Chapter 5 Data Link Layer

Similar documents
Chapter 5 Link Layer and LANs

CSC 401 Data and Computer Communications Networks

Chapter 5: Link layer

CS 455/555 Intro to Networks and Communications. Link Layer

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 16

The Link Layer and LANs. Chapter 6: Link layer and LANs

CSC 4900 Computer Networks: The Link Layer

Chapter 5 Link Layer. Computer Networking: A Top Down Approach. 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012

Chapter 6 The Link Layer and LANs

Lecture 8 Link Layer: functionality, error detection, media access algorithm

Data Link Layer: Multi Access Protocols

Lecture 19. Principles behind data link layer services Framing Multiple access protocols

Chapter 5 Data Link Layer

Link Layer and LANs 안상현서울시립대학교컴퓨터 통계학과.

CC451 Computer Networks

Topics. Link Layer Services (more) Link Layer Services LECTURE 5 MULTIPLE ACCESS AND LOCAL AREA NETWORKS. flow control: error detection:

ECE 4450:427/527 - Computer Networks Spring 2017

Link Layer and LANs. CMPS 4750/6750: Computer Networks

1-1. Switching Networks (Fall 2010) EE 586 Communication and. November 8, Lecture 30

CMPE 150: Introduction to Computer Networks

Chapter V: Link Layer

Outline. Introduction to Networked Embedded Systems - Embedded systems Networked embedded systems Embedded Internet - Network properties

Lecture 8 The Data Link Layer part I. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it

Chapter 4 Network Layer

Computer Networks. Today. Principles of datalink layer services Multiple access links Adresavimas, ARP LANs Wireless LANs VU MIF CS 1/48 2/48

Multiple Access Links and Protocols

Link layer, LANs: outline. Chapter 5-1 Link Layer. Link layer: introduction. Link layer services

transferring datagram from one node data-link layer has responsibility of to adjacent node over a link 5-1 TDTS06 Computer networks

SC250 Computer Networking I. Link Layer. Prof. Matthias Grossglauser LCA/I&C.

Lecture 6. Data Link Layer (cont d) Data Link Layer 1-1

Chapter 5 Link Layer and LANs

Links. CS125 - mylinks 1 1/22/14

Chapter V: Link Layer

Module 10 Data Link Layer CS655! 10-1!

Introduction to Computer Networks. 03 Data Link Layer Introduction

Chapter 6: Link layer and LANs. Link layer, LANs: outline. Link layer: introduction. Link layer: context. Link layer services (more)

CSCD 330 Network Programming

Master Course Computer Networks IN2097

Links Reading: Chapter 2. Goals of Todayʼs Lecture. Message, Segment, Packet, and Frame

Module 4 Data Link Layer CS655! 4-1!

Link Layer and LANs. Our Goals. Link Layer

Chapter 5 Link Layer. Computer Networking: A Top Down Approach. 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012

Lecture 6 The Data Link Layer. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it

Link Layer: Introduction. Chapter 5 Link Layer & LANS. Link layer: context. Link Layer Services

Computer Networks Medium Access Control. Mostafa Salehi Fall 2008

Data Link Layer: Overview, operations

Chapter 5 Link Layer. Computer Networking: A Top Down Approach. 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012

Broadcast Links, Addressing and Media Access Control. Link Layer B. Link and Physical Layers. MAC Addresses

Chapter 4 roadmap. CS555, Spring /14/2005. WMU-CS, Dr. Gupta 1. Multicast Routing: Problem Statement. Approaches for building mcast trees

Chapter 5 Link Layer. Computer Networking: A Top Down Approach. 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012

Chapter 5: DataLink Layer

Lecture 6 - Link layer. Lecture 5 Review. Link Layer. Introduction, Services. Notes. Notes. Notes. Notes. Networks and Security. Jacob Aae Mikkelsen

Master Course Computer Networks IN2097

Chapter 5 Link Layer and LANs

Data Link Layer Overview

Chapter 5 Link Layer and LANs

Medium Access Control

CSCD 330 Network Programming Fall 2012

Review. Some slides are in courtesy of J. Kurose and K. Ross

CS 4453 Computer Networks Winter

Data Link Technology. Suguru Yamaguchi Nara Institute of Science and Technology Department of Information Science

Chapter 5 Data Link Layer

CSCI Computer Networks Fall 2016

Data Link Layer Overview

CSCI Computer Networks Spring 2017

Data Link Layer Overview

CS 43: Computer Networks Media Access. Kevin Webb Swarthmore College November 30, 2017

Data Link Layer Overview

Chapter 6 The Link Layer and LANs

Chapter 6 The Link Layer and LANs

Chapter 6 The Link Layer and LANs

CSC 8560 Computer Networks: Link Layer

MULTIPLE ACCESS PROTOCOLS 2. 1

CS 43: Computer Networks. 27: Media Access Contd. December 3, 2018

Lecture 5 The Data Link Layer. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it

Link Layer: Introduction. Chapter 5 Link Layer & LANS. Link layer: context. Link Layer Services

Chapter 6 The Link Layer and LANs

Message, Segment, Packet, and Frame Link-layer services Encoding, framing, error detection, transmission control Error correction and flow control

Chapter 5 Link Layer. Link Layer 5-1

Computer Networks LECTURE 10 ICMP, SNMP, Inside a Router, Link Layer Protocols. Assignments INTERNET CONTROL MESSAGE PROTOCOL

Link Layer: Introduction. Chapter 5 Link Layer & LANS. Link layer: context. Link Layer Services

Physical Layer. Medium Access Links and Protocols. Point-to-Point protocols. Modems: Signaling. Modems Signaling. Srinidhi Varadarajan

Adaptors Communicating. Link Layer: Introduction. Parity Checking. Error Detection. Multiple Access Links and Protocols

Data Link Layer. Our goals: understand principles behind data link layer services: instantiation and implementation of various link layer technologies

Chapter 5: The Data Link Layer

Chapter 5 Link Layer. Computer Networking: A Top Down Approach. 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012

Department of Computer and IT Engineering University of Kurdistan. Data Communication Netwotks (Graduate level) Data Link Layer

Goals of Today s Lecture. Adaptors Communicating

Chapter 6 The Link Layer and LANs

CS 3516: Computer Networks

Chapter 5 Link Layer. Computer Networking: A Top Down Approach. 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012

Chapter 5 Link Layer. Computer Networking: A Top Down Approach. 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012

Chapter 5: Link layer

Physical and Data Link layers

Topic 2a. Ch 6: The Link Layer and LANs. Computer Networking: A Top Down Approach

COMP211 Chapter 6/7 Link Layer

Chapter 5 Link Layer and LANs. Chapter 5: The Data Link Layer. Link Layer

Chapter 6 The Link Layer and LANs

Chapter 6 The Link Layer and LANs

Chapter 6 The Link Layer and LANs

Transcription:

Chapter 5 Data Link Layer Reti di Elaboratori Corso di Laurea in Informatica Università degli Studi di Roma La Sapienza Canale A-L Prof.ssa Chiara Petrioli Parte di queste slide sono state prese dal materiale associato al libro Computer Networking: A Top Down Approach, 5th edition. All material copyright 1996-2009 J.F Kurose and K.W. Ross, All Rights Reserved Thanks also to Antonio Capone, Politecnico di Milano, Giuseppe Bianchi and Francesco LoPresti, Un. di Roma Tor Vergata 5: DataLink Layer 5a-1

Chapter 5: The Data Link Layer Our goals: understand principles behind data link layer services: error detection, correction sharing a broadcast channel: multiple access link layer addressing reliable data transfer, flow control: done! instantiation and implementation of various link layer technologies 5: 5: DataLink Layer 5a-2 5-2

Link Layer 5.1 Introduction and services 5.2 Error detection and correction 5.3Multiple access protocols 5.4 Link-layer Addressing 5.5 Ethernet 5.6 Link-layer switches 5.7 PPP 5.8 Link virtualization: MPLS 5.9 A day in the life of a web request 5: 5: DataLink Layer 5a-3 5-3

Link Layer: Introduction Some terminology: hosts and routers are nodes communication channels that connect adjacent nodes along communication path are links wired links wireless links LANs layer-2 packet is a frame, encapsulates datagram data-link layer has responsibility of transferring datagram from one node to adjacent node over a link 5: 5: DataLink Layer 5a-4 5-4

Link layer: context datagram transferred by different link protocols over different links: e.g., Ethernet on first link, frame relay on intermediate links, 802.11 on last link each link protocol provides different services e.g., may or may not provide rdt over link transportation analogy trip from Princeton to Lausanne limo: Princeton to JFK plane: JFK to Geneva train: Geneva to Lausanne tourist = datagram transport segment = communication link transportation mode = link layer protocol travel agent = routing algorithm 5: 5: DataLink Layer 5a-5 5-5

Link Layer Services PHY layer accepts only a raw bit stream and attempts to deliver to destination 0110001100001100000001001100000100001 Communication is not necessarily error free Multiplexing of different flows of information à Data link layer breaks the bit stream up into discrete frames (FRAMING) and computes the checksum for each frame (ERROR DETECTION) 5: 5: DataLink Layer 5a-6 5-6

Link Layer Services Framing: encapsulate datagram into frame, adding header, trailer How to delimit frames: We cannot count on some time gap (strong synch requirement and jitter requirement) Character count: A field in the header specifies the number of characters in the frame (OK but loose synch in case of transmission error) Starting and ending characters with character stuffing ES ASCII character sequence DLE STX (Data Link Escape Start of TeXt) DLE ETX (ETX=End of TeXt) What if binary data are transmitted with sequences corresponding to DLE STX or SLE ETX occurring in the data? Character stuffing: before transmitting add DLE before each of such sequences in the data: DLE STXà DLE DLE STX 5: 5: DataLink Layer 5a-7 5-7

Link Layer Services Framing: encapsulate datagram into frame, adding header, trailer How to delimit frames: Starting and ending flags with bit stuffing Each frame begins and ends with a special bit pattern, e.g. 01111110 (flag sequence) Techniques to avoid problems in case the flag sequence appears in data: whenever data link layer encounters five consecutive ones in the data add a 0 bit in the outgoing bit stream (removed at the other end of the link)à bit stuffing Es.: (a) 011011111111111111110010 (b) 011011111011111011111010010 Stuffed bits 5: 5: DataLink Layer 5a-8 5-8

Link Layer Services Framing: encapsulate datagram into frame, adding header, trailer How to delimit frames: Physical layer coding variations For instance if Manchester encoding used a High- High or Low-Low sequence A combination of character count and one of the other typically used 5: 5: DataLink Layer 5a-9 5-9

Link Layer Services link access channel access if shared medium avoids or limits the effect of collisions over a broadcast channel addressing MAC addresses used in frame headers to identify source, dest different from IP address! error detection: errors caused by signal attenuation, noise. receiver detects presence of errors: signals sender for retransmission or drops frame error correction: receiver identifies and corrects bit error(s) without resorting to retransmission half-duplex and full-duplex with half duplex, nodes at both ends of link can transmit, but not at same time 5: 5: DataLink Layer 5a-10 5-10

Link Layer Services (more) reliable delivery between adjacent nodes we learned how to do this already (chapter 3)! seldom used on low bit-error link (fiber, some twisted pair) wireless links: high error rates Q: why both link-level and end-end reliability? flow control: pacing between adjacent sending and receiving nodes 5: 5: DataLink Layer 5a-11 5-11

Where is the link layer implemented? in each and every host link layer implemented in adaptor (aka network interface card NIC) Ethernet card, PCMCI card, 802.11 card implements link, physical layer attaches into host s system buses combination of hardware, software, firmware application transport network link link physical cpu controller physical transmission host schematic memory host bus (e.g., PCI) network adapter card 5: 5: DataLink Layer 5a-12 5-12

Adaptors Communicating datagram datagram controller controller sending host frame datagram receiving host sending side: encapsulates datagram in frame adds error checking bits, rdt, flow control, etc. receiving side looks for errors, rdt, flow control, etc extracts datagram, passes to upper layer at receiving side 5: 5: DataLink Layer 5a-13 5-13

Link Layer 5.1 Introduction and services 5.2 Error detection and correction 5.3Multiple access protocols 5.4 Link-layer Addressing 5.5 Ethernet 5.6 Link-layer switches 5.7 PPP 5.8 Link virtualization: MPLS 5.9 A day in the life of a web request 5: 5: DataLink Layer 5a-14 5-14

Error Detection EDC= Error Detection and Correction bits (redundancy) D = Data protected by error checking, may include header fields Error detection not 100% reliable! protocol may miss some errors, but rarely larger EDC field yields better detection and correction parola codice otherwise 5: 5: DataLink Layer 5a-15 5-15

Distanza di Hamming Date due parole codice e.g., 10001001 e 10110001 è possibile determinare in quanti bit differiscano (XOR delle due parole e contate il numero di 1 del risultato) Il numero di posizioni nelle quali le due parole di codice differiscono determina la loro distanza di Hamming Se due parole codice hanno una distanza di Hamming d ci vorranno d errori sui singoli bit per tramutare una parola di codice nell altra Per come sono usati i bit di ridondanza se la lunghezza delle parole di codice è n=m+r sono possibili 2 m messaggi dati ma non tutte le 2 n parole codice la distanza di Hamming di un codice è la minima distanza di Hamming tra due parole codice 5: DataLink Layer 5a-16

Distanza di Hamming Date due parole codice e.g., 10001001 e 10110001 è possibile determinare in quanti bit differiscano (XOR delle due parole e contate il numero di 1 del risultato) Per come sono usati i bit di ridondanza se la lunghezza delle parole di codice è n=m+r sono possibili 2 m messaggi dati ma non tutti 2 n parole codice la distanza di Hamming di un codice è la minima distanza di Hamming tra due parole codice Per fare il detection di d errori serve un codice con distanza di Hamming d+1 Per correggere d errori serve un codice con distanza di Hamming 2d+1 5: DataLink Layer 5a-17

Parity Checking Single Bit Parity: Detect single bit errors Two Dimensional Bit Parity: Detect and correct single bit errors Schema di parità dispari: Il mittente include un bit addizionale e sceglie il suo valore in modo che il numero di uno nei d+1 bit sia dispari 0 0 5: 5: DataLink Layer 5a-18 5-18

Quanta ridondanza serve per correggere errori singoli? n m r 2 m messaggi legali Ciascuna parola codice legale ne ha n a distanza 1 Ciascuno dei 2 m messaggi legali deve avere (n+1) sequenze di bit a lui associate (n+1)2 m <= 2 n n=m+r (m+r+1) <=2 r à Lower bound su r 5: DataLink Layer 5a-19

Parity Checking Single Bit Parity: Detect single bit errors Two Dimensional Bit Parity: Detect and correct single bit errors Schema di parità dispari: Il mittente include un bit addizionale e sceglie il suo valore in modo che il numero di uno nei d+1 bit sia dispari 0 0 Schemi semplici possono essere sufficienti nel caso di errori casuali Cosa si può fare nel caso di errori a burst? Maggiore ridondanza Interleaving 5: 5: DataLink Layer 5a-20 5-20

Internet checksum (review) Goal: detect errors (e.g., flipped bits) in transmitted packet (note: used at transport layer only) Sender: treat segment contents as sequence of 16-bit integers checksum: addition (1 s complement sum) of segment contents sender puts checksum value into UDP checksum field Receiver: compute checksum of received segment check if computed checksum equals checksum field value: NO - error detected YES - no error detected. But maybe errors nonetheless? 5: 5: DataLink Layer 5a-21 5-21

Checksumming: Cyclic Redundancy Check view data bits, D, as a binary number choose r+1 bit pattern (generator), G goal: choose r CRC bits, R, such that <D,R> exactly divisible by G (modulo 2) receiver knows G, divides <D,R > by G. If non-zero remainder: error detected! can detect all burst errors less than r+1 bits widely used in practice (Ethernet, 802.11 WiFi, ATM) 5: 5: DataLink Layer 5a-22 5-22

CRC r è l ordine del polinomio generatore G(x) Appendi r bit zero al messaggio M(x) che ora corrisponde a x r M(x) dividi x r M(x) per G(x) modulo 2 Sottrai (modulo 2) il resto della divisione da x r M(x)à si ottiene T(x), il risultato da trasmettere In ricezione controlla che il resto della divisione per G(x) sia 0 Estrai la parte di messaggio M(x) 5: DataLink Layer 5a-23

Link Layer 5.1 Introduction and services 5.2 Error detection and correction 5.3Multiple access protocols 5.4 Link-layer Addressing 5.5 Ethernet 5.6 Link-layer switches 5.7 PPP 5.8 Link virtualization: MPLS 5.9 A day in the life of a web request 5: 5: DataLink Layer 5a-24 5-24

Multiple Access Links and Protocols Two types of links : point-to-point PPP for dial-up access point-to-point link between Ethernet switch and host broadcast (shared wire or medium) old-fashioned Ethernet upstream HFC 802.11 wireless LAN shared wire (e.g., cabled Ethernet) shared RF (e.g., 802.11 WiFi) shared RF (satellite) humans at a cocktail party (shared air, acoustical) 5: 5: DataLink Layer 5a-25 5-25

Multiple Access protocols single shared broadcast channel two or more simultaneous transmissions by nodes: interference collision if node receives two or more signals at the same time multiple access protocol distributed algorithm that determines how nodes share channel, i.e., determine when node can transmit communication about channel sharing must use channel itself! no out-of-band channel for coordination 5: 5: DataLink Layer 5a-26 5-26

Ideal Multiple Access Protocol Broadcast channel of rate R bps 1. when one node wants to transmit, it can send at rate R. 2. when M nodes want to transmit, each can send at average rate R/M 3. fully decentralized: no special node to coordinate transmissions no synchronization of clocks, slots 4. simple 5: 5: DataLink Layer 5a-27 5-27

MAC Protocols: a taxonomy Three broad classes: Channel Partitioning divide channel into smaller pieces (time slots, frequency, code) allocate piece to node for exclusive use Random Access channel not divided, allow collisions recover from collisions Taking turns nodes take turns, but nodes with more to send can take longer turns 5: 5: DataLink Layer 5a-28 5-28

Channel Partitioning MAC protocols: TDMA TDMA: time division multiple access access to channel in "rounds" each station gets fixed length slot (length = pkt trans time) in each round unused slots go idle example: 6-station LAN, 1,3,4 have pkt, slots 2,5,6 idle 6-slot frame 1 3 4 1 3 4 5: 5: DataLink Layer 5a-29 5-29

Channel Partitioning MAC protocols: FDMA FDMA: frequency division multiple access channel spectrum divided into frequency bands each station assigned fixed frequency band unused transmission time in frequency bands go idle example: 6-station LAN, 1,3,4 have pkt, frequency bands 2,5,6 idle FDM cable frequency bands time 5: 5: DataLink Layer 5a-30 5-30

TDMA/FDMA Vs. Ideal Multiple Access Protocol Broadcast channel of rate R bps 1. when one node wants to transmit, it can send at rate R. à NOT MET BY TDMA/FDMA 2. when M nodes want to transmit, each can send at average rate R/M à MET BY TDMA/FDMA 3. fully decentralized: no special node to coordinate transmissions no synchronization of clocks, slots 4. simple 5: 5: DataLink Layer 5a-31 5-31

Random Access Protocols When node has packet to send transmit at full channel data rate R. no a priori coordination among nodes two or more transmitting nodes collision, random access MAC protocol specifies: how to detect collisions how to recover from collisions (e.g., via delayed retransmissions) Examples of random access MAC protocols: slotted ALOHA ALOHA CSMA, CSMA/CD, CSMA/CA 5: 5: DataLink Layer 5a-32 5-32

Slotted ALOHA Assumptions: all frames same size time divided into equal size slots (time to transmit 1 frame) nodes start to transmit only slot beginning nodes are synchronized if 2 or more nodes transmit in slot, all nodes detect collision Operation: when node obtains fresh frame, transmits in next slot if no collision: node can send new frame in next slot if collision: node retransmits frame in each subsequent slot with prob. p until success 5: 5: DataLink Layer 5a-33 5-33

Slotted ALOHA Pros single active node can continuously transmit at full rate of channel highly decentralized: only slots in nodes need to be in sync simple Cons collisions, wasting slots idle slots nodes may be able to detect collision in less than time to transmit packet clock synchronization 5: 5: DataLink Layer 5a-34 5-34

Slotted Aloha efficiency Efficiency : long-run fraction of successful slots (many nodes, all with many frames to send) suppose: N nodes with many frames to send, each transmits in slot with probability p prob that given node has success in a slot = p(1-p) N-1 prob that any node has a success = Np(1-p) N-1 max efficiency: find p* that maximizes Np(1-p) N-1 for many nodes, take limit of Np*(1-p*) N-1 as N goes to infinity, gives: Max efficiency = 1/e =.37 At best: channel used for useful transmissions 37% of time!! 5: 5: DataLink Layer 5a-35 5-35

Pure (unslotted) ALOHA unslotted Aloha: simpler, no synchronization when frame first arrives transmit immediately collision probability increases: frame sent at t 0 collides with other frames sent in [t 0-1,t 0 +1] 5: 5: DataLink Layer 5a-36 5-36

Pure Aloha efficiency P(success by given node) = P(node transmits). P(no other node transmits in [p 0-1,p 0 ]. P(no other node transmits in [p 0-1,p 0 ] = p. (1-p) N-1. (1-p) N-1 = p. (1-p) 2(N-1) choosing optimum p and then letting n -> infty... = 1/(2e) =.18 even worse than slotted Aloha! 5: 5: DataLink Layer 5a-37 5-37