Internet Routing Protocols Part II

Similar documents
Routing Protocols. Autonomous System (AS)

The Internet. The Internet is an interconnected collection of netw orks.

Planning for Information Network

IPv6 : Internet Protocol Version 6

History. IPv6 : Internet Protocol Version 6. IPv4 Year-Wise Allocation (/8s)

TSIN02 - Internetworking

Routing Protocols --- Exterior Gateway Protocol

CHAPTER 18 INTERNET PROTOCOLS ANSWERS TO QUESTIONS

IPv6 Protocols and Networks Hadassah College Spring 2018 Wireless Dr. Martin Land

CS-435 spring semester Network Technology & Programming Laboratory. Stefanos Papadakis & Manolis Spanakis

Internet Protocol, Version 6

RMIT University. Data Communication and Net-Centric Computing COSC 1111/2061. Lecture 2. Internetworking IPv4, IPv6

IPv6 is Internet protocol version 6. Following are its distinctive features as compared to IPv4. Header format simplification Expanded routing and

Computer Networking: A Top Down Approach Featuring the. Computer Networks with Internet Technology, William

IPv6: An Introduction

Chapter 2 - Part 1. The TCP/IP Protocol: The Language of the Internet

NAT, IPv6, & UDP CS640, Announcements Assignment #3 released

Network Layer. Goals of This Lecture. Internet Reference Model. Outline of the Class

IPv6. IPv4 & IPv6 Header Comparison. Types of IPv6 Addresses. IPv6 Address Scope. IPv6 Header. IPv4 Header. Link-Local

CSCI-1680 Network Layer:

Lecture 8. Network Layer (cont d) Network Layer 1-1

Chapter 12 Network Protocols

Initial motivation: 32-bit address space soon to be completely allocated. Additional motivation:

Client Server Concepts, DNS, Telnet, FTP

Chapter 19 Network Layer: Logical Addressing

Review for Chapter 4 R1,R2,R3,R7,R10,R11,R16,R17,R19,R22,R24, R26,R30 P1,P2,P4,P7,P10,P11,P12,P14,P15,P16,P17,P22,P24,P29,P30

Networking: Network layer

Chapter 4: Advanced Internetworking. Networking CS 3470, Section 1

Da t e: August 2 0 th a t 9: :00 SOLUTIONS

Lecture 3. The Network Layer (cont d) Network Layer 1-1

Routing Protocols. The routers in an internet are responsible for receiving and. forwarding IP datagrams through the interconnected set of

7th Slide Set Computer Networks

Internetworking Terms. Internet Structure. Internet Structure. Chapter 15&16 Internetworking. Internetwork Structure & Terms

Data Communication Prof. A. Pal Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Lecture 34 TCP/ IP I

Routing Between Autonomous Systems (Example: BGP4) RFC 1771

Lecture Computer Networks

Prof. Shervin Shirmohammadi SITE, University of Ottawa. Internet Protocol (IP) Lecture 2: Prof. Shervin Shirmohammadi CEG

Outline. Addressing on the network layer ICMP IPv6 Addressing on the link layer Virtual circuits

Introduction to IP Routing. Geoff Huston

CS321: Computer Networks Unicast Routing

Routing in the Internet

Internet Control Message Protocol (ICMP)

The Interconnection Structure of. The Internet. EECC694 - Shaaban

Network Layer Part A (IPv6) Network Layer 4-1

II. Principles of Computer Communications Network and Transport Layer

Internet Interconnection Structure

Internet Protocols (chapter 18)

The Internet. 9.1 Introduction. The Internet is a global network that supports a variety of interpersonal and interactive multimedia applications.

Lecture 18 Overview. Last Lecture. This Lecture. Next Lecture. Internet Protocol (1) Internet Protocol (2)

SEN366 (SEN374) (Introduction to) Computer Networks

ETSF05/ETSF10 Internet Protocols Network Layer Protocols

IPv6 Technical Challenges

CSCI Topics: Internet Programming Fall 2008

Chapter 09 Network Protocols

Network Layer (4): ICMP

Integrated Services. Integrated Services. RSVP Resource reservation Protocol. Expedited Forwarding. Assured Forwarding.

IP - The Internet Protocol. Based on the slides of Dr. Jorg Liebeherr, University of Virginia

ECE 428 Internet Protocols (Network Layer: Layer 3)

Network Layer/IP Protocols

Outline. IP Address. IP Address. The Internet Protocol. o Hostname & IP Address. o The Address

Implementing Cisco IP Routing

OSI Data Link & Network Layer

EP2120 Internetworking/Internetteknik IK2218 Internets Protokoll och Principer

On Distributed Communications, Rand Report RM-3420-PR, Paul Baran, August 1964

Presentation On Routing Protocol

MODULE: NETWORKS MODULE CODE: CAN1102C. Duration: 2 Hours 15 Mins. Instructions to Candidates:

HY 335 Φροντιστήριο 8 ο

CS 3516: Advanced Computer Networks

Chapter 20 Network Layer: Internet Protocol 20.1

BGP. Daniel Zappala. CS 460 Computer Networking Brigham Young University

Introduction to IPv6. Unit -2. Prepared By:- NITIN PANDYA Assistant Professor, SVBIT.

Asst. Prof. Chaiporn Jaikaeo, Ph.D.

LARGE SCALE IP ROUTING LECTURE BY SEBASTIAN GRAF

Chapter 4: outline. Network Layer 4-1

OSI Data Link & Network Layer

Topics for This Week

Cisco Implementing Cisco IP Routing (ROUTE v2.0)

Last time. Wireless link-layer. Introduction. Characteristics of wireless links wireless LANs networking. Cellular Internet access

Computer Networking Introduction

CS 3516: Computer Networks

EC441 Fall 2018 Introduction to Computer Networking Chapter4: Network Layer Data Plane

OSI Data Link & Network Layer

CS610 Computer Network Final Term Papers Solved MCQs with reference by Virtualians Social Network

CS 356: Computer Network Architectures. Lecture 10: IP Fragmentation, ARP, and ICMP. Xiaowei Yang

IP : Internet Protocol

EEC-684/584 Computer Networks

Chapter 4: Network Layer. Lecture 12 Internet Routing Protocols. Chapter goals: understand principles behind network layer services:

ETSF10 Internet Protocols Routing on the Internet

Guide to Networking Essentials, 6 th Edition. Chapter 5: Network Protocols

Introduction. IP Datagrams. Internet Service Paradigm. Routers and Routing Tables. Datagram Forwarding. Example Internet and Conceptual Routing Table

Communication Systems IPv6

Internetworking Part 2

IPv4/v6 Considerations Ralph Droms Cisco Systems

Inter-AS routing and BGP. Network Layer 4-1

TCP/IP Protocol Suite

ET4254 Communications and Networking 1

Configuring IPv6. Information About IPv6. Send document comments to CHAPTER

Chapter 4 Network Layer: The Data Plane. Part A. Computer Networking: A Top Down Approach

EITF25 Internet Techniques and Applications L7: Internet. Stefan Höst

Network Layer: Control/data plane, addressing, routers

Transcription:

Indian Institute of Technology Kharagpur Internet Routing Protocols Part II Prof. Indranil Sen Gupta Dept. of Computer Science & Engg. I.I.T. Kharagpur, INDIA Lecture 8: Internet routing protocols Part II On completion, the student will be able to: 1. Explain the basic concept behind the border gateway protocol (BGP). 2. State the major modifications leading to the nextgeneration IP protocol, Ipv6. 3. Examine the avenues to move from IPv4 to IPv6. 1

Border Gateway Protocol (BGP) What is BGP? Most widely used exterior router protocol for the Internet. Allows routers belonging to different autonomous systems to exchange routing information. Sent as messages over TCP connections. The router tables get updated. 2

Message Types in BGP Four types of messages: 1) Open: used to open a neighbor connection with another router. 2) Update: used to transmit information about a single route. 3) Keepalive: used to periodically confirm the neighbor connection. 4) Notification: used to notify about some error condition. Types of error conditions reported: Message header error authentication and syntax. Open message error syntax errors and unrecognized options. Update message error. Hold timer expired used to close a connection if periodic messages are not received. Cease used by a router to close a connection with another router in the absence of any other error. 3

Functional Procedures in BGP Neighbor Acquisition Two routers agree to be neighbors by exchanging messages. Neighbor Reachability Check if the neighbor is still alive, and is maintaining the relationship. Network Reachability Each router maintains a list of the networks that it can reach, and the preferred routes. All modern-day routers support BGP. The routers that are managed by ISP s actually run BGP. Organizational networks in many cases do not run BGP. Rely on the ISP s routers to route packets to the outside world. Default route will be to the ISP router. 4

IP Version 6 Introduction The IP protocol forms the foundation of the Internet. IP version 4 is used widely today. IPv4 suffers from a number of drawbacks. Need to enhance the capabilities of the protocol. IP Next Generation IPng / IPv6 5

Problems with IPv4 Limited address space. 32-bit address is inadequate today. Applications demanding real-time response. Real-time audio or video. Must avoid changing routes frequently. Need for more complex addressing and routing capabilities. Two-level structure of IPv4 may not serve the purpose. Main Features of IPv6 Something is common with IPv4: IPv6 is connectionless each datagram contains destination address and is routed independently. Header contains the maximum number of hops a datagram can make before being discarded. Some of the other general characteristics are also retained. 6

New features of IPv6: Address size: 128-bit addresses are used. 6x10 23 unique addresses per square meter of the earth s surface. Header format: IPv6 uses a series of fixed-length headers to handle optional information. A datagram consists of a base header followed by zero or more extension headers. Support for real-time traffic: Allows a pair of stations to establish a high quality path between them. All datagrams flow through this path. Increased flexibility in addressing: Includes the concept of an anycast address, where a packet is delivered to one of a set of nodes. Provides for dynamic assignment of IP addresses. 7

IPv6 Datagram Format An IP datagram begins with a base header, followed by zero or more extension headers, followed by data (transport-layer PDU). 40 bytes base header Base Header Extension Header 1 Extension Header N Transport Layer PDU IPv6 Base Header Format Version Priority Flow Label Payload Length Next Hdr Hop Limit Source Address (128 bits) Destination Address (128 bits) 8

The Fields Version (4 bits): contains the value 6. Priority (8 bits): specifies routing priority class. Flow Label (20 bits): used with applications that require performance guarantee. Payload Length (16 bits): total length of the extension headers and the transport-level PDU. Next Header (8 bits): identifies the type of information that immediately follows the current header (IP extension, TCP or UDP). Base Header Next=TCP Base Header Next=Route TCP Data Route Header Next=TCP TCP Data Hop Limit: decremented by 1 at each hop; discarded when it reaches 0. Source/destination addresses: 16 octets (128 bits) each. 9

IPv6 Extension Headers Routing Header Provides source routing. Hop-by-hop Options Header Defines special options that are processed at each hop. Fragment Header For fragmentation and reassembly. Authentication Header For packet integrity & authentication. All Extension headers chained in a linked list through Next Hdr field. A Point About Fragmentation IPv6 fragmentation is similar to that in IPv4. Required information contained in a separate fragment extension header. Presence of the fragment header identifies the datagram as a fragment. Base header copied into all the fragments. 10

IPv6 Addressing Addresses do not have defined classes. A prefix length associated with each address (flexibility). Three types of addresses: Unicast: corresponds to a single computer. Multicast: Refers to a set of computers, possibly at different locations. Packet delivered to every member of the set. Anycast: Refers to a set of computers with the same address prefix. Packet delivered to exactly one of the computers in the set. Required to support replication of services. 11

Colon Hexadecimal Notation An IPv6 address is 128 bits long. Dotted decimal notation too long. Use colon-hexadecimal notation. Each group of 16 bits written in hex, with a colon separating groups. Example: 7BD6:3DC:FFFF:FFFF:0:2D:F321:FFFF Sequence of zeros is written as two colons. 7BD6:0:0:0:0:0:0:B6 7BD6::B6 Aggregate Global Unicast Address 001 TLA Id (13) NLA Id (32) SLA Id (16) Interface Id (64) TLA: top-level aggregation NLA: next-level aggregation SLA: site-level aggregation Interface Id: typically based on hardware MAC address 12

IPv4-Mapped IPv6 Addresses Allow a host that supports both IPv4 and IPv6 to communicate with a host that supports only IPv4. IPv6 address is based on IPv4 address. 80 0 s, followed by 16 1 s, followed by a 32-bit IPv4 address. IPv4 Compatible IPv6 Addresses Allows a host supporting IPv6 to talk IPv6 even if the local routers do not talk IPv6. Tell endpoint software to create a tunnel by encapsulating the IPv6 packet in an IPv4 packet. 80 0 s, followed by 16 0, followed by a 32-bit IP address. 13

Tunnelling Done automatically by the OS kernel when IPv4-compatible IPv6 addresses are used. IPv6 Host IPv4 Router IPv4 Router IPv6 Host IPv6 Datagram IPv4 Datagram Transition from IPv4 to IPv6 Three alternate transition strategies: 1. Dual stack: Both IPv4 and IPv6 protocol stacks supported in the gateway. 2. Tunneling: An IPv6 datagram flows through an intermediate IPv4 network by encapsulating the whole IPv6 packet as payload. 3. Header translation: An IPv4 address is translated into a IPv6 address, and vice versa. 14

The Scenario Today Very few organizations have actually moved over to IPv6. IPv6 networks mostly confined to laboratories. Transition has to take anyway. The sooner the better. 15

SOLUTIONS TO QUIZ QUESTIONS ON LECTURE 7 Quiz Solutions on Lecture 7 1. What is a connection-oriented protocol? Where first a connection is established, and all packets follow the same path. 2. What is a connectionless protocol? No connection is established, and packets are routed independently. 16

Quiz Solutions on Lecture 7 3. What is the difference between direct and indirect packet delivery options? No router is encountered in the first case, while in the second case the packet gets routed through a router. 4. How is the default route specified in the routing table? By specifying 0.0.0.0 as the host address. Quiz Solutions on Lecture 7 5. What is the problem if we use only hostspecific routing and no network-specific routing? There has to be an entry in the routing table corresponding to each host; which will become very large. 17

Quiz Solutions on Lecture 7 6. What do the G and U flags in the routing table signify? G : destination is in another network U : router is up and running 7. What is the difference between interior and exterior routing protocols? Interior : routers in the same AS Exterior : routers in different ASs Quiz Solutions on Lecture 7 8. What is an autonomous system? Basically a set of routers and networks managed by the same organization. 9. How do routers update information in RIP? Using distance vectors received from neighbors. 18

Quiz Solutions on Lecture 7 10. How to routers compute path in OSPF? Using Dijkstra s algorithm 11. Which paths do the packets follow in OSPF? From each router, it follows the next hop according to the paths computed in the router. QUIZ QUESTIONS ON LECTURE 8 19

Quiz Questions on Lecture 8 1. What are the four types of BGP messages? 2. How is a BGP connection between two routers maintained? 3. What are the main functional procedures in BGP? 4. Why is IPv4 not suitable for supporting real-time traffic? 5. How are the (multiple) headers in a IPv6 packet kept track of? 6. How does IPv6 attempt to support real-time traffic? Quiz Questions on Lecture 8 7. What does the Payload length field in the IPv6 header signify? 8. What does the Next Header field in the IPv6 header signify? 9. In IPv6, how are the fragments kept track of, in case a packet is fragmented? 10. What is anycast addressing? 11. How can we use tunneling to send a IPv6 packet over a IPv4 network? 20