industrial applications

NUMERICAL INVESTIGATION OF THE FLOW BEHAVIOR INTO THE INLET GUIDE VANE SYSTEM (IGV)

Simulation of Turbulent Axisymmetric Waterjet Using Computational Fluid Dynamics (CFD)

Site characterization through the use of Computational Fluid Dynamics

Compressible Flow in a Nozzle

Identification of severe wind conditions using a Reynolds Averaged Navier-Stokes solver

CFD Analysis of 2-D Unsteady Flow Past a Square Cylinder at an Angle of Incidence

Pressure Correction Scheme for Incompressible Fluid Flow

Flow and Heat Transfer in a Mixing Elbow

Comparison of Fuga and RANS in complex terrain

Introduction to Computational Fluid Dynamics Mech 122 D. Fabris, K. Lynch, D. Rich

Appendix: To be performed during the lab session

Middle East Technical University Mechanical Engineering Department ME 485 CFD with Finite Volume Method Fall 2017 (Dr. Sert)

Verification and Validation of Turbulent Flow around a Clark-Y Airfoil

SHAPE Pilot Thesan srl: Design improvement of a rotary turbine supply chamber through CFD analysis. R. Ponzini a, A. Penza a, R. Vadori b, B.

NUMERICAL SIMULATIONS OF FLOW THROUGH AN S-DUCT

GLASGOW 2003 INTEGRATING CFD AND EXPERIMENT

CFD SIMULATIONS OF HORIZONTAL AXIS WIND TURBINE (HAWT) BLADES FOR VARIATION WITH WIND SPEED

Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement

Three Dimensional Numerical Simulation of Turbulent Flow Over Spillways

Use of CFD in Design and Development of R404A Reciprocating Compressor

Validation of a Multi-physics Simulation Approach for Insertion Electromagnetic Flowmeter Design Application

Optimizing Building Geometry to Increase the Energy Yield in the Built Environment

Large Eddy Simulation of Flow over a Backward Facing Step using Fire Dynamics Simulator (FDS)

FEMLAB Exercise 1 for ChE366

THERMAL OPTIMIZATION OF GENSET CANOPY USING CFD

Feature list. New in windpro 3.2

Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement

Verification and Validation of Turbulent Flow around a Clark-Y Airfoil

Modeling & Simulation of Supersonic Flow Using McCormack s Technique

Investigation of mixing chamber for experimental FGD reactor

3D Modeling of Urban Areas for Built Environment CFD Applications

NUMERICAL SIMULATION OF FLOW FIELD IN AN ANNULAR TURBINE STATOR WITH FILM COOLING

LES Analysis on Shock-Vortex Ring Interaction

Influence of mesh quality and density on numerical calculation of heat exchanger with undulation in herringbone pattern

NUMERICAL AND EXPERIMENTAL ANALYSIS OF A REPRESENTATIVE ADF HELICOPTER FUSELAGE

CFD VALIDATION FOR SURFACE COMBATANT 5415 STRAIGHT AHEAD AND STATIC DRIFT 20 DEGREE CONDITIONS USING STAR CCM+

PUBLISHED VERSION. Originally Published at: PERMISSIONS. 23 August 2015

Proceedings of the ASME 2011 International Mechanical Engineering Congress & Exposition IMECE2011 November 11-17, 2011, Denver, Colorado, USA

Transcription:

CFD-RANS APPLICATIONS IN COMPLEX TERRAIN ANALYSIS. NUMERICAL VS EXPERIMENTAL RESULTS A CASE STUDY: COZZOVALLEFONDI WIND FARM IN SICILY J.Maza (*),G.Nicoletti(**), (*) Pisa University, Aerospace Engineering student. Tel +9 77, e-mail : s7@studenti.ing.unipi.it, giuseppe_maza@yahoo.com (**) Enel GEM Via A. Pisano, Pisa, Italy. Tel. +9 7, Fax +9 9, e-mail: giovanni.nicoletti@enel.it Abstract As stated in several studies over the last few years, CFD methods represent a powerful tool for Wind Farm planning and analysis, whose advantages with respect to linear models are evident in complex terrains. Nevertheless, to get the maximum benefit of these sophisticated tools, special care in parameters set-up is needed, in particular in the definition of the digital terrain model and the computational domain. This work makes use of different terrain representations from rough to fine and makes a comparison of numerical results versus experimental results. This work focuses on an Enel Wind Farm in Sicily with interesting terrain characteristics. This site has produced different types of experimental data. Comparison between velocity profiles, turbulence profiles, velocity and direction correlations between points has been made. The importance of some parameters such as roughness, grid conformation and spacing has been investigated. A good compromise has been found between definition and simplicity for the digital terrain of the site under consideration. KEY WORDS: CFD-RANS, Complex terrain.. Introduction As the use of CFD methods spreads worldwide in the planning phase of the Wind Energy industry, it is necessary to appreciate the sensibility of the results in variations of the setup parameters, in order to build standard analysis procedures. With this in mind, an effective digital terrain model is necessary for the correct use of these tools. This model has to be sophisticated enough to represent the most important physical phenomenon of interest in wind farm planning but simple enough to reduce database building cost, and not least, computational costs. With the aim to get accustomed to the use of state-of-the-art numerical tools for wind farm planning in complex terrain and to have a better understanding of constructing digital terrain models a complex terrain site with interesting characteristics has been used as a specific case study. Two parallel approaches were followed, the first regards the CFD analysis and the second regards the analysis of experimental data. A matching procedure has been done in order to make comparisons.. The case study: Cozzovallefondi Wind Farm in Sicily The Cozzovallefondi Wind Farm is located in Sicily, Italy approximately km south of Termini Imerese, on a hilly zone reaching m above see level. High slopes and wavy terrain makes it a good site for CFD procedures testing. The site has a ridge running at approximately west-east direction. The site presents typical Mediterranean vegetation with essentially two terrain roughness types: short grass that grows in winter and spring and fades in summer becoming yellow and macchia which is a evergreen group of bushes and relatively small trees.. CFD approach The physical phenomenon of fluid fluxes and for the present case of wind blowing through hills is translated in Mathematical form in the Navier-Stokes equations. In these equations the calculated quantities i.e. velocities, pressure, etc appear as a function of space and time. The type of flux we are interested in represent its by nature time varying (unsteady). A CFD computer code using the so called Reynolds Averaged Navier Stokes (RANS) approach has been employed to solve the Navier Stokes equations. In this approach all of the flux unsteadiness is averaged out and all unsteadiness is regarded as part of the turbulence. On averaging, the non-linearity of the Navier-Stokes equations gives rise to terms that must be modelled because the mathematical problem is not entirely defined (closed). The CFD code models these terms using the k-ε turbulence model which introduces two new partial differential equations and is thus a second order method. One equation is for the turbulence kinetic energy k and the other for the dissipation ε. The k-ε turbulence model contains five parameters that are calibrated in order to represent the type of flux of interest. For the present work two sets of values are tested. The CFD code being used is WindSim, developed by Vector AS, Norway. The first step in the CFD analysis is the terrain modelling. A digital terrain model sized x7 km covering the area around the Wind Farm has been used to represent the terrain orography. A roughness map has been constructed based on a geo referenced aerial photo. A resolution of x m is used. A domain for the CFD method is defined using the digital terrain as bottom boundary. The height of the domain is set big enough in order to avoid blocking effects and thus unphysical accelerations.

The grid conformation and spacing is varied both horizontally and vertically to test its influence in results. Boundary Conditions of, Turbulence Kinetic energy and Dissipation are set at the inlet(s) walls of the domain. (Inlet and exit walls vary as wind direction is varied). Due to the low speeds all over the field, the fluid (air) is considered incompressible. Site calibration raw data from CRES campaign are used to test the CFD results. Nevertheless the experimental raw data cannot be used directly. It needs to be processed. The data was processed by averaging values every degrees in wind direction in two ways: Digital Terrain and CFD domain The Coriolis force is not included in the model. Further analysis and the introduction of the Coriolis force in the mathematical model may be desirable in order to estimate quantitatively this effect.. Experimental Approach In order to check CFD results experimental results are needed. A site assessment of the topography and obstacles characteristics was made to examine whether the test site meets the requirements of Annex A of IEC -/99[] concerning terrain-induced distortions to the flow. The assessment revealed major deviations from the requirements of the standard regarding topographical variations in all sectors. Thus a site calibration was considered necessary and done by CRES Institute (Greece). In the site calibration procedure two mast with various anemometers and vanes were mounted. One on the top of the ridge in the position were the Wind Turbine is intended to be installed (the WT mast) and the other meters away in the north-northwest direction (Reference Mast : ). The height difference between the two masts is meters. - TOP-BOTTOM: Considering each mast alone, and thus processing velocity, turbulence intensity and directions at various heights (AGL) with direction taken at the top of the mast. - -WT mast : Considering relations between the Reference and the Wind Turbine Mast at various heights (AGL) and thus processing speed ups and direction shifts with direction taken at the top of the WT mast. A special care is taken in the number of data available for each sector, as less data produces less meaningful results. V norm 9.7 Wind Turbine 9.7......-. - Example of TOP-BOTTOM processed data Mast's sketch

Speed Up WT/ Dir. Shift.... WT mast - mast 9-9 - -. -. - - - - φ ref - φ inlet Direction Shift CFD-Results - - - 9 - inlet direction dir. m WT mast Example -WT processed data. Projects Done The following table resumes some of the projects done. A project is defined by the terrain model and the CFD set-up parameters used. Project no. Cell. roughness Turbulence model no. Sect Vtop. Matching Procedure In the CFD code, for modelling reasons, the wind direction is set at the domain inlet (s).the experimental data is taken at the masts positions, inside the domain. Wind direction between these points varies for several reasons. Thus, in order to make comparisons of velocity and turbulence intensity profiles, speed ups and direction shifts between calculated data and experimental data we can proceed in the following two ways: - Ignore this change and make a comparison at same directions. This can be a not too bad procedure for simple terrains with small obstacles. - Use the direction shift calculated in the CFD code between the inlet of the domain and the measured point to establish the wind direction at the measured point and use for this direction the experimental data to make comparisons. The idea is to make comparisons when both the calculated wind and the real wind blow in the same direction over the same reference point. For the present case the reference point is chosen at the top of the WT mast. This procedure seams a better approach for complex terrains when orography and obstacles produce significant wind direction changes. Mont k cost. k-ε Mont k cost. k-ε mod Mont 9k cost. k-ε Mont 9k var..-. k-ε Mont 9k var..-. k-ε Some of these parameters are the number of domain discretization cells and thus terrain modelling (the terrain is the bottom of the computational domain ), the roughness map, the turbulence model used and the velocity at the top of the inlet boundary layer. Other set up parameters include area extension, horizontal and vertical grid conformation and spacing, height of vertical domain and height of inlet boundary layer. 7. Results and Comparisons The following Plots show some typical CFD results and Comparisons with experimental values. For the present work, procedure n. is used. Distribution

CFD Profiles, Speed up effect is evident Comparison: Turbulence Intensity Profiles Comparison: Normalized Comparison: Direction Shift Speed Up m...... Mont Mont Mont Mont Exp Mont_mat Mont_mat Mont_mat Mont_mat. Comparison: Speed Ups. Conclusions Many terrain models from rough to detailed have been tested. Set up parameters have been varied in order to test their influence. The importance of some modelling parameters has been investigated. Finer discretizations in both grid an directions improve the CFD results, but need a lot of experimental data for appropriate matching. Computing times rise drastically with finer models. A good compromise between definition and simplicity has been found for the site under consideration. These results can be the basis for standard analysis procedures in similar sites. References.Tritton DJ, Physical Fluid Dynamics, Clarendon Press, Oxford 9. -Ferziger JH, Perić M., Computational Methods for Fluid Dynamics rd ed., Springer,. - CFD code Website : www.windsim.com

CFD-RANS* APPLICATIONS IN COMPLEX TERRAIN ANALYSIS NUMERICAL VS EXPERIMENTAL RESULTS A CASE STUDY: COZZOVALLEFONDI WIND FARM IN SICILY J. Maza, Pisa University, Aerospace Engineering student, Italy. G. Nicoletti, Enel GEM, Pisa Italy. SITE DESCRIPTION WT WT Typical Orography Masts Positions (East view) Different Roughness levels North View EXPERIMENTAL APPROACH CFD APPROACH TERRAIN MODELING Digital Orography Roughness map from Geo referenced aerial photo Masts and Turbines positions DATA AQUISITION Site calibration data from CRES campaign are used. Raw data presents large dispersion. Need to be processed Preprocessing and CFD set up Numerical approach (CFD-RANS) Ref Mast Wind Turbine Turbulence Model: k-ţ 9... Domain Definition : horizontal and vertical extension, grid configuration and spacing..9..7 Turbulence Kinetic energy. Normalized Convergence monitoring Turbulence Intensity -.-. - Direction shift Variables Monitor - Processing TOP - BOTTOM Number of sectors Dissipation Processed data. V norm 9.7 V norm 9. Boundary conditions: 9.7... Residuals Monitor Post Processing and data analysis WT mast - mast Speed Up WT/.... 9-9 - -. -. WT w t Processed data mast w t Dir. Shift WT masts Distribution - - - - 7 9 Speed Up Direction Shift Profiles dir. m WT mast Turbulence mast and WT during power curve measuring campaign (North-east view, summer) Kinetic Energy Distribution COMPARISON CONCLUSIONS SOME EXAMPLES MATCHING PROCEDURE CFD wind direction is assigned as boundary condition at the domain inlet (s). Many terrain models from rough to detailed have been made.. Terrain Roughness, Grid Conformation, Turbulence Model settings, Inlet. wt- ref CFD solutions are used to determine direction shifts between inlet and reference points in order to make comparisons. Set up parameters are varied in order to test their influence: Norm. Direction shift Local wind direction is measured on reference points (masts). wt. Several computations have been made. mast-wt. mast_wt exp ref. The importance of some modeling parameters has been investigated. exp_ref exp wt. exp_m.7 Direction Shift CFD-Results.7...9.9.. Finer discretizations in both grid and directions improve the CFD results but need a lot of experimental data for appropriate matching. Speed Up m TI Computing times rise drastically with finer models. I ref - I inlet Mont.. - - - inlet direction 9 - w t. mast w t exp ref exp w t. CFD code used: WindSim, developed by Vector AS, Norway Exp Mont_mat Mont_mat.. Mont_mat. A good compromise between definition and simplicity has been found for the site under consideration. Mont. (*) CFD RANS : Computational Fluid Dynamics, Reynolds Averaged Navier Stokes Mont Mont Mont_mat no. data These results can be the basis for standard analysis procedures in similar sites.