Understanding Enterprise SDN

Similar documents
VCStack - Powerful Simplicity

Fabric Virtualization Made Simple

Solutions Guide. Building distributed network cores with Allied Telesis switches

Success Story. Dunham-Bush

Allied Telesis Autonomous Management TM

Training. Global Training Programs

Hokkaido Institute of Technology

Mitigating Branch Office Risks with SD-WAN

Case Study Parc de Vilgénis College

Unified Application Delivery

NTT DATA Hokuriku Corporation in Hokuriku, Japan, a

The Top Five Reasons to Deploy Software-Defined Networks and Network Functions Virtualization

The Programmable Network

Service Delivery Platform

Benefits of SD-WAN to the Distributed Enterprise

Preparing your network for the next wave of innovation

DEFINING SECURITY FOR TODAY S CLOUD ENVIRONMENTS. Security Without Compromise

OPTIMIZE. MONETIZE. SECURE. Agile, scalable network solutions for service providers.

Transformation Through Innovation

Not all SD-WANs are Created Equal: Performance Matters

Success Story. Kangan Institute. Allied Telesis Helps Kangan Institute Keep an Eye on Security

Transform your network and your customer experience. Introducing SD-WAN Concierge

Securing Your Enterprise in the Cloud. IT executives must be ready to move to the cloud safely

SYMANTEC: SECURITY ADVISORY SERVICES. Symantec Security Advisory Services The World Leader in Information Security

SOFTWARE-DEFINED NETWORKING WHAT IT IS, AND WHY IT MATTERS

Next Generation Privilege Identity Management

Vista Manager EX Network Monitoring and Management

ADVANCED SECURITY MECHANISMS TO PROTECT ASSETS AND NETWORKS: SOFTWARE-DEFINED SECURITY

Virtualization. Q&A with an industry leader. Virtualization is rapidly becoming a fact of life for agency executives,

15-744: Computer Networking. Middleboxes and NFV

IP ALL THE WAY TO THE BEDHEAD

Wellington Institute of Technology

White paper: Agentless Backup is Not a Myth. Agentless Backup is Not a Myth

Here s a look at some of the latest technology trends and key offerings from providers.

Three Pillars of Effective Disaster Recovery

Video-Aware Networking: Automating Networks and Applications to Simplify the Future of Video

Cisco Start. IT solutions designed to propel your business

WHITE PAPER. Applying Software-Defined Security to the Branch Office

Virtual Private Networks with Cisco Network Services Orchestrator Enabled by Tail-f - Fast, Simple, and Automated

Military College of Electronic and Mechanical Engineering

Real-Time Insights from the Source

Osaka Red Cross Hospital

FROM A RIGID ECOSYSTEM TO A LOGICAL AND FLEXIBLE ENTITY: THE SOFTWARE- DEFINED DATA CENTRE

Delivering the Wireless Software-Defined Branch

Taking Back Control of Your Network With SD-LAN

Hybrid WAN Operations: Extend Network Monitoring Across SD-WAN and Legacy WAN Infrastructure

Solutions Overview. Nortel Networks. Preside. Next-Generation Management Solutions

The Five Phases of Virtualization: From Hardware Rigidity to Web-Scale Flexibility

Securing Your Amazon Web Services Virtual Networks

Transform your network and your customer experience. Introducing SD-WAN Concierge

NFV and SDN what does it mean to enterprises?

TRUSTED MOBILITY INDEX

Never Drop a Call With TecInfo SIP Proxy White Paper

Optimizing Pulse Secure Access Suite with Pulse Secure Virtual Application Delivery Controller solution

BACKUP TO THE FUTURE A SPICEWORKS SURVEY

The SD-WAN security guide

The Benefits of Wireless Infrastructure Management in the Cloud

University of Hyderabad

Data and Computer Communications

HYBRID WAN. Proof of Value Journey. WAN Summit Michael Becerra Singapore, 12 September Global Business Services Excellence. Simply delivered.

Securing Your Microsoft Azure Virtual Networks

Redeeming the P Word. Making the Case for Probes as an Effective UC Diagnostics Tools WHITE PAPER

Hyper-Converged Infrastructure: Providing New Opportunities for Improved Availability

SD-WAN Solution How to Make the Best Choice for Your Business

FOCUS ON THE FACTS: SOFTWARE-DEFINED STORAGE

APPLIED SATELLITE ENGINEERING-MACHINE-TO-MACHINE. This resource is brought to you by ASE M2M. Contact information.

Hitachi Unified Compute Platform Pro for VMware vsphere

SD-WAN Transform Your Agency

Achieving Digital Transformation: FOUR MUST-HAVES FOR A MODERN VIRTUALIZATION PLATFORM WHITE PAPER

The definitive guide to selecting the right ADC for the digital transformation era

One Release. One Architecture. One OS. High-Performance Networking for the Enterprise with JUNOS Software

SDN. Software-defined networking The Network Solution for the Era of Big Data. 271 Waverley Oaks Road Waltham, MA

From the past to the future: how to make the move from ISDN to SIP

Why Now Is the Time to Consider 10GbE

Sustainable Security Operations

W H I T E P A P E R : O P E N. V P N C L O U D. Implementing A Secure OpenVPN Cloud

Bringing DevOps to Service Provider Networks & Scoping New Operational Platform Requirements for SDN & NFV

Design and deliver cloud-based apps and data for flexible, on-demand IT

AVAYA SDN Fx HEALTHCARE SOLUTION BRIEF

New Digital Business Models Driving the Softwarization of the Network

Using Threat Analytics to Protect Privileged Access and Prevent Breaches

3 Ways Businesses Use Network Virtualization. A Faster Path to Improved Security, Automated IT, and App Continuity

Enterprise Mobility Management: completing the EMM story

CDW LLC 200 North Milwaukee Avenue, Vernon Hills, IL

Symantec Security Monitoring Services

PALANTIR CYBERMESH INTRODUCTION

An Oracle White Paper October Minimizing Planned Downtime of SAP Systems with the Virtualization Technologies in Oracle Solaris 10

The CORD reference architecture addresses the needs of various communications access networks with a wide array of use cases including:

Application-Aware Network INTRODUCTION: IT CHANGES EVOLVE THE NETWORK. By Zeus Kerravala -

WHAT NETWORK VIRTUALIZATION TECHNOLOGY CAN DO FOR YOUR NETWORK TODAY

VPN- Next-Generation Firewall (NGFW) 1/46

Is IPv4 Sufficient for Another 30 Years?

The Problem with Privileged Users

CASE STUDY INSIGHTS: MICRO-SEGMENTATION TRANSFORMS SECURITY. How Organizations Around the World Are Protecting Critical Data

Guide to SDN, SD-WAN, NFV, and VNF

TN3270 AND TN5250 INTERNET STANDARDS

Introducing Avaya SDN Fx with FatPipe Networks Next Generation SD-WAN

Inside Track Research Note. Sponsored by. Understanding Software-Defined Storage. How it works and why its time has come

A Practical Guide to Cost-Effective Disaster Recovery Planning

MAGIC OF SDN IN NETWORKING

Transcription:

White Paper Understanding Enterprise SDN Introduction The simplest way to describe Software-Defined Networking (SDN) is to call it an approach to networking in which control is decoupled from hardware, and given to a software application called a controller. However, there is a lot more to it than that. SDN, like most fields of technical advancement, has quickly developed its own terminology. It has generated a lot of interest and excitement, and therefore much has been written about it, including a huge amount of information about OpenFlow, network virtualization, control plane separation, Network Functions Virtualization (NFV) and more. This White Paper gets back to the core of SDN, and addresses the simple questions: SDN? What are the drivers behind the emergence of ۼۼ future? What effect will SDN have on enterprise networking today, and in the ۼۼ Contents Introduction...1 How did SDN come about?...2 A new era of networking...2 1. The Internet has distributed control among network nodes...2 2. Data centers have changed the game...2 Two co-existing modes of networking...3 What does this mean for the enterprise/campus network?...3 1. Will moving to SDN lower capital costs?...4 2. Will moving to SDN lead to faster introduction of new capabilities into the network?...4 3. Will moving to SDN improve network security?...4 4. Will moving to SDN improve network reliability?...4 5. Will moving to SDN provide a better experience for the end user of the network?...5 6. Will moving to SDN lower operating costs?...5 How to simplify network management and save OPEX, today...6 alliedtelesis.com

How did SDN come about? After decades of data-networking as a decentralized and distributed process, recent years have seen the development of methods for centralizing data network control. The umbrella term for this centralizing of network control is Software Defined Networking (SDN). This term refers to the fact that software applications, like those that move virtual servers around in a data center, or orchestrate file transfers between data centers, define the operation of switching and routing nodes in the network. A new era of networking A look back over the last few decades can identify a first era of data networking, which was dominated by short-haul communication between mainframes; and a second era, dominated by TCP/IP over the Internet and over LANs. The current consensus is that a third era in data networking is beginning, and that this new era will see a split between the distributed protocols used on the public Internet, and the centralized way that local and private networks operate. Why is this split occurring? There are 2 main reasons: 1. The Internet has distributed control among network nodes 2. Data centers have changed the game 1. The Internet has distributed control among network nodes The distributed nature of networking intelligence in the Internet has been incredibly successful. An Internet that had just one central point of control could not have grown in the way the current Internet has. The Internet operates in a manner that is astonishing, because it seems almost organic new network nodes graft on with a minimum of trouble, broken links self-heal, and the entire network spreads seamlessly over international borders. This lack of a central point of control is absolutely key to the Internet s reliability. The idea of shutting down the Internet or breaking the Internet has become the source of plenty of jokes, due to its sheer impossibility. These same control protocols that are used in the Internet have also taken hold in local and private networks over the last 15 years or so. There is no fundamental reason why an office LAN should use the same network control methods as the global Internet. It has just evolved that way because of economies of scale in technical knowledge engineers skilled in developing and operating Internet networking equipment can apply those same skills to LANs and private WANs. 2. Data centers have changed the game The rise of the data center has changed the landscape. Data centers are facilities used to house computer systems and associated components, such as telecommunications and storage systems. Data centers are different to what came before them, because: rate. They contain virtual servers that come in and out of existence, and move physical location, at a rapid ۼۼ reliability. Their commercial success rests on achieving remarkable levels of responsiveness and ۼۼ centers. Data can be frequently transferred in bulk between data ۼۼ Because a data center is a discrete, contained entity (in contrast to the distributed nature of the Internet), centralizing the control of data center networks can positively enhance the data center s performance. Centralizing network control makes it possible for the system that moves virtual servers to different locations in the data center, to also be able to reconfigure the network to match the servers relocation. The resulting unified control of servers and network makes a very compelling model for a system that, by necessity, must operate with extreme efficiency. Waiting for the network to learn the new location of a virtual server is just too slow. It is far more efficient to rewire the network to match the new layout when a virtual server moves. 2 Understanding Enterprise SDN alliedtelesis.com

Furthermore, centralized control of the networks that connect data centers to each other is also beneficial. Bulk data transfers need to traverse the inter-data center links as quickly as possible, so links must be utilized with maximum efficiency. Network-based load sharing mechanisms, like Equal Cost Multi-Path (ECMP), are fine for per-packet or per-session balancing. However, with ECMP, the switching nodes are not aware of the relative sizes and relative importance of the files being transferred in any given session. A centralized application that orchestrates data transfer can have this knowledge of file sizes and priorities. If the orchestrating application can tell the switching nodes which sessions to put onto which links, then files can be transferred with maximum efficiency. Two co-existing modes of networking In the new world of networking that is emerging, two distinct modes of data networking will co-exist: 1. Large public networks will continue to operate in a decentralized manner, as centralized control of such networks is simply not feasible. These networks, although generally reliable, operate on a best effort basis. Responsiveness to faults, optimization of bandwidth use, and network latency will be variable in such networks. But, decentralization means that they are highly resilient, and able to tolerate unregulated growth and alteration. 2. Smaller purpose-built commercial networks will utilize SDN to achieve levels of performance, resource optimization, and userresponsiveness that are unthinkable in decentralized networks. This sort of divergence is inevitable. As data networking becomes increasingly integrated into more spheres of human activity, the range of network requirements keeps expanding. One model of network control no longer fits all. What does this mean for the enterprise/campus network? Which model is more suitable for the enterprise/campus network? Do enterprises benefit more from staying with networks that operate on the decentralized, self-organizing model of the Internet? Or, are they better to move to the centralized model of SDN? To answer these questions, consider the pros and cons of moving an enterprise network to using SDN. Will moving to SDN: 1. Lower capital costs? 2. Lead to faster introduction of new capabilities into the network? 3. Improve network security? 4. Improve network reliability? 5. Provide a better experience for the end user of the network? 6. Lower operating costs? These questions are explored in more depth in the next sections. Understanding Enterprise SDN 3

1. Will moving to SDN lower capital costs? Proponents of SDN frequently refer to a future in which networking nodes are low-cost commodity units. There are plenty of reasons to be sceptical of this claim. Networking equipment must be reliable, secure, high performing, power-efficient, and more, so the cost of building the equipment cannot dramatically decrease. The chip vendors will still need to recoup the costs of developing new Application-Specific Integrated Circuits (ASICs) for SDN. So, there will not be a dramatic reduction in the cost of ASICs in the near future. Even though a lot of network intelligence will move to the controller and application software, the sum total of intellectual property in the network will not decrease, so the cost of the network cannot really decrease dramatically. Perhaps some vendors who currently charge a premium for their products might find they need to reduce that premium as the playing field is levelled out, but it is unlikely that the capital cost of data networks will plummet. 2. Will moving to SDN lead to faster introduction of new capabilities into the network? Moving the intelligence out of the switches and into application software means that the switching equipment vendor is no longer necessarily the provider of the network functionality. The writer of the software puts the functionality into the network. This opens the field up for multiple third parties to provide network control applications that add specific pieces of functionality. So, rather than waiting for a switch vendor s next software release possibly months away functionality could be added to a network in minutes, just by downloading a piece of application software. The idea of the data network becoming a system that runs applications is an exciting scenario, which is now starting to become a reality. New services are emerging that can: Detect and block various types of security threat ۼۼ The flexibility provided by SDN means that attack blocking can be performed in a very precise and dynamic manner. (BYOD) Facilitate Bring Your own Device ۼۼ Dynamic updates to access rules to accommodate users changing devices are easily automated by SDN. Perform scheduled user access permission changes ۼۼ The programmatic approach means that a workplace timetable can be automatically converted into a set of scheduled network configuration updates. Balance WiFi load ۼۼ A variety of factors can be measured in the network, to make decisions about where connections should terminate. 3. Will moving to SDN improve network security? Security depends on blocking malicious users and malicious traffic. The faster the malicious activity is detected, and the closer to the source it is blocked, the better. SDN opens the door to new methods, which ensure that the detection and blocking of malicious traffic within the network is rapid and automated. Monitoring internal traffic enables suspicious activity to be detected. Then the switch or Access Point directly connected to the traffic source can be instructed to block data from that source. This is a new, and effective, approach to dealing with intrusions and infections. It enables a very rapid and granular blocking of the precise sources of threats. Similarly, newly connected devices can be interrogated regarding their security status, and automatically quarantined if found to not be up to scratch. SDN provides a standardized interface for applications to control network nodes, which opens up the opportunity for innovative security applications to enter the market quickly. The applications can focus on the accurate detection of security threats, and leave the SDN OpenFlow-based infrastructure to carry out the process of blocking threats. 4 Understanding Enterprise SDN alliedtelesis.com

4. Will moving to SDN improve network reliability? Reliability is a combination of: Physical reliability of the network equipment ۼۼ Reliability of software running on the switches and controllers ۼۼ Effectiveness of the protocols that effect failover around broken links, like the EPSR protocol implemented in Allied Telesis ۼۼ switches SDN does not provide an inherent increase in reliability. SDN has no effect on the physical reliability of the network equipment. Importantly, SDN relies on stable communication between network nodes and the controller. Ensuring the reliability of this critical communication path is very important. Allied Telesis have a unique solution to this requirement namely the AMF management channel. This auto-created, self-healing communication path presents the ideal way to achieve reliable OpenFlow communication. 5. Will moving to SDN provide a better experience for the end users of the network? Users expectations for their data networking experience evolve rapidly. As new devices, connection options, services and communication methods become available, users want to adopt these facilities as soon as possible. As such, the level of flexibility required in the network is steadily increasing. Providing a high level of flexibility, while still maintaining good security, requires a network infrastructure that is dynamic and responsive. SDN, with the ability to detect user identities and their network activity, and automatically adapt to dynamic changes, has great potential for enhancing the user experience. 6. Will moving to SDN lower operating costs? The bulk of the operating expenditure (OPEX) in an enterprise network is in network management. SDN, among other things, provides new ways to centralize and automate network management. Network management tasks are made easier by centralizing network control. These tasks include: detecting and replacing failed links and failed units ۼۼ adding new nodes to the network ۼۼ resolving users connectivity issues ۼۼ investigating network slow-downs ۼۼ maintaining security ۼۼ changing switch configurations even open-flow controlled switches need configuration ۼۼ upgrading switch software even open-flow controlled switches need software upgrades ۼۼ The key to truly reducing enterprise network OPEX, is through simplifying network management. Automating routine management tasks, and facilitating insight into what is happening in the network, are key to reducing the cost of network management. Employing SDN in the management plane, as well as the control plane, delivers these capabilities. Understanding Enterprise SDN 5

How to simplify network management and save OPEX, today In conclusion, it is clear that SDN is a maturing technology. It will steadily change the way that networks operate over the coming years, delivering ever more flexible and dynamic data networks. Allied Telesis have embraced this technology to enable organisations to simplify network management, improve security, enhance the user experience, and save costs right now. To this end, Allied Telesis have taken a unique, two-fold approach to bringing SDN into the Enterprise: (AMF) Allied Telesis Management Framework ۼۼ OpenFlow ۼۼ The first part of the Allied Telesis SDN offering is Allied Telesis Management Framework (AMF). This technology focuses on providing the required network management advances. By embedding management intelligence into the network itself, AMF automates management tasks, like: Backing up network device configurations and software images ۼۼ Adding new units to the network ۼۼ Replacing failed units with new units ۼۼ Making configuration changes to multiple units ۼۼ Rolling out a firmware upgrade ۼۼ AMF provides truly zero-touch integration of new and replacement units into the network, and single-command automated software upgrades of a whole network. AMF greatly reduces the time and error risk involved in performing repetitive configuration tasks across multiple network nodes. In addition, AMF operates seamlessly across large networks distributed over several sites. The zero-touch device replacement operates just as effectively at a small remote office as it does in the Head Office. The automated firmware upgrade radiates across the whole network, upgrading units on all connected sites. The second part of the Allied Telesis SDN offering is OpenFlow. Embedding an OpenFlow control interface into the Allied Telesis network equipment opens the door to bringing standardized SDN applications into the Enterprise environment. The innovative combination of AMF and OpenFlow represents a highly effective foundation upon which to build comprehensive Enterprise SDN solutions. Visit http://www.alliedtelesis.com/solutions/networkmanagement for more information about how Allied Telesis delivers innovative SDN offerings in Enterprise Networking, today. About Allied Telesis, Inc. For nearly 30 years, Allied Telesis has been delivering reliable, intelligent connectivity for everything from enterprise organizations to complex, critical infrastructure projects around the globe. In a world moving toward Smart Cities and the Internet of Things, networks must evolve rapidly to meet new challenges. Allied Telesis smart technologies, such as Allied Telesis Management Framework (AMF) and Enterprise SDN, ensure that network evolution can keep pace, and deliver efficient and secure solutions for people, organizations, and things both now and into the future. Allied Telesis is recognized for innovating the way in which services and applications are delivered and managed, resulting in increased value and lower operating costs. Visit us online at alliedtelesis.com North America Headquarters 19800 North Creek Parkway Suite 100 Bothell WA 98011 USA T: +1 800 424 4284 F: +1 425 481 3895 Asia-Pacific Headquarters 11 Tai Seng Link Singapore 534182 T: +65 6383 3832 F: +65 6383 3830 EMEA & CSA Operations Incheonweg 7 1437 EK Rozenburg The Netherlands T: +31 20 7950020 F: +31 20 7950021 alliedtelesis.com 2015 Allied Telesis, Inc. All rights reserved. Information in this document is subject to change without notice. All company names, logos, and product designs that are trademarks or registered trademarks are the property of their respective owners. C613-08033-00 RevA