UCB CS61C : Machine Structures

Similar documents
UCB CS61C : Machine Structures

Lecture 33 Caches III What to do on a write hit? Block Size Tradeoff (1/3) Benefits of Larger Block Size

UCB CS61C : Machine Structures

UC Berkeley CS61C : Machine Structures

1" 0" d" c" b" a" ...! ! Benefits of Larger Block Size. " Very applicable with Stored-Program Concept " Works well for sequential array accesses

CS61C : Machine Structures

Block Size Tradeoff (1/3) Benefits of Larger Block Size. Lecture #22 Caches II Block Size Tradeoff (3/3) Block Size Tradeoff (2/3)

And in Review! ! Locality of reference is a Big Idea! 3. Load Word from 0x !

www-inst.eecs.berkeley.edu/~cs61c/

CS61C : Machine Structures

CS61C : Machine Structures

Review : Pipelining. Memory Hierarchy

COMP 3221: Microprocessors and Embedded Systems

CS61C : Machine Structures

CS61C : Machine Structures

Cache Memory - II. Some of the slides are adopted from David Patterson (UCB)

CS61C : Machine Structures

12 Cache-Organization 1

CS3350B Computer Architecture

COSC 6385 Computer Architecture - Memory Hierarchies (I)

Levels in memory hierarchy

Course Administration

EE 4683/5683: COMPUTER ARCHITECTURE

EECS150 - Digital Design Lecture 11 SRAM (II), Caches. Announcements

Memory Hierarchy. Maurizio Palesi. Maurizio Palesi 1

Caching Basics. Memory Hierarchies

CSF Cache Introduction. [Adapted from Computer Organization and Design, Patterson & Hennessy, 2005]

Page 1. Memory Hierarchies (Part 2)

Chapter Seven. Memories: Review. Exploiting Memory Hierarchy CACHE MEMORY AND VIRTUAL MEMORY

CSE 431 Computer Architecture Fall Chapter 5A: Exploiting the Memory Hierarchy, Part 1

Advanced Computer Architecture

CS61C : Machine Structures

CSF Improving Cache Performance. [Adapted from Computer Organization and Design, Patterson & Hennessy, 2005]

Caches Part 1. Instructor: Sören Schwertfeger. School of Information Science and Technology SIST

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Caches Part 2

EEC 170 Computer Architecture Fall Cache Introduction Review. Review: The Memory Hierarchy. The Memory Hierarchy: Why Does it Work?

CS152 Computer Architecture and Engineering Lecture 17: Cache System

Memory Hierarchy. Maurizio Palesi. Maurizio Palesi 1

UCB CS61C : Machine Structures

CS61C : Machine Structures

Chapter 5. Large and Fast: Exploiting Memory Hierarchy

CS161 Design and Architecture of Computer Systems. Cache $$$$$

Speicherarchitektur. Who Cares About the Memory Hierarchy? Technologie-Trends. Speicher-Hierarchie. Referenz-Lokalität. Caches

CS61C : Machine Structures

EECS151/251A Spring 2018 Digital Design and Integrated Circuits. Instructors: John Wawrzynek and Nick Weaver. Lecture 19: Caches EE141

ECE7995 (6) Improving Cache Performance. [Adapted from Mary Jane Irwin s slides (PSU)]

Introduction to OpenMP. Lecture 10: Caches

LECTURE 11. Memory Hierarchy

Chapter 5. Large and Fast: Exploiting Memory Hierarchy

COEN-4730 Computer Architecture Lecture 3 Review of Caches and Virtual Memory

Textbook: Burdea and Coiffet, Virtual Reality Technology, 2 nd Edition, Wiley, Textbook web site:

Memory Hierarchy, Fully Associative Caches. Instructor: Nick Riasanovsky

ECE232: Hardware Organization and Design

CS 61C: Great Ideas in Computer Architecture. Direct Mapped Caches

Handout 4 Memory Hierarchy

Computer Organization and Structure. Bing-Yu Chen National Taiwan University

ECE331: Hardware Organization and Design

Memory Hierarchies 2009 DAT105

Memory Hierarchy: Caches, Virtual Memory

CPE300: Digital System Architecture and Design

LECTURE 10: Improving Memory Access: Direct and Spatial caches

CPU issues address (and data for write) Memory returns data (or acknowledgment for write)

Chapter Seven. SRAM: value is stored on a pair of inverting gates very fast but takes up more space than DRAM (4 to 6 transistors)

Memory Hierarchy. Memory Flavors Principle of Locality Program Traces Memory Hierarchies Associativity. (Study Chapter 5)

Direct-Mapped Cache Terminology. Caching Terminology. TIO Dan s great cache mnemonic. Accessing data in a direct mapped cache

UCB CS61C : Machine Structures

COSC 6385 Computer Architecture. - Memory Hierarchies (I)

Lecture 16. Today: Start looking into memory hierarchy Cache$! Yay!

Donn Morrison Department of Computer Science. TDT4255 Memory hierarchies

EN1640: Design of Computing Systems Topic 06: Memory System

Caches and Memory Hierarchy: Review. UCSB CS240A, Winter 2016

Lecture 12. Memory Design & Caches, part 2. Christos Kozyrakis Stanford University


CS 61C: Great Ideas in Computer Architecture (Machine Structures) Caches Part 2

Review: Performance Latency vs. Throughput. Time (seconds/program) is performance measure Instructions Clock cycles Seconds.

UC Berkeley CS61C : Machine Structures

Agenda. Cache-Memory Consistency? (1/2) 7/14/2011. New-School Machine Structures (It s a bit more complicated!)

10/16/17. Outline. Outline. Typical Memory Hierarchy. Adding Cache to Computer. Key Cache Concepts

ECE331: Hardware Organization and Design

14:332:331. Week 13 Basics of Cache

Spring 2016 :: CSE 502 Computer Architecture. Caches. Nima Honarmand

CPE 631 Lecture 04: CPU Caches

CS 61C: Great Ideas in Computer Architecture. Cache Performance, Set Associative Caches

CS61C : Machine Structures

UC Berkeley CS61C : Machine Structures

Memory Hierarchy. Mehran Rezaei

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Caches Part 1

CS61C : Machine Structures

CSE 141 Computer Architecture Spring Lectures 17 Virtual Memory. Announcements Office Hour

Cray XE6 Performance Workshop

CS 537 Lecture 6 Fast Translation - TLBs

CS252 S05. Main memory management. Memory hardware. The scale of things. Memory hardware (cont.) Bottleneck

Background. Memory Hierarchies. Register File. Background. Forecast Memory (B5) Motivation for memory hierarchy Cache ECC Virtual memory.

Improving Cache Performance

CS61C - Machine Structures. Lecture 17 - Caches, Part I. October 25, 2000 David Patterson

Chapter 5A. Large and Fast: Exploiting Memory Hierarchy

Spring 2018 :: CSE 502. Cache Design Basics. Nima Honarmand

Lecture 17 Introduction to Memory Hierarchies" Why it s important " Fundamental lesson(s)" Suggested reading:" (HP Chapter

Review: New-School Machine Structures. Review: Direct-Mapped Cache. TIO Dan s great cache mnemonic. Memory Access without Cache

Memory Hierarchy. ENG3380 Computer Organization and Architecture Cache Memory Part II. Topics. References. Memory Hierarchy

Transcription:

inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 14 Caches III Lecturer SOE Dan Garcia Google Glass may be one vision of the future of post-pc interfaces augmented reality with video and voice input. They re looking for early adopters to buy their $1,500 development versions, chosen by the creative vision people submit (via text, animation, or video). www.google.com/glass!

Review Mechanism for transparent movement of data among levels of a storage hierarchy ú set of address/value bindings ú address index to set of candidates ú compare desired address with tag ú service hit or miss load new block and binding on miss address: tag index offset 000000000000000000 0000000001 1100" Valid Tag 0xc-f 0x8-b 0x4-7 0x0-3 0 1 2 3... 1" 0" d" c" b" a" CS61C L14 Caches III (2)

What to do on a write hit? Write-through ú update the word in cache block and corresponding word in memory Write-back ú update word in cache block ú allow memory word to be stale ú add dirty bit to each block indicating that memory needs to be updated when block is replaced ú OS flushes cache before I/O Performance trade-offs? CS61C L14 Caches III (3)

Block Size Tradeoff Benefits of Larger Block Size ú Spatial Locality: if we access a given word, we re likely to access other nearby words soon ú Very applicable with Stored-Program Concept: if we execute a given instruction, it s likely that we ll execute the next few as well ú Works nicely in sequential array accesses too Drawbacks of Larger Block Size ú Larger block size means larger miss penalty on a miss, takes longer time to load a new block from next level ú If block size is too big relative to cache size, then there are too few blocks Result: miss rate goes up CS61C L14 Caches III (4)

Extreme Example: One Big Block Valid Bit" Tag Cache Data" B 3 B 2 B 1 B 0 Cache Size = 4 bytes Block Size = 4 bytes ú Only ONE entry (row) in the cache! If item accessed, likely accessed again soon ú But unlikely will be accessed again immediately! The next access will likely to be a miss again ú Continually loading data into the cache but discard data (force out) before use it again ú Nightmare for cache designer: Ping Pong Effect CS61C L14 Caches III (5)

Block Size Tradeoff Conclusions Miss Penalty Average Access Time Block Size Miss Rate Increased Miss Penalty & Miss Rate Exploits Spatial Locality Block Size Fewer blocks: compromises temporal locality Block Size CS61C L14 Caches III (6)

Types of Cache Misses (1/2) Three Cs Model of Misses 1 st C: Compulsory Misses ú occur when a program is first started ú cache does not contain any of that program s data yet, so misses are bound to occur ú can t be avoided easily, so won t focus on these in this course CS61C L14 Caches III (7)

Types of Cache Misses (2/2) 2 nd C: Conflict Misses ú miss that occurs because two distinct memory addresses map to the same cache location ú two blocks (which happen to map to the same location) can keep overwriting each other ú big problem in direct-mapped caches ú how do we lessen the effect of these? Dealing with Conflict Misses ú Solution 1: Make the cache size bigger Fails at some point ú Solution 2: Multiple distinct blocks can fit in the same cache Index? CS61C L14 Caches III (8)

Fully Associative Cache (1/3) Memory address fields: ú Tag: same as before ú Offset: same as before ú Index: non-existant What does this mean? ú no rows : any block can go anywhere in the cache ú must compare with all tags in entire cache to see if data is there CS61C L14 Caches III (9)

Fully Associative Cache (2/3) Fully Associative Cache (e.g., 32 B block) ú compare tags in parallel 31 Cache Tag (27 bits long) 4 0 Byte Offset = = : = = = Cache Tag : Valid Cache Data B 31 B 1 B 0 : : : CS61C L14 Caches III (10)

Fully Associative Cache (3/3) Benefit of Fully Assoc Cache ú No Conflict Misses (since data can go anywhere) Drawbacks of Fully Assoc Cache ú Need hardware comparator for every single entry: if we have a 64KB of data in cache with 4B entries, we need 16K comparators: infeasible CS61C L14 Caches III (11)

Final Type of Cache Miss 3 rd C: Capacity Misses ú miss that occurs because the cache has a limited size ú miss that would not occur if we increase the size of the cache ú sketchy definition, so just get the general idea This is the primary type of miss for Fully Associative caches. CS61C L14 Caches III (12)

N-Way Set Associative Cache (1/3) Memory address fields: ú Tag: same as before ú Offset: same as before ú Index: points us to the correct row (called a set in this case) So what s the difference? ú each set contains multiple blocks ú once we ve found correct set, must compare with all tags in that set to find our data CS61C L14 Caches III (13)

Associative Cache Example Memory Address 0 1 2 3 4 5 6 7 8 9 A B C D E F Memory CS61C L14 Caches III (14) Cache Index 0 0 1 1 Here s a simple 2-way set associative cache.

N-Way Set Associative Cache (2/3) Basic Idea ú cache is direct-mapped w/respect to sets ú each set is fully associative with N blocks in it Given memory address: ú Find correct set using Index value. ú Compare Tag with all Tag values in the determined set. ú If a match occurs, hit!, otherwise a miss. ú Finally, use the offset field as usual to find the desired data within the block. CS61C L14 Caches III (15)

N-Way Set Associative Cache (3/3) What s so great about this? ú even a 2-way set assoc cache avoids a lot of conflict misses ú hardware cost isn t that bad: only need N comparators In fact, for a cache with M blocks, ú it s Direct-Mapped if it s 1-way set assoc ú it s Fully Assoc if it s M-way set assoc ú so these two are just special cases of the more general set associative design CS61C L14 Caches III (16)

4-Way Set Associative Cache Circuit tag" index" CS61C L14 Caches III (17)

Block Replacement Policy Direct-Mapped Cache ú index completely specifies position which position a block can go in on a miss N-Way Set Assoc ú index specifies a set, but block can occupy any position within the set on a miss Fully Associative ú block can be written into any position Question: if we have the choice, where should we write an incoming block? ú If there are any locations with valid bit off (empty), then usually write the new block into the first one. ú If all possible locations already have a valid block, we must pick a replacement policy: rule by which we determine which block gets cached out on a miss. CS61C L14 Caches III (18)

Block Replacement Policy: LRU LRU (Least Recently Used) ú Idea: cache out block which has been accessed (read or write) least recently ú Pro: temporal locality recent past use implies likely future use: in fact, this is a very effective policy ú Con: with 2-way set assoc, easy to keep track (one LRU bit); with 4-way or greater, requires complicated hardware and much time to keep track of this CS61C L14 Caches III (19)

Block Replacement Example We have a 2-way set associative cache with a four word total capacity and one word blocks. We perform the following word accesses (ignore bytes for this problem): 0, 2, 0, 1, 4, 0, 2, 3, 5, 4 How many hits and how many misses will there be for the LRU block replacement policy? CS61C L14 Caches III (20)

Block Replacement Example: LRU 0: miss, bring into set 0 (loc 0)" 2: miss, bring into set 0 (loc 1)" Addresses 0, 2, 0, 1, 4, 0,... 0: hit" 1: miss, bring into set 1 (loc 0)" 4: miss, bring into set 0 (loc 1, replace 2)" 0: hit" loc 0" loc 1" set 0" 0" lru" set 1" set 0" lru" lru" 0" 2" set 1" set 0" lru" lru" 0" 2" set 1" set 0" lru" 0" 2" set 1" 1" lru" set 0" lru" 0" lru" 4" 2" set 1" lru" 1" set 0" lru" lru" 0" 4" set 1" lru" 1" CS61C L14 Caches III (21)

Big Idea How to choose between associativity, block size, replacement & write policy? Design against a performance model ú Minimize: Average Memory Access Time = Hit Time + Miss Penalty x Miss Rate ú influenced by technology & program behavior Create the illusion of a memory that is large, cheap, and fast - on average How can we improve miss penalty? CS61C L14 Caches III (22)

Improving Miss Penalty When caches first became popular, Miss Penalty ~ 10 processor clock cycles Today 2400 MHz Processor (0.4 ns per clock cycle) and 80 ns to go to DRAM 200 processor clock cycles! MEM" Proc" $" $ 2 " DRAM" Solution: another cache between memory and the processor cache: Second Level (L2) Cache CS61C L14 Caches III (23)

Peer Instruction 1. A 2-way set-associative cache can be outperformed by a direct-mapped cache. 2. Larger block size lower miss rate 12! a) FF! b) FT! c) TF! d) TT! CS61C L14 Caches III (24)

Peer Instruction Answer 1. Sure, consider the caches from the previous slides with the following workload: 0, 2, 0, 4, 2 2-way: 0m, 2m, 0h, 4m, 2m; DM: 0m, 2m, 0h, 4m, 2h 2. Larger block size lower miss rate, true until a certain point, and then the ping-pong effect takes over 1. A 2-way set-associative cache can be outperformed by a direct-mapped cache. 2. Larger block size lower miss rate 12! a) FF! b) FT! c) TF! d) TT! CS61C L14 Caches III (25)

And in Conclusion We ve discussed memory caching in detail. Caching in general shows up over and over in computer systems ú Filesystem cache, Web page cache, Game databases / tablebases, Software memoization, Others? Big idea: if something is expensive but we want to do it repeatedly, do it once and cache the result. Cache design choices: ú ú ú ú ú ú ú Size of cache: speed v. capacity Block size (i.e., cache aspect ratio) Write Policy (Write through v. write back Associativity choice of N (direct-mapped v. set v. fully associative) Block replacement policy 2nd level cache? 3rd level cache? Use performance model to pick between choices, depending on programs, technology, budget,... CS61C L14 Caches III (26)

Bonus slides These are extra slides that used to be included in lecture notes, but have been moved to this, the bonus area to serve as a supplement. The slides will appear in the order they would have in the normal presentation CS61C L14 Caches III (27)

Analyzing Multi-level cache hierarchy CS61C L14 Caches III (28) Proc" $" $ 2 " L1 hit " time" L2 hit " time" L2 Miss Penalty" L1 Miss Rate" L1 Miss Penalty" Avg Mem Access Time = " "L1 Hit Time + L1 Miss Rate * L1 Miss Penalty" L1 Miss Penalty = " "L2 Hit Time + L2 Miss Rate * L2 Miss Penalty" Avg Mem Access Time = " "L1 Hit Time + L1 Miss Rate * "(L2 Hit Time + L2 Miss Rate * L2 Miss Penalty)" DRAM" L2 Miss Rate"

Example Assume ú Hit Time = 1 cycle ú Miss rate = 5% ú Miss penalty = 20 cycles ú Calculate AMAT Avg mem access time = 1 + 0.05 x 20 = 1 + 1 cycles = 2 cycles CS61C L14 Caches III (29)

Ways to reduce miss rate Larger cache ú limited by cost and technology ú hit time of first level cache < cycle time (bigger caches are slower) More places in the cache to put each block of memory associativity ú fully-associative any block any line ú N-way set associated N places for each block direct map: N=1 CS61C L14 Caches III (30)

Typical Scale L1 ú size: tens of KB ú hit time: complete in one clock cycle ú miss rates: 1-5% L2: ú size: hundreds of KB ú hit time: few clock cycles ú miss rates: 10-20% L2 miss rate is fraction of L1 misses that also miss in L2 ú why so high? CS61C L14 Caches III (31)

Example: with L2 cache Assume ú L1 Hit Time = 1 cycle ú L1 Miss rate = 5% ú L2 Hit Time = 5 cycles ú L2 Miss rate = 15% (% L1 misses that miss) ú L2 Miss Penalty = 200 cycles L1 miss penalty = 5 + 0.15 * 200 = 35 Avg mem access time = 1 + 0.05 x 35 = 2.75 cycles CS61C L14 Caches III (32)

Example: without L2 cache Assume ú L1 Hit Time = 1 cycle ú L1 Miss rate = 5% ú L1 Miss Penalty = 200 cycles Avg mem access time = 1 + 0.05 x 200 = 11 cycles 4x faster with L2 cache! (2.75 vs. 11) CS61C L14 Caches III (33)

An actual CPU Early PowerPC Cache ú 32 KB Instructions and 32 KB Data L1 caches ú External L2 Cache interface with integrated controller and cache tags, supports up to 1 MByte external L2 cache ú Dual Memory Management Units (MMU) with Translation Lookaside Buffers (TLB) Pipelining ú Superscalar (3 inst/cycle) ú 6 execution units (2 integer and 1 double precision IEEE floating point)

An Actual CPU Pentium M 32KB I$" 32KB D$" CS61C L14 Caches III (35)