SyncLink GT2E/GT4E Serial Adapter

Similar documents
SyncLink GT Serial Adapter

SyncLink USB Serial Adapter

SyncLink GT4 PC/104+ Serial Adapter

PCI-SIO8BXS-SYNC. Features:

MICROGATE SERIAL COMMUNICATIONS RUN TIME KIT WINDOWS GUIDE

Sender Receiver Sender

Functional Diagram: Serial Interface: Serial Signals:

Modtronix Engineering Modular Electronic Solutions SBC28DC. Single board computer for 28 pin DIP PICs

Note: For BANDIT II, BANDIT III, or VSR-1200 specifications, see the BANDIT II, BANDIT III, and VSR-1200 Document Set. Function

USER MANUAL. MODEL 2011 High Speed Asynchronous to Synchronous Converter

Applications Include: Functional Diagram: LAN/WAN Networking Telecommunications Serial Interface

Pmod modules are powered by the host via the interface s power and ground pins.

Dual Serial Shield User Manual

USB-TTL-5 PRODUCT IS A COMBINATION OF PRODUCTS USB AND TTL-232-5P BOTH DATASHEETS ARE INCLUDED IN THIS PDF FILE

BeagleBone Black USB Expansion RS232 Module Cape Coolgear, Inc. Version 1.1 September 2017 Model Number:

PCI Express 16-Port Serial I/O Cards

EX & EX-45362IS 2S RS232/422/485 3-in-1 Serial PCIe Card

PCIe-400 USER S MANUAL

PCL Port RS-232 Interface Card

USB-2COM-BB USER S MANUAL

Product Manual. USB to Optical Adapter Industrial Isolated RS- 232/422/485. Coolgear, Inc. Version 2.1 December 2018 Model Number: USB-COMi-Si-M

RocketPort Plus Hardware Installation

PCI-SIO4B Quad Channel High Performance Serial I/O PCI CARD With up to 256Kbytes of FIFO buffering and Multiple Serial Protocols

Revision: 5/7/ E Main Suite D Pullman, WA (509) Voice and Fax. Power jack 5-9VDC. Serial Port. Parallel Port

PCI Express 4-Port Industrial Serial I/O Cards

Digilab 2E Reference Manual

Emerald-MM-8Plus. PC/104-Plus 8-Port Multi-Protocol Serial Port Module. User Manual v1.04

F2238A and F2245A Fiber-Optic EIA-530/MIL-STD Modem Technical Manual

Cable Pinouts. SRP I/O Module

Chapter 11: Input/Output Organisation. Lesson 05: Asynchronous RS232C Serial Port data transfer

Select a Data Communication Interface

3.1 I-7560 Pin Assignment and Specifications: Introduction

FlexMulti Setup Guide

TABLE OF CONTENTS. Communication Functions

General Operating, Maintenance and Installation Manual

Wrenchman, Inc Old Hwy. # 8 Suite # 122 New Brighton, Minnesota (651)

Miniature Asynchronous 4-Wire High Speed Modems

RN-174 WiFly Super Module

GT- IRDM-9603 Product description Rev. 2 17/06/2014

RN-174. WiSnap M2 Super Module. Features. Description. Applications. ~ page 1 ~ rn-174-ds v1.1 6/1/2011

PCI Hardware Installation

Appendix A Cable Pinouts

Preliminary. PACKAGE - 28-pin MLP (5mm X 5mm) Example Circuit Diagram CP V. 48MHz Oscillator. USB Function Controller 512B EEPROM

IPC194. ipconv Protocol Converter

Serial Interfaces Part 1. ECE 153B Sensor & Peripheral Interface Design Winter 2016

Appendix. Specifications

Galep-Adapter DIL-40 => ISP-ASYNC/SYNC Article-No.:

RN-174. WiFly GSX Super Module. Features. Description. Applications. rn-174-ds v1.1 4/20/2011

SUNIX DEL2S00PL meets the PCI Express Base Specification Revision 2.0. It is compatible with PCI

Route 56. PCI USER MANUAL

Industrial PC IPC191V2. General Operating, Maintenance and Installation Manual. Hardware Platform Protocol Converter

ISDN - SOC. DesignGuide. Rev 2.2

Copyright Black Box Corporation. All rights reserved.

RN-174. WiFly GSX Super Module. Features. Description. Applications. rn-174-ds v1.1 1/24/2011

Storage/Control I/O Module

Enhanced Mini-Chansim Model VCS-232

ISDN OEM1. DesignGuide V1.2

PCIe Card Selection Guide. PCIe-CAN Card. PCIe-COM Card. Taiwan Pulse Motion Co.,Ltd. Bus Interface PCI Express x 1 LPE-C122 PCE-C122D PCE-C122T

MEC-COM-M134. User s Manual

USB MOD1 - USB Plug and Play Serial Development Module

Xtreme/104. PC/104 Serial Communications. User Manual

8-Port RS-232 PCIe Card

INTRODUCTION 2 FEATURES. 2 SPECIFICATIONS. 2 PIN ASSIGNMENT 2 DB-9 DB-25 CONVERSION TABLE. 2 DRIVER INSTALLATION QUICK GUIDE.. 2

Manual Industry Interfaces

Technical Manual for RTCU M10 / M10G

USB to serial chip CH340

Hardware Manual PCMCIA DUAL RS EDITION MAY 1999

Powered RS Port PCIe Card

ISOLATED RS-232 TO RS-422/485 CONVERTER

ICD105A 1008 page 1/ r001 ICD105A. Industrial RS-232 to RS-422/485 Converter

Serial Communication. Spring, 2018 Prof. Jungkeun Park

Product Manual. USB BAY-4 Port Serial DB- 9 RS-232 Adapter with FTDI Chipset. Coolgear, Inc. Version 1.1 September 2017 Model Number: USBG-BAY4

Multi-IO FreeForm/104 Daughter Board

EX KVIS RS232/422/485 3-in-1 Serial to USB Adapter (w/ 4KV Isolation, 15KV ESD Surge Protection)

EZ864 UMTS Terminal Telit Cellular GSM Engine

EMERALD-MM-8P. 8-Channel Software Programmable Protocol. Serial Port PC/104 TM Module. User Manual V1.20

USB Serial Converter Rev. 1.0

Cable Specifications. Interface Specifications. Fiber-Optic Specifications APPENDIXB

Digilab 2 Reference Manual

Serial Interface Modules TTL to RS232/RS485/RS422

Hardware Manual. PCMCIA 1 Port RS EDITION APRIL 1999

RS-232 Driver Module

PCI, PCIe, mpcie, cpci, and PC104+ Plus Modules

Contents INTRODUCTION...1 CARD SETUP...2 INSTALLATION...9 TECHNICAL DESCRIPTION SPECIFICATIONS... 13

W&T Manual Interface modules W&T

EZ864 G. Telit Cellular GSM/UMTS Engine. Hardware guide Version: Update: 27. APR.2009 EZ864 G_Hardware Guide_V

Bluetooth to RS-232&RS422/485. EX-9132B/BI Bluetooth Adapter Operation Manual

One of the unique features of the T4Ee is the huge variety of clock source options, clocks can be:

Industrial PC IPC191C2. General Operating, Maintenance and Installation Manual. Hardware Platform Protocol Converter

CM316 Dual Serial Port utilitymodule User s Manual

DATA CONNECT ENTERPRISE

IP402 COM Express TYPE6 Baseboard USER S MANUAL Version 1.0A

IDS-141A/181A. Industrial 4-port/8-port slim type serial to Ethernet device server. Features. Introduction. DS-Tool

Ver.2.20 COM-2P(PCI)H COM-4P(PCI)H Features Cable & Connector (Option)

Product description The SWH is a board Cellular Terminal solution for GSM GPS/GLONASS

RS-232 Connector Pin Assignments

ACB-III TM USER MANUAL

Serial Communications

EZL-200F Application Notes (003) Serial Interface (RS232/RS422/RS485)

STEP X - Name of Step QUICK START GUIDE SP385A-R3, SP390A-R3 USB TO RS CONVERTER 24/7 TECHNICAL SUPPORT AT OR VISIT BLACKBOX.

Transcription:

SyncLink GT2E/GT4E Serial Adapter Hardware User s Manual MicroGate Systems, Ltd http://www.microgate.com MicroGate and SyncLink are registered trademarks of MicroGate Systems, Ltd. Copyright 2008-2017 MicroGate Systems, Ltd. All Rights Reserved

Contents Overview... 3 Features... 3 Specifications... 3 PCI Express... 3 Y-Cables... 4 Signal Specifications... 5 Single Ended Signals (RS-232/V.28)... 5 Differential Signals (RS-422/RS-485/V.11)... 5 Clock Polarity... 5 Serial Interface Selection... 7 Differential Input Termination... 8 2 Wire Mode Jumpers... 9 Serial Connector Pin Assignments... 10 RS-232... 11 V.35... 12 RS-422/RS-449/RS-485/RS-530... 13 X.21... 15 General Purpose I/O Signals... 16 DC GPIO Specifications... 16 Frequency Synthesizer... 18

Overview The SyncLink GT2E and GT4E Serial Adapters are add-in cards for use in systems with a PCI Express expansion slot. The cards provide two (GT2E) or four (GT4E) serial ports for use by the system. A variety of serial protocols and interface standards are supported. Refer to the software documentation included with the card for details on using the card for a specific application. Features Maximum Speeds 10Mbps synchronous 8Mbps asynchronous SDLC, HDLC, BISYNC, MONOSYNC, ASYNC, raw bit-synchronous protocols Selectable hardware CRC: CRC-16, CRC-32, None DPLL Clock Recovery (x8 and x16 sampling) Clock Generation Configurable transmit preamble and idle patterns Encoding: NRZ,NRZB,NRZ-L,NRZI,NRZ-M,NRZ-S,FM0,FM1,Manchester,differential biphase level Selectable interface for RS-232, V.35, RS-422/485, RS-530, RS-449, X.21 Optional termination for differential inputs Full set of control and status signals (DTR,DSR,RTS,CTS,DCD,RI,LL,RL) Specifications MicroGate FPGA serial controller (2 or 4 ports) PCI Express (x1) Bus Master DMA data transfer Operating Temperature Range: 0C to 70C standard, -40C to +85C optional Storage Temperature Range: -55C to +125C Environmental: humidity 0 to 95% non-condensing; alt. - 200 to +20,000 ft Mechanical: Standard PCI Express short card; length 6.6", height 4.2", Weight 4.4 Oz Power usage: 1A 3.3V Regulatory: FCC Class B, CE, ANSI C63.4 Class B, VCCI Class B, EN55022 Class B, EN55024, RoHS Connectors: DB-25 (male) Cable Options: DB-25 (female) to DB-25 (male); DB-25 (female) to 34-pin V.35 (male); DB-25 (female) to 37-pin RS-449 (male); DB-25 (female) to 15-pin X.21 (male) PCI Express PCI Express is an expansion slot standard for adding components to a system. PCI Express is not physically compatible with PCI or PCI-X slots. SyncLink cards are physically keyed to prevent insertion into incompatible slots. The SyncLink GT2E and GT4E are PCI Express x1 single lane cards. This means SyncLink cards work in any of the different PCI Express slots sizes (x1, x4, x8, or x16). PCI Express x1 slots are the shortest and x16 slots are the longest.

Y-Cables The card has two 60-pin connectors, each carrying two ports. Y-cables are included with the card to convert each 60-pin connector into two standard DB-25 male connectors. The GT2E card uses one 60- pin connector and includes a single Y-cable for a total of 2 ports. The GT4E card uses both 60-pin connectors and includes two Y-cables for a total of 4 ports. Each branch of a Y-cable is labeled with a port number. The Y-cable labeled 1 and 2 should be installed on the 60-pin connector closest to the PCI Express edge connector (gold fingers). The Y-cable labeled 3 and 4 should be installed on the 60-pin connector farthest from the PCI edge connector. Note: The serial controller on the GT2E has only two ports. Adding a Y-cable to the second 60-pin connector of a GT2E card will not add ports 3 and 4. Figure 1 Y-Cables and Port Numbering

Signal Specifications Each serial signal (control, status, data, or clock) is compatible with an electrical specification that is selected by placement of jumpers on the card. This section briefly describes the specifications supported by the card. Single Ended Signals (RS-232/V.28) Single ended signals supported by the card are compatible with both RS-232 and ITU V.28 standards. Each single ended signal uses one conductor in a cable, and all single ended signals share a common ground conductor. Maximum Voltage Range: +15 to -15V (between signal and ground) +3V to +15V (+5V typical) = control/status signal on or data value of 0-3V to -15V (-5V typical) = control/status signal off or data value of 1 Voltage between -3V to +3V = invalid (indeterminate) state Max cable length 50 feet Max data rate 20kbps The maximum data rate of 20kbps is part of the RS-232/V.28 standards. The SyncLink card can operate at speeds up to 120kbps depending on the cable length and loading. Longer cables and increased loading reduces the maximum supported data rate. Differential Signals (RS-422/RS-485/V.11) Differential signals supported by the card are compatible with RS-422, RS-485 and ITU V.11 standards. Each differential signal uses two conductors in a cable (signal pair). A common ground conductor is recommended for use with differential signals to reduce common mode voltages between cable ends which may result in incorrect or impaired operation. Maximum Voltage Range: +6 to -6V (between conductors in a pair) +200mV to +6V (+2V typical) = control/status signal on or data value of 0-200mV to -6V (-2V typical) = control/status signal off or data value of 1 Voltage between -200mV to +200mV invalid (indeterminate) state Max cable length 4000 feet Max data rate 10Mbps Longer cables and increased loading reduces the maximum supported data rate. Clock Polarity Synchronous serial communications (HDLC/Bisync/Monosync) may use separate clock signals to control the timing of data signals. One clock cycle equals one bit. There are two clock edges (rising and falling) for each clock cycle. On one edge, the transmit data output changes. On the other edge, the receive data input is sampled. The assignment of clock edges to transmit data transition and receive data sampling is referred to as clock polarity.

The SyncLink card uses the clock polarity in the RS-232/RS-422/V.24/V.28/V.11 standards as described below: RS-232/V.28 Single Ended Signals +3V to +15V (+5V typical) = clock on -3V to -15V (-5V typical) = clock off On to Off edge (falling edge) = receive data sample (bit center) Off to On edge (rising edge) = transmit data transition (bit edge) RS-422/RS-485/V.11 Differential Signals +200mV to +6V (+2V typical) = clock on -200mV to -6V (-2V typical) = clock off On to Off edge (falling edge) = receive data sample (bit center) Off to On edge (rising edge) = transmit data transition (bit edge) Most serial communications equipment uses the above clock polarity, but some non-standard equipment may use the opposite polarity. For differential signals, the polarity can be altered by inverting the conductors of each clock signal pair.

Serial Interface Selection The serial adapter supports different interface types which are selected by placement of jumpers on the card. Each port has three rows of headers (pins sticking up from the card). Each row is labeled with a port number and an interface type (RS-232, V.35, RS-422/485). Place jumpers on the header row labeled with the desired interface type. The interface type must match that of the connected communications equipment. Interface selection is preset at the factory as specified by the ordering code. The selection may be changed by moving the jumpers to the desired header row as described above. Use pliers to remove the jumpers from the current position, carefully working the jumpers loose from the headers. Take care to not damage the card or cause injury. Some interface types require a conversion cable in addition to a specific jumper setting to provide the necessary connector type. Refer to the Serial Pin Assignments section for more details. Figure 2 Interface Selection Jumpers

Differential Input Termination Each port on the card has optional termination of RS-422/485 differential inputs controlled by a six position switch labeled with a port number and the word TERM. Each position is labeled with a number (1 at top through 6 at bottom). The on position is to the right and is labeled ON. When a switch is in the ON position, the associated differential input is terminated with 120 ohms. By default all inputs are terminated for all ports. Termination settings do not affect single ended (RS-232/V.28) inputs. Termination increases signal reliability at high speeds (generally 1Mbps or more). At high speeds, inputs at each end of a cable should be terminated. For a multi-drop setups (more than 2 devices on a cable), do not terminate receivers connected to the middle of the cable. At slower speeds, the termination can usually remain without problem. Removing termination at slower speeds may allow the use of longer cables. To disable termination on an input, move the associated switch position to OFF. Switch Position Signal Name 1 TxC (Transmit Clock) 2 RxC (Receive Clock) 3 RxD (Receive Data) 4 CTS (Clear to Send) 5 DSR (Data Set Ready) 6 DCD (Data Carrier Detect) Figure 3 Termination Switches

2 Wire Mode Jumpers Some RS-485 applications use a single differential wire pair to carry data instead of separate pair for transmit and receive data. This arrangement is sometimes called 2 wire and is useful for minimizing wiring for connecting multiple end points. Only one end point sends data at any time, and all other end points can receive the data. The GT4e card by default has separate transmit and receive data signals on different pins of the serial connector. Jumpers can be installed to connect transmit and receive pins together for use in a 2 wire environment. The jumpers are located next to the serial connector and are labeled with the port number and the text 2 WIRE. WARNING The 2 wire jumpers should never be installed on ports configured for RS-232 to avoid damaging the card. The jumpers should only be installed when configured for RS-422/RS-485 and the application requires a common cable pair for transmit and receive data. Jumpers are placed horizontally across the header pins. Each signal requires two jumpers to connect the two conductors of each differential pair. The drawing below identifies the header pins. Usually only TxD and RxD are connected (jumpers installed across pins 1-2 and 3 4). View from top : Pin 1 = upper left TxD (-/A) (1) TxD (+/B) (3) DTR (-/A) (5) DTR (+/B) (7) (2) RxD (-/A) (4) RxD (+/B) (6) DSR (-/A) (8) DSR (+/B) 2-Wire Header Pin Numbering

Serial Connector Pin Assignments The serial connectors on the end of each banch of the Y-cable are DB-25 (25 pins) male connectors. The assignment of signals to the connector pins is controlled by the interface selection jumpers on the card. For interface types that use a connector different than DB-25 an adapter cable purchased from MicroGate is required. The following sections describe the jumper settings and cables for each supported standard.

RS-232 The RS-232 standard uses single ended signals on a DB-25 connector. The adapter DB-25 connector follows this standard when the port jumpers are installed for RS-232. Use any straight through 25 conductor DB-25M to DB-25F cable (such as MicroGate Part # CMF000) to connect the adapter connector to the communications equipment. The maximum data rate supported by the adapter when using RS-232 is 128Kbps. Cable length and signal loading may reduce the maximum usable data rate from this value. RS-232 DB-25 Male DTE Signal Name Electrical Desc Pin # Direction Earth/Shield Ground 1 TxD, Transmit Data RS-232/V.28 2 Output RxD, Receive Data RS-232/V.28 3 Input RTS, Request to Send RS-232/V.28 4 Output CTS, Clear to Send RS-232/V.28 5 Input DSR, Data Set Ready RS-232/V.28 6 Input Signal Ground 7 DCD, Data Carrier Detect RS-232/V.28 8 Input TxC, Transmit Clock RS-232/V.28 15 Input RxC, Receive Clock RS-232/V.28 17 Input LL, Local Loopback Control RS-232/V.28 18 Output DTR, Data Terminal Ready RS-232/V.28 20 Output RL, Remote Loopback Control RS-232/V.28 21 Output RI, Ring Indicator RS-232/V.28 22 Input AuxClk, DTE Clock Output RS-232/V.28 24 Output Figure 5 RS-232 Cable (Part# CMF000)

V.35 The V.35 standard uses a mix of single ended and differential signals on a 34 pin block connector. To use this standard, install the V.35 jumpers on the port and use the MicroGate V.35 cable (Part # 2534GT, picture shown below). Note that the LL, RL, and RI signals are available on the adapter s DB-25 connector when the V.35 jumpers are installed, but are not available (NC = no connect) on the 34 pin block connector when using the V.35 cable. The maximum data rate supported by the adapter when using V.35 is 10Mbps. Cable length and signal loading may reduce the maximum usable data rate from this value. V.35 Male DTE Signal Name Electrical Desc DB25 Pin # V.35 Block Pin # Earth/Shield Ground 1 A Direction TxD (-/A), Transmit Data RS-422/V.11 2 P Output RxD (-/A), Receive Data RS-422/V.11 3 R Input RTS, Request to Send RS-232/V.28 4 C Output CTS, Clear to Send RS-232/V.28 5 D Input DSR, Data Set Ready RS-232/V.28 6 E Input Signal Ground 7 B DCD, Data Carrier Detect RS-232/V.28 8 F Input RxC (+/B), Receive Clock RS-422/V.11 9 X Input AuxClk (+/B), DTE Clock Output RS-422/V.11 11 W Output TxC (+/B), Transmit Clock RS-422/V.11 12 AA Input TxD (+/B), Transmit Data RS-422/V.11 14 S Output TxC (-/A), Transmit Clock RS-422/V.11 15 Y Input RxD (+/B), Receive Data RS-422/V.11 16 T Input RxC (-/A), Receive Clock RS-422/V.11 17 V Input LL, Local Loopback Control RS-232/V.28 18 NC Output DTR, Data Terminal Ready RS-232/V.28 20 H Output RL, Remote Loopback Control RS-232/V.28 21 NC Output RI, Ring Indicator RS-232/V.28 22 NC Input AuxClk (-/A), DTE Clock Output RS-422/V.11 24 24 Output Figure 6 V.35 Cable (Part# 2534GT)

RS-422/RS-449/RS-485/RS-530 The RS-422 and RS-485 standards describe differential electrical signals but not connector or pin assignments. The RS-530 and RS-449 standards define specific connectors and pin assignments using differential signals. The differential signals on the card meet both RS-422 and RS-485 electrical specifications. RS-530 uses differential signals on a DB-25 connector. The adapter DB-25 connector follows this standard when the port jumpers are installed for RS-422/485. Use any straight through 25 conductor DB-25M to DB-25F cable (such as MicroGate Part # CMF000) to connect the adapter to RS-530 communications equipment. RS-449 uses differential signals on a DB-37 connector. To use this standard install the RS-422/485 jumpers for the port and use the MicroGate RS-449 cable (Part # 2537FM). The maximum data rate supported by the adapter when using RS-530 or RS-449 is 10Mbps. Cable length and signal loading may reduce the maximum usable data rate from this value. RS-422/RS-530/RS-449 Male DTE Signal Name Electrical Desc DB25 RS-530 Pin # Earth/Shield Ground 1 1 DB37 RS-449 Pin # Direction TxD (-/A), Transmit Data RS-422/V.11 2 4 Output RxD (-/A), Receive Data RS-422/V.11 3 6 Input RTS (-/A), Request to Send RS-422/V.11 4 7 Output CTS (-/A), Clear to Send RS-422/V.11 5 9 Input DSR (-/A), Data Set Ready RS-422/V.11 6 11 Input Signal Ground 7 19 DCD (-/A), Data Carrier Detect RS-422/V.11 8 13 Input RxC (+/B), Receive Clock RS-422/V.11 9 26 Input DCD (+/B), Data Carrier Detect RS-422/V.11 10 31 Input AuxClk (+/B), DTE Clock Output RS-422/V.11 11 35 Output TxC (+/B), Transmit Clock RS-422/V.11 12 23 Input CTS (+/B), Clear to Send RS-422/V.11 13 27 Input TxD (+/B), Transmit Data RS-422/V.11 14 22 Output TxC (-/A), Transmit Clock RS-422/V.11 15 5 Input RxD (+/B), Receive Data RS-422/V.11 16 24 Input RxC (-/A), Receive Clock RS-422/V.11 17 8 Input LL, Local Loopback Control RS-232/V.28 18 10 Output RTS (+/B), Request to Send RS-422/V.11 19 25 Output DTR (-/A), Data Terminal Ready RS-422/V.11 20 12 Output RL, Remote Loopback Control RS-232/V.28 21 14 Output DSR (+/B), Data Set Ready RS-422/V.11 22 29 Input DTR (+/B), Data Terminal Ready RS-422/V.11 23 30 Output AuxClk (-/A), DTE Clock Output RS-422/V.11 24 17 Output

Figure 7 RS-530 Cable (Part# CMF000) Figure 8 RS-449 Cable (Part# 2537FM )

X.21 X.21 is an interface standard using differential signals on a DB-15 connector. To use this standard, install the RS-422/485 jumpers on a port and use the MicroGate X.21 cable (Part # 2515FM). The X.21 signal names are different than those used by the adapter and other interface standards. The mapping of the X.21 signals to the adapter signals are shown in the table below. The maximum data rate supported by the adapter when using X.21 is 10Mbps. Cable length and signal loading may reduce the maximum usable data rate from this value. X.21 Male DTE Signal Name Electrical Desc DB25 Pin # Earth/Shield Ground 1 1 DB15 Pin # Direction T(-/A), Transmit Data RS-422/V.11 2 2 Output R(-/A), Receive Data RS-422/V.11 3 4 Input I(-/A), Indicator (DSR/DCD) RS-422/V.11 6,8 5 Input Signal Ground 7 8 S(+/B), Clock Input (TxC, RxC) RS-422/V.11 9,12 13 Input I(+/B), Indicator (DSR/DCD) RS-422/V.11 10,22 12 Input X(+/B), Clock Output (AuxClk) RS-422/V.11 11 14 Output T(+/B), Transmit Data RS-422/V.11 14 9 Output S(-/A), Clock Input (TxC, RxC) RS-422/V.11 15,17 6 Input R(+/B), Receive Data RS-422/V.11 16 11 Input C(-/A), Control (DTR) RS-422/V.11 20 3 Output C(+/B), Control (DTR) RS-422/V.11 23 10 Output X(-/A), Clock Output (AuxClk) RS-422/V.11 24 7 Output Figure 9 X.21 Cable (Part# 2515FM )

General Purpose I/O Signals The serial card has an optional 14 pin header that provides general purpose input/output (GPIO) signals for application specific uses. These signals are controlled by an application using the serial API (Windows and Linux). Each signal can be configured to be either an input or an output. Inputs can be monitored and outputs can be controlled. DC GPIO Specifications Vil (input low) = -0.5V min, 0.8V max Vih (input high) = 2.0V min, 5.5V max Vol (output low) = 0.4V max Voh (output high) = 2.4V min Iol (output low) = 24mA max Iil (output high) = -24mA max Input Current = +/- 10uA max GPIO signals are 3.3V TTL compatible and inputs are 5V tolerant.

GPIO Pin Assignments Pin # Description 1 Ground 2 GCK0 Dedicated special purpose LVTTL input Leave unconnected 3 GPIO[6] 4 GPIO[0] 5 GPIO[7] 6 GPIO[1] 7 GPIO[8] 8 GPIO[2] 9 GPIO[9] 10 GPIO[3] 11 GPIO[10] 12 GPIO[4] 13 GPIO[11] 14 GPIO[5] The GT adapter has a total of 12 general purpose I/O signals (GPIO[0] to GPIO[11]). By default on power up all GPIO signals are configured as inputs (direction control = 0). Refer to the serial API documentation for details on configuring and using GPIO signals. WARNING: Take care when connecting to GPIO signals to prevent damage to the serial card. Outputs should only be connected to inputs and not other outputs. Voltage limits as shown above should not be exceeded.

Frequency Synthesizer The serial controller requires a base clock which is used by the baud rate generator (BRG) to create data clocks. A data clock may be output on the AUXCLK signal or used internally for a synchronous data clock, an asynchronous sampling clock, or for DPLL clock recovery. Fixed Frequency Oscillator MicroGate Serial Controller Reference Clock Input IDT ICS307-3 Frequency Synthesizer CLK1 Output Base Clock Selection Clock Select 0 = Osc (default) 1 = Synthesizer Base Clock GPIO[15] DATA IN (DI) GPIO[12] CHIP SELECT(CS) GPIO[13] CLOCK (SCLK) GPIO[14] SPI Interface Base Clock Sources The card has a fixed frequency oscillator and a variable frequency synthesizer. Either source can supply the base clock. The oscillator is used as the synthesizer reference clock input. Serial controller GPIO signals program the synthesizer through an SPI interface and select between the oscillator and synthesizer outputs. The base clock is common to all ports in the controller. The synthesizer is made by Integrated Device Technologies (IDT). Refer to the documentation available from IDT (www.idt.com) for details on programming the synthesizer. An IDT supplied program (Versaclock) generates programming data (132 bit value) for a specific frequency output. The CLK1 output of the synthesizer is used, CLK2 and CLK3 are unconnected. Sample code for programming the synthesizer through the GPIO portion of the serial API is available from Microgate. The maximum synthesizer frequency supported by the serial controller is 66MHz. The default oscillator frequency is 14.7456MHz. Other frequencies are available by special order. By default the serial controller uses the oscillator as the base clock.